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1 IntrodutionIn global navigation satellite systems (GNSS), the al-ibration of the lok-phase biases of global networks isa hallenging problem. In partiular, the knowledge ofthe satellite lok-phase biases is needed for preise pointpositioning (PPP); see, e.g., Zumberge et al. 1997; Geet al. 2008; Bertiger et al. 2010; Geng et al. 2010; Li etal. 2013. In the general ontext de�ned below, the equa-tions governing this GNSS alibration problem have abasi rank defet. In this paper, we analyse the di�erentways of removing this rank defet, and de�ne a partiularstrategy for obtaining the lok-phase biases in a stan-dard form. The link with other related approahes, suhas those proposed by Blewitt (1989), de Jonge (1998),Collins et al. (2010), and Loyer et al. (2012), is estab-lished in that framework.When modelling the multi-frequeny (ode and phase)observations of GNSS networks, the system to be on-sidered inlude phase strutures of the form
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∣

[βrκ(i) − βsκ(j)] + N(i, j) = bκ(i, j)for κ = 1, . . . , k
(1)Here, κ is the epoh index; k is the index of the urrentepoh; βrκ(i) and βsκ(j) are lok-phase biases. Theseterms are also alled `unalibrated phase delays' (UPD).They are expressed in yles, and depend on the fre-queny of the transmitted arrier wave; subsripts r ands stand for reeiver and satellite,1 respetively; i is theindex of the reeiver, and j that of the satellite; N(i, j) isthe integer ambiguity of the orresponding arrier-phasemeasurement. The terms bκ(i, j) inlude the orrespond-ing phase data and all the other ontributions of suhequations; see, e.g., Eqs. (1) and (10) of Lannes andTeunissen 2011, and Eqs. (1) and (4) of Loyer et al. 2012.The set of reeiver-satellite pairs (i, j) involved in Eq. (1)forms the observational graph Hκ of the GNSS senario1In this paper, satellite should be understood as satellite trans-mitter.



2 J Geod 2013 DOI: 10.1007/s00190-013-0641-4 (in press)of epoh κ. This graph is assumed to be onneted; seeAppendix A. Note that the wide-lane equation of theionosphere-free mode is typially of form (1); N is thena wide-lane integer ambiguity; see, e.g., Eq. (4) of Loyeret al. 2012.As expliitly lari�ed further on, whenever phase stru-tures suh as (1) appear in GNSS-network problems, a re-lated rank defet is to be removed. In this paper, we re-strit ourselves to the rank defets indued those phasestrutures. This does not mean of ourse that those basirank defets are the only ones to be handled in pratie;see, in partiular, Teunissen and Odijk (2003). A stan-dard approah for takling the rank defets is known asthe S-system approah of Baarda 1973, Teunissen 1984,de Jonge 1998. Examples of suh S-system solutions areto be found in de Jonge 1998; Teunissen et al. 2010;Zhang et al. 2011; Odijk et al. 2012.In the geodeti and GNSS literature, there exist severalways of removing this basi rank defet. The most gen-eral approah is based on the S-system theory alreadymentioned. Other strategies derive from the pioneeringontribution of Blewitt (1989): the relationship betweenthe undi�erened (UD) ambiguities and the double dif-ferened (DD) ambiguities is ompleted so that the op-erator D thus de�ned is invertible. Let us also mentionthe approah of Collins et al. (2010) whih is based onthe onept of `ambiguity datum �xing.' The importantdevelopments of those approahes, both at a oneptualand tehnial level, were often onduted with di�erentphysial objetives. They have thus progressively andinsidiously masked the fundamental links between therelated methods.Brie�y, the Blewitt proedure an be divided in threesteps. In the �rst step, with regard to Eq. (1) for exam-ple, the UD data are proessed by onsidering the termon the left-hand side of that equation as a `onstant fun-tional variable;' a �oat estimate of this `biased-ambiguityvariable' is thus obtained. In the seond step, the orre-sponding DD ambiguities are omputed, and then �xedat integer values. In the third step, the lok-phase bi-ases βκ are estimated by using as data the UD ambi-guities provided by the ation of D−1 on the olumnmatrix formed by those �xed ambiguities. The theoret-ial analysis developed in the present paper provides inpartiular an answer to the following question: what isthe link between the UD ambiguities thus �xed and the�xed `losure-delay' or `losure-di�erene' (CD) ambigui-ties of the UD approah of Lannes and Teunissen (2011)?A similar question arises for the UD approah of Collinset al. (2010); an answer is also provided.In this general GNSS ontext, the main objetive of thepaper is to present a uni�ed interpretative framework inwhih the various ontributions in the related �elds ofresearh an be understood and ompared more easily.This an lead to improvements of some related meth-ods. For example, we show that removing the rank de-fet via the D-matrix of Blewitt (1989) an be analysed

in a theoretial framework tightly linked to the S-systemapproah of Teunissen (1984). We thus show that the in-termediate di�erening stage of the Blewitt approah anbe avoided, without any ounterpart, via the approahof Teunissen (1984) as it is formulated for example inLannes and Teunissen (2011): the `losure ambiguities'to be �xed then appear, from the outset, in the very for-mulation of the UD problem to be solved; ompare withwhat is done in Set. 4 of Ge et al. (2005) for instane.The theoretial guidelines of this paper are presented inSet. 2. We �rst identify the rank defet in question.The minimum-onstrained problem to be solved in theleast-squares (LS) sense depends on some integer vetorwhih an be �xed in an arbitrary manner. To omparethe methods providing LS estimates of the lok-phasebiases, we then introdue a partiular solution playingthe role of referene solution. For this solution, when alok-phase bias is estimated for the �rst time, its fra-tional part is on�ned to the one-yle width intervalentred on zero; the integer-ambiguity set is modi�edaordingly. Setion 3 is devoted to the algebrai frame-work of our analysis. This framework mainly derivesfrom the original ontributions of Lannes and Gratton(2009), and Lannes and Teunissen (2011). As a similarproblem arises in phase-losure imaging in astronomy, wealso took pro�t of the analysis presented in Lannes andPrieur (2011). A natural way for �nding the referenesolution is to adopt an approah based on the notion oflosure ambiguity. The priniple of the orresponding`losure-ambiguity approah' (CAA) is de�ned in thatframework (Set. 4). The bulk of our ontribution fol-lows the main theoretial guidelines presented in Set. 2.In a related option whih is presented in Set. 5, theCAA priniple is diretly introdued via the S-system ap-proah of Baarda (1973), Teunissen (1984) and de Jonge(1998). The orresponding development is performed inthe S-system framework de�ned in Appendix B. Thestudy developed in Sets. 3.3, 3.4 and 3.15 of de Jonge(1998) is thus extended to the ases where the unionof the graphs Hκ is taken into aount progressively.Setion 6 is devoted to the QR implementation of theCAA priniple; related information is to be found inAppendix C. In many methods, the rank defet in ques-tion is removed in an impliit manner or intuitively. InSet. 7, on the grounds of some results established inSets. 3.5 and 3.6, we identify the related onstraints ex-pliitly, and thus establish the link between the solutionsprovided by those methods and the CAA-(S-System) so-lutions; see Fig. 6 in partiular.Our analysis is illustrated with some simple and generiexamples. It ould have appliations in data proessingof most GNSS networks, and partiularly global networksusing GPS,Glonass, Galileo, or BeiDou/Compass satel-lites. The main results provided by this study are om-mented upon in Set. 8; some onlusions are also pre-sented with possible appliations to software pakagesused for proessing GNSS networks.



Lannes and Prieur: Calibration of the lok-phase biases of GNSS networks 32 Theoretial guidelinesThe problem is formulated in Set. 2.1; the related rankdefet is identi�ed in Set. 2.2. This rank defet an beremoved by imposing some onstraints without a�etingthe GNSS results suh as the estimates of the station-position parameters, for example. The partiular LS so-lutions thus obtained are de�ned in Set. 2.3. We thende�ne the family of those solutions (Set. 2.4). To om-pare the partiular solutions given by the various GNSSmethods providing LS estimates of lok-phase biases,we then introdue a partiular solution playing the roleof referene solution (Set. 2.5).2.1 Formulation of the problemIn our formulation of the problem, the omponents of theambiguity vetor N are the integer ambiguities N(i, j)involved in the phase measurements until the urrentepoh. We thereby assume that the time-invariant prop-erty of the ambiguities holds. Regarded as a funtion,
N therefore takes its values on the edges of
Gk

def

=
k

⋃

κ=1

Hκ (2)where Hκ is the observational graph of epoh κ. In whatfollows, Hk denotes the `harateristi funtion' of Hkwith regard to Gk:for all (i, j) ∈ Gk, Hk(i, j)
def

=

∣

∣

∣

∣

∣

1 if (i, j) ∈ Hk;
0 otherwise. (3)The number of edges (ri, sj) of Hκ is denoted by neκ;

neκ is less than or equal to the number of edges of Gk.To illustrate our analysis, we onsider a `simulated net-work' inluding four reeivers and �ve to eight satellites;see Fig. 1. The senarios of the �rst three epohs arede�ned by the harateristi funtions H1, H2 and H3displayed in that �gure. While looking simple at �rstsight, this example is rather elaborate. Indeed, it in-ludes the ase of the appearane of new satellites in the�eld of view of the network (s6 and s7 at epoh 2, s8 atepoh 3), and also the ase of the disappearane of onesatellite (s3 at epoh 3).Remark 2.1. When a satellite omes bak in the �eld ofview of the network, it is dealt with as a new satellite.In the ase of global networks, if need be, the suessivepasses are thus dealt with in a simple manner ·At epoh κ ≤ k, only some omponents of N may beative; see Fig. 1. To formalize this point, we introduethe operatorRe
κ that restrits N (whih is de�ned on theedges of Gk) to the edges of Hκ:for all (i, j) ∈ Hκ, (Re

κN)(i, j)
def

= N(i, j) (4)
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Figure 1: Charateristi funtions of Hk with regard to Gkfor k = 1, 2, 3 (example). From top to bottom, H1, H2,and H3. The dots de�ne the edges (ri, sj) for whih no datahave been obtained until epoh k inluded. Here, ne1 = 11,
ne2 = 15, and ne3 = 16. By de�nition, Gk is the union ofthe observational graphs until epoh k inluded. The num-ber of the edges of Gk is 11 at epoh 1, 17 at epoh 2,and 20 at epoh 3. Six edges appear at epoh 2: (r1, s7),
(r2, s6), (r2, s7), (r3, s2), (r3, s6) and (r4, s5); two edges dis-appear: (r2, s3) and (r3, s3). Note that satellites s6 and s7are then deteted by the network. Three edges appear atepoh 3: (r2, s8), (r4, s7) and (r4, s8); two edges disappear:
(r3, s1) and (r4, s3). Satellite s3 then disappears. At eahepoh, the large-sized numbers de�ne the edges of Gst,k, theseleted spanning tree of Gk; see Fig. 5 further on.Equation (1) an then be written in the form
∣

∣

∣

∣

∣

Bκβκ + Re
κN = bκfor κ = 1, . . . , k

(5)where Bκ is the following bias operator:
(Bκβκ)(i, j)

def

= βrκ(i)− βsκ(j) (for all (i, j) ∈ Hκ) (6)In what follows, we will assume that Reeiver 1 de�nesthe referene for the reeiver and satellite biases:
βrκ(1) = 0 (κ = 1, . . . , k) (7)This is ommonly used by the GNSS investigators forremoving the rank defet of operators suh as Bκ. Thenumber nbκ of phase biases of epoh κ to be estimated



4 J Geod 2013 DOI: 10.1007/s00190-013-0641-4 (in press)is therefore equal to nvκ − 1 where nvκ is the number ofverties of Hκ:
nbκ = nvκ − 1 (nvκ = nrκ + nsκ) (8)With regard to its funtional variables β1, . . . , βk and N ,Eq. (5) proves to have a basi rank defet. We nowspeify this point.2.2 Identi�ation of the rank defetFor larity, let us set
G

def

= Gk (9)At epoh k, the number of ambiguities N(i, j) involvedin the problem is equal to the number of edges of G (forexample twenty in Fig. 1 for k = 3). Again, for larity,this number is simply denoted by ne. We then set
nst = nv − 1 (nv = nr + ns) (10)where nv is the number of verties of G; nr and ns are thenumber of reeivers and satellites (respetively) involvedin that graph (four and eight in Fig. 1 for k = 3). Asspei�ed in Set. A2, nst is the number of edges of anyspanning tree Gst of G. The total number of phase biasesto be estimated at epoh k, ∑k

κ=1 nbκ, is generally muhlarger than nst; see Eqs. (8) and (10). The part playedby the verties of G is not obvious. We now show that
nst de�nes the `size' of the rank defet in question.Let us denote by B the operator from R

nst into R
ne de-�ned by the relation

(Bα)(i, j)
def

= αr(i) − αs(j) (for all (i, j) ∈ G) (11)Denoting by µ any integer-valued funtion taking its val-ues on the verties of G other than the referene reeiver,we have
Re

κBµ = BκR
v
κµ (12)where Rv

κµ is the restrition of µ to the verties of Hκ(other than the referene reeiver). Note that µ an beregarded as a vetor of Z
nst . It then follows from Eq. (5)that for any µ in Z

nst ,
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∣

Bκ(βκ + Rv
κµ) + Re

κ(N − Bµ) = bκfor κ = 1, . . . , k
(13)Via the operators Bκ, Rv

κ, Re
κ and B, any variation ofthe `vertex-ambiguity' vetor µ an thus be ompensatedby a variation of the `edge-ambiguity' vetor N . As aresult, with regard to the bias and ambiguity variables,Eq. (5) is not of full rank. The dimension of the rankdefet is equal to that of vetor µ, i.e., nst.

2.3 Partiular LS solutionsIn GNSS, for the reasons spei�ed in Remark 2.2 (at theend of this setion), eah lok-phase bias is to be esti-mated up to a onstant integer. As a result, the hoieof µ in Z
nst does not a�et the signi�ant part of thevalues of the bias funtions

wκ
def

= βκ + Rv
κµ (κ = 1, . . . , k) (14)to be estimated; see Eq. (13). The ambiguity vetor tobe retrieved

v
def

= N − Bµ (15)is of ourse a�eted by this hoie, but this has no atualGNSS impat. As a result, the GNSS methods provid-ing estimates of the lok-phase biases must remove therank defet of Eq. (5) by hoosing µ in Z
nst somehow,impliitly or expliitly.In pratie, as lari�ed in the remainder of the paper,removing this rank defet amounts to imposing nst on-straints on some values of the biases or ambiguities tobe retrieved. In other words µ is de�ned via these on-straints. The minimum-onstrained problem to be solvedin the LS sense is therefore of the form
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Bκwκ + Re
κv = bκ (κ = 1, . . . , k)subjet to nst onstraints on wκ or v

(16)With regard to a partiular set of suh onstraints, where
v is an integer-valued funtion from Eq. (15), the LS so-lution of Eq. (16),
(w̌1, . . . , w̌k; v̌) (17)is then unique. For example, the solution provided by theCAA method de�ned in Set. 4 is the partiular LS solu-tion obtained by imposing the a priori onstraint v = 0on a spanning tree of G (hosen arbitrarily). The parti-ular LS solution introdued in Set. 2.5 is de�ned by im-posing, a posteriori, nst onstraints on some bias values.In our analysis, this partiular solution plays the role ofreferene solution; it is denoted by (w̄1, . . . , w̄k; v̄).Remark 2.2. The satellite omponents of the biases thusobtained (for example those of the referene solution)an be broadasted to the network users for PPP appli-ations. The fat that w̌sκ(j) is an LS estimate of βsκ(j)up to some unknown onstant integer does not raise anydi�ulty. One is then simply led to rede�ne the integerambiguities involved in the PPP problem to be solved;see, e.g., Set. 9 in Lannes and Teunissen 2011 ·2.4 Equivalent LS solutionsGiven some partiular LS solution suh as (17), we have
Bκw̌κ + Re

κv̌
LS

= bκ



Lannes and Prieur: Calibration of the lok-phase biases of GNSS networks 5Like for Eq. (13), it then follows from Eq. (12) that
Bκ(w̌κ + Rv

κµ) + Re
κ(v̌ − Bµ)

LS

= bκThe LS solutions of Eq. (5) are therefore of the form
(w̌

(µ)
1 , . . . , w̌

(µ)
k ; v̌(µ)) (18)with

w̌(µ)
κ

def

= w̌κ + Rv
κµ, v̌(µ) def

= v̌ − Bµ (19)where µ is any vetor of Z
nst .The methods providing LS estimates of the phase biasesgenerally di�er by the hoie of the imposed onstraints.To ompare their results, it is onvenient to represent theequivalent solutions (18)-(19) by a referene partiularsolution. This is done in Set. 2.5.Remark 2.3. For any �xed µ in Z

nst , the temporal vari-ations of the estimated phase biases make sense. Forexample, if satellite sj remains in the �eld of view of thenetwork from epoh 1 to κ, we have
(Rv

κµ)s(j) = (Rv
1µ)s(j) = µs(j)hene from Eqs. (19) and (14) ,

w̌
(µ)
sκ (j) − w̌

(µ)
s1 (j) = w̌sκ(j) − w̌s1(j)

≃ βsκ(j) − βs1(j)A similar result of ourse holds for the reeiver lok-phase biases ·2.5 Referene solutionWe here onentrate on the family of equivalent LS so-lutions (18)-(19) generated by a partiular solution suhas (17): (w̌1, . . . , w̌k; v̌). In our analysis, the referenesolution of this family is the partiular solution
(w̄1, . . . , w̄k; v̄) (20)de�ned as follows: w̄κ and v̄ are of the form (19)
w̄κ

def

= w̌κ + Rv
κµ̌, v̄

def

= v̌ − Bµ̌ (21)in whih µ̌ is de�ned by imposing spei� onstraintson nst bias values; note that here, these onstraints areimposed a posteriori on the solution (w̌1, . . . , w̌k; v̄) pro-vided by any method. We �rst require the phase bias w̄to be small at epoh 1. More preisely, we impose theondition |w̄1| ≤ 1/2, i.e. expliitly,
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|w̄r1(i)| ≤ 1/2 for i = 2, . . . , nr1

|w̄s1(j)| ≤ 1/2 for j = 1, . . . , ns1

(22)The following values of µ̌ are de�ned aordingly:
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∣
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µ̌r1(i) := − ⌊w̌r1(i)⌉ for i = 2, . . . , nr1

µ̌s1(j) := − ⌊w̌s1(j)⌉ for j = 1, . . . , ns1

(23)

Here, ⌊x⌉ denotes the integer losest to x. Likewise,at eah epoh κ when some satellite(s) sj appear(s) inthe �eld of view of the network (see Fig. 1), we thenimpose the ondition(s)
|w̄sκ(j)| ≤ 1/2 (24)by setting
µ̌sκ(j) := − ⌊w̌sκ(j)⌉ (25)(In the ase where new reeivers would be ativated, sim-ilar onditions would be imposed.) At epoh k, we havethus ompletely de�ned some vetor µ̌ of Z

nst ; v̄ is thenobtained via the relation v̄ := v̌ − Bµ̌; see Eq. (21).Remark 2.4. When some LS solution (w̌1, . . . , w̌k; v̌)has been found, for instane that provided by the CAAmethod de�ned in Sets. 4 to 6, the referene solution ofits equivalent solutions is obtained as desribed in thissetion. Clearly, this an also be done for the LS solutionof any method providing estimates of the phase biases;see Set. 7 together with, e.g., Blewitt 1989; Ge et al.2005; Laurihesse and Merier 2007; Collins et al. 2010;and Loyer et al. 2012. To ompare and validate the re-sults provided by all these methods (and many others),one may inspet the ambiguity sets of their referene so-lutions. These referene ambiguity solutions should beidential on all the edges of G for all methods; otherwise,this would be an indiation that the methods are in dis-agreement, and that some of those results are wrong.The omparison of the referene solutions is thereforea good diagnosis for testing the ompatibility of thesemethods ·Remark 2.5. From a tehnial point of view, one mighttry to solve Eq. (16) in the LS sense by imposing the non-linear bias onstraints (22) and (24) on w1 and some wκ,from the outset. It is not easy at all to solve the problemthat way. Moreover, the number of edge ambiguities tobe �xed would then be equal to ne, whereas the num-ber of ambiguities to be �xed in the CAA approah (forexample) is equal to ne − nst; see Sets. 4 and 6 ·3 Algebrai frameworkThe preliminary analysis developed in Set. 2 shows thatgraph G, operator B, and Z
nst play a key role in theformulation of the problem and the de�nition of its so-lutions; see, in partiular, Eqs. (13) and (18)-(19). Theaim of this setion is to de�ne the orresponding alge-brai framework.We �rst de�ne related spaes of funtions (Set. 3.1).The key property on whih our analysis is based is pre-sented in Set. 3.2. The related notions of losure di�er-ene, CD ambiguity (also alled losure ambiguity), andlosure matrix are spei�ed in Sets. 3.3 and 3.4. Se-tions 3.5 and 3.6 are devoted to some generalized inverses



6 J Geod 2013 DOI: 10.1007/s00190-013-0641-4 (in press)of the UD-CD and UD-DD relationships. The analysisonerning the operator D introdued in the appendix Bof Blewitt (1989) is thus ompleted. We now draw freelyfrom the elementary notions introdued in Appendix A.3.1 Referene spaesGiven some graph G ≡ G(V , E), with vertex set V andedge set E (see Set. A1), we introdue some funtionalsspaes whih play a key role in the algebrai analysis ofthe problem. In what follows, the GNSS grid assoiatedwith G is denoted by G; see Fig. A1.3.1.1 Vertex-bias spaeLet Vb be the spae of real-valued funtions
α

def

= (αr, αs) (26)taking their values on the verties of G with αr(1) = 0.This spae, whih is referred to as the vertex-bias spae,is assoiated with the de�nition of (virtual) phase bi-ases α on the verties of G (other than the referenereeiver). From Eq. (10),
Vb

∼= R
nst (27)Here, the symbol ∼= means `isomorphi to.' Note that

Z
nst is the `integer lattie' of Vb: Vb(Z) ∼= Z

nst . Theinteger vetor µ
def

= (µr, µs) is a point of this lattie.3.1.2 Edge-delay spaeA real-valued funtion ϑ taking its values on G, andthereby on E , an be regarded as a vetor of the edge-delay spae
E ∼= R

ne (28)The values of ϑ on G are then regarded as the ompo-nents of ϑ in the standard basis of E; Z
ne is the `integerlattie' of E: E(Z) ∼= Z

ne . The integer-ambiguity ve-tor N is a point of this lattie.3.1.3 Spanning-tree delay spae.Closure-delay spaeGiven some spanning tree Gst of G, grid G an be de-omposed into two subgrids: Gst and Gc; see Set. A2.These grids inlude nst and nc points, respetively (seeFig. A2):
nc = ne − nst (29)The funtions of E that vanish on Gc form a subspaeof E denoted by Est: the spanning-tree delay spae.Likewise, the funtions of E that vanish on Gst form

a subspae of E denoted by Ec: the losure-delay spae;this terminology is justi�ed in Set. 3.3. The orrespond-ing integer latties are denoted by Est(Z) and Ec(Z), re-spetively. As illustrated in Fig. 2, the Eulidean spae Eis the orthogonal sum of Est and Ec. Clearly,
dimEst = nst, dimEc = nc (30)The orthogonal projetions of ϑ on Est and Ec are re-spetively denoted by Qstϑ and Qcϑ.3.1.4 Edge-bias spaeBy de�nition, the bias operator is the operator from Vbinto E de�ned by Eq. (11). The range of B, whih isdenoted by Eb (see Fig. 2), an be referred to as the edge-bias spae. Its funtions are of the form αr(i) − αs(j).The operator from Vb into Est indued by B is denotedby Bst. Likewise, the operator from Vb into Ec induedby B is denoted by Bc.The matrix of B is generally expressed in the standardbases of Vb and E. For example, let us sort the edges ofthe graph shown in Fig. A1 in the order obtained via theappliation of the Kruskal algorithm; see Set. A2. Thepoints of G are then ordered as follows:
(1, 1), (1, 3), (1, 4), (2, 1), (2, 2), (3, 2),

(2, 4), (3, 3), (3, 4)We then have
[B][α] =





























0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 −1 0 0 0
1 0 0 −1 0 0
0 1 0 −1 0 0
1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 0 −1

















































αr(2)

αr(3)

αs(1)

αs(2)

αs(3)

αs(4)



















The olumns of [B] then de�ne the standard basis of Eb.Clearly,
[Bst] =

















0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 −1 0 0 0
1 0 0 −1 0 0
0 1 0 −1 0 0

















(31)and
[Bc] =





1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 0 −1



 (32)The ondition Bstα = 0, i.e., Bα = 0 on the edges of Gst,implies that α is onstant on V ; as αr(1) = 0, this on-stant is zero. The null spae of Bst is therefore redued



Lannes and Prieur: Calibration of the lok-phase biases of GNSS networks 7to {0}. As Bα = 0 implies Bstα = 0, the null spae of Bis also redued to {0}. We thus have
kerB = kerBst = {0} (33)As a result, B is of full rank, hene from Eq. (27),
dimEb = nst (34)The edge-bias spaeEb and its ambiguity lattie Eb(Z) =

BVb(Z) are isomorphi to the vertex-bias spae Vb andits integer lattie Vb(Z), respetively; see Set. 3.1.1.3.2 Key propertyAs kerBst = {0} (Eq. (33)), and dimEst = dimVb (seeEqs. (30) and (27)), Bst maps Vb onto Est; Bst is there-fore invertible. As spei�ed in this setion, our analysisderives from this property.Let us onentrate on the vertex-bias funtion
α

(ϑ)
st

def

= B−1
st Qstϑ (α(ϑ) ≡ α

(ϑ)
st ) (35)When no onfusion may arise, subsript st is omitted.Aording to its de�nition (whih is illustrated in Fig. 2),

Qstϑ is the funtion of Est whose values are those of ϑon subgrid Gst.The values of α(ϑ) an be obtained from those of Qstϑin a very simple manner; the orresponding reursiveproess is desribed in Set. 5 of Lannes and Teunissen(2011). The olumn vetors of [Bst]
−1 an thus be eas-ily obtained. In fat, [Bst] is a partiular unimodu-lar2 matrix whose inverse an be obtained via anotherinteger-programming tehnique; see Set. A1.4 in Lannesand Teunissen (2011). For example, the inverse of ma-trix (31) is

[Bst]
−1 =

















−1 0 0 1 0 0
−1 0 0 1 −1 1
−1 0 0 0 0 0
−1 0 0 1 −1 0

0 −1 0 0 0 0
0 0 −1 0 0 0

















(36)Let us now onsider the following edge-bias funtion:
ϑb

def

= Bα(ϑ) (37)Aording to Eq. (35), the values of ϑb and ϑ oinideon Gst. The funtion ϑc de�ned by the relation
ϑc

def

= ϑ − ϑb (38)2By de�nition, a unimodular matrix is a square integer matrixwith determinant ±1.
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rQstϑ

r
ϑc

E
(ne)
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Eb

(nst)

0
Ec

(nc)Figure 2: Geometrial illustration of Property 1.In this geometrial representation of the edge-delayspae E ∼= R
ne , Est is the spanning-tree delay spae.This spae is isomorphi to the vertex-bias spae

Vb
∼= R

nst . The orthogonal omplement of Est in theEulidean spae E is the losure-delay spae Ec. Therange of the bias operator B, the edge-bias spae, isa subspae of E denoted by Eb. This spae is isomor-phi to Est and thereby to Vb. (The dimensions ofthese spaes are written within parentheses.) As illus-trated here, E is the oblique diret sum of Eb and Ec.The losure operator C is the oblique projetion of Eonto Ec along Eb; for further details see Property 1.therefore lies in Ec. We thus have the following property(see Fig. 2):Property 1. Any edge funtion ϑ of E an be deom-posed in the form ϑ = ϑb + ϑc with ϑb
def

= Bα(ϑ) and ϑcin Ec. For a given spanning tree, this deomposition isunique. As a orollary, E is the oblique diret sum of Eband Ec: E = Eb + Ec with Eb ∩ Ec = {0}.As illustrated in Fig. 2, ϑc is the oblique projetion of ϑon Ec along Eb. The orresponding operator is the `lo-sure operator' C:
ϑc = Cϑ (39)Its null spae (i.e., its kernel) is the range of B:
kerC = Eb (40)with dimEb = nst (Eq. (34)).Aording to Property 1, any funtion N of the ambigu-ity lattie E(Z) ∼= Z

ne an be deomposed in the form
N = Nb + Nc (41)with Nb

def

= Bµ
(N)
st where (from Eq. (35))

µ
(N)
st

def

= B−1
st QstN (µ(N) ≡ µ

(N)
st ) (42)As Bst is unimodular, µ(N) is an integer-valued funtion;

Nb
def

= Bµ(N) and Nc
def

= CN are therefore points of theinteger latties Eb(Z) ∼= Z
nst and Ec(Z) ∼= Z

nc , respe-tively. As a result, the integer lattie E(Z) is the obliquediret sum of the integer latties Eb(Z) and Ec(Z):
E(Z) = Eb(Z) + Ec(Z) Eb(Z) ∩ Ec(Z) = {0} (43)



8 J Geod 2013 DOI: 10.1007/s00190-013-0641-4 (in press)3.3 Closure delays (losure di�erenes)and losure ambiguitiesAording to Eqs. (38) and (37), the quantities ϑc(iℓ, jℓ),for ℓ = 1, . . . , nc, an be omputed via the formula
ϑc(iℓ, jℓ) = ϑ(iℓ, jℓ) −

[

α(ϑ)
r (iℓ) − α(ϑ)

s (jℓ)
] (44)where α(ϑ) is determined via Eq. (35). As lari�ed in thissetion, these quantities an be referred to as the `losuredelays' or the `losure di�erenes' of ϑ; the Nc(iℓ, jℓ)'s aretherefore `CD ambiguities,' also simply alled `losureambiguities.'In the example of Fig. A2, let us onsider the seond loop,i.e., the loop assoiated with the losure point (i2, j2) =

(3, 3). In G, the suessive points of this loop are the fol-lowing: (3, 3), (3, 2), (2, 2), (2, 1), (1, 1), and (1, 3). Sine
ϑb(i, j) = α

(ϑ)
r (i) − α

(ϑ)
s (j), we then have, in a telesop-ing manner,

ϑb(3, 3) − ϑb(3, 2) + ϑb(2, 2) − ϑb(2, 1)

+ ϑb(1, 1) − ϑb(1, 3) = 0.Furthermore, as ϑc vanishes on Gst,
ϑc(3, 3) − ϑc(3, 2) + ϑc(2, 2) − ϑc(2, 1)

+ ϑc(1, 1) − ϑc(1, 3) = ϑc(3, 3)Sine ϑ = ϑb + ϑc from Property 1, it follows that
ϑ(3, 3) − ϑ(3, 2) + ϑ(2, 2) − ϑ(2, 1)

+ ϑ(1, 1) − ϑ(1, 3) = ϑc(3, 3)This expliitly shows that ϑc(i2, j2) an be regarded asthe losure di�erene of ϑ on the seond loop. The gen-eralization is straightforward. In the example of Fig. A2,we thus have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϑc(2, 4) = ϑ(2, 4) − ϑ(2, 1) + ϑ(1, 1) − ϑ(1, 4)

ϑc(3, 3) = ϑ(3, 3) − ϑ(3, 2) + ϑ(2, 2) − ϑ(2, 1)

+ ϑ(1, 1) − ϑ(1, 3)

ϑc(3, 4) = ϑ(3, 4) − ϑ(3, 2) + ϑ(2, 2) − ϑ(2, 1)

+ ϑ(1, 1) − ϑ(1, 4)

(45)
More generally, owing to the telesoping struture oftheir onstrution, the losure di�erenes ϑc(iℓ, jℓ) areassoiated with loops whose order is even, and greaterthan or equal to 4. In this limit ase, the notion oflosure di�erene (CD) redues to that of double dif-ferene (DD). Aording to Eq. (44), the ϑc(iℓ, jℓ)'s anhowever be omputed without knowing the edges of theirloop. How to identify these edges, if need be, is spei�edin Set. 3.4. Subjet to some ondition, these CD's anbe expressed as linear ombinations of DD's. The relatedmatter is analysed in Set. 10 of Lannes and Teunissen(2011).

3.4 Closure matrixAording to the de�nitions ofBst and Bc (introdued inSet. 3.1.4), the vetor ϑb
def

= Bα(ϑ) an be orthogonallydeomposed in the form
ϑb = Bstα

(ϑ) + Bcα
(ϑ) = Qstϑ + Bcα

(ϑ)Likewise,
ϑ = Qstϑ + Qcϑwhere Qcϑ is the orthogonal projetion of ϑ on Ec; seeFig. 2. It then follows from Eq. (35) that
ϑc = ϑ − ϑb = Qcϑ − Bcα

(ϑ) = Qcϑ − BcB
−1
st QstϑDenoting by [C] the matrix of C expressed in the stan-dard bases of E and Ec, we thus have, from Eq. (39),

[C][ϑ] = −[Bc][Bst]
−1[Qstϑ] + [Qcϑ].The olumn vetors of [C] orresponding to the spanning-tree edges (on whih Qcϑ vanishes) are therefore thoseof −[Bc][Bst]

−1. It is also lear that the olumn ve-tors of [C] orresponding to the losure edges (on whih
Qstϑ vanishes) are those of the identity matrix on Ec.Consequently, with regard to the orthogonal diret sum
Est ⊕ Ec,
[C] =

[

−[Bc][Bst]
−1 [Ic,c]

] (46)In the example of Fig. A2, we thus have, from Eqs. (31),(36), and (32), with the same edge ordering,
[Bc][Bst]

−1 =

2

4

1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 0 −1

3

5

×

2

6

6

6

6

6

6

4

−1 0 0 1 0 0
−1 0 0 1 −1 1
−1 0 0 0 0 0
−1 0 0 1 −1 0

0 −1 0 0 0 0
0 0 −1 0 0 0

3

7

7

7

7

7

7

5As a result,
[C] =

[

1 0 −1 −1 0 0 1 0 0
1 −1 0 −1 1 −1 0 1 0
1 0 −1 −1 1 −1 0 0 1

]Applied to [ϑ], this matrix of ourse yields Eq. (45).More generally, the edges of a `losure loop' are iden-ti�ed via the nonzero entries of the orresponding rowof [C]. In fat, this is the most e�ient way of identi-fying the loops in question. Note however that in theCAA method presented through Sets. 4 to 6, the ationof this matrix is never expliitly performed.



Lannes and Prieur: Calibration of the lok-phase biases of GNSS networks 93.5 On some generalized inverseof the UD-CD relationshipThe losure operator C, whih is an oblique projetion,is not of full rank. The simplest way of removing itsrank defet is to introdue the operator C⋄ from E into
Est × Ec

C⋄ϑ
def

= (Qstϑ, Cϑ) (47)Aording to Property 1, C⋄ is invertible; this an be im-mediately understood from Fig. 2 for example; C−1
⋄ anthen be regarded as some generalized inverse of C. Wenow speify this point, expliitly, in matrix terms. Theorresponding development is aimed at analysing the ap-proahes of Blewitt (1989) and Collins et al. (2010) inan elementary manner; see Sets. 3.6 and 7 further on.In the standard bases of E = Est ⊕Ec and Est ×Ec, thematrix of C⋄ an be written in the form (see Eq. (46))

[C⋄]
def

=

[

[Qst]

[C]

]

=

[

[Ist,st] [0st,c]

−[Bc][Bst]
−1 [Ic,c]

] (48)It is readily veri�ed that
[C⋄]

−1 =

[

[Ist,st] [0st,c]

[Bc][Bst]
−1 [Ic,c]

] (49)Given some point N̆st arbitrarily �xed in Est(Z), let usnow onsider the ambiguity point N̆ of E(Z) de�ned bythe relation
[N̆ ]

def

= [C⋄]
−1

[

[N̆st]

[Nc]

]

(Nc
def

= CN) (50)In the following property,
E

(N)
b (Z)

def

= N + Eb(Z) (51)is the `a�ne lattie' passing through N and parallel tothe integer lattie Eb(Z) of the edge-bias spae Eb; seeSet. 3.1.4 and Fig. 3.Property 2. The ambiguity point N̆ is the point of thea�ne lattie E
(N)
b (Z) whose projetion on Est is equalto N̆st. More preisely, N̆ = Nc + Bµ(N̆st). As a orol-lary, in the speial ase where N̆st is set equal to 0, N̆ isnothing else than Nc.For reasons of larity and brevity, the proof is left to thereader. Note that this property an also be understoodwithin the S-system framework; see for instane the tablegiven in Set. 1.6 of Teunissen (1984).3.6 On the Blewitt generalized inverseof the UD-DD relationshipWe now apply the results of the previous setion to theUD-DD relationship, and thus make the link with theapproah of Blewitt (1989).
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0Figure 3: Geometrial illustration of Property 2.In this symboli representation of the edge-delayspae E, E
(N)
b (Z) is the a�ne lattie passingthrough N and parallel to the integer lattie Eb(Z)of the edge-bias spae Eb (here, for larity, the ver-tial axis); N̆ is the UD ambiguity obtained via therelationship (50) in whih N̆st is arbitrarily �xedin Est(Z), and Nc is the CD ambiguity point of N(the losure ambiguity of N). In the importantspeial ase where N̆st is set equal to 0, N̆ reduesto Nc.Aording to Eq. (68) of Lannes and Teunissen (2011),the maximum number of independent DD's is less thanor equal to nc: nm

d ≤ nc. For larity, let us now set
nd := nm

d . In the important speial ase where
nc = nd (52)the information ontained in the DD data is equiva-lent to that ontained in the losure data. Let us thendenote by Dd,e the operator providing a maximum setof nd DD's. By de�nition, Dd,e is an operator from Einto R

nd , i.e. then, R
nc . By sorting the edges of G asspei�ed in Set. 3.1.4, the matrix of Dd,e has then thefollowing blok struture:

[Dd,e] =
[

[Dd,st] [Dd,c]
] (53)Here, matrix [Dd,e] is expressed in the standard bases of

E = Est ⊕ Ec and R
nd . The olumns of [Dd,st] and [Dd,c]therefore orrespond to the edges of Gst and to the lo-sure edges, respetively. Provided that Condition (52)is satis�ed, [Dd,c] is invertible; moreover, the entriesof [Dd,c]

−1 are then equal to ±1 or 0; see Lannes andTeunissen 2011.Like for C (see Eq. (48)), we then introdue the operator
[D⋄]

def

=

[

[Qst]

[Dd,e]

] (54)As N = Nb + CN from Property 1, and [Dd,e][Nb] = 0,



10 J Geod 2013 DOI: 10.1007/s00190-013-0641-4 (in press)we have, from Eq. (53),
[Nd]

def

= [Dd,e][N ] = [Dd,c][CN ] (55)It then follows from Eq. (48) that
[D⋄] =

[

[Ist,st] [0st,c]

[0c,st] [Dd,c]

]

[C⋄] (56)We then have
[D⋄]

−1

[

[N̆st]

[Nd]

]

= [C⋄]
−1

[

[N̆st]

[Dd,c]
−1[Nd]

]where [Dd,c]
−1[Nd] = [CN ] from Eq. (55). It then fol-lows from Eq. (50) that

[D⋄]
−1

[

[N̆st]

[Nd]

]

= [N̆ ] (57)Given some DD ambiguity set (55), and some point N̆starbitrarily �xed in Est(Z), the UD ambiguity thus ob-tained is equal to Nc + Bµ(N̆st); see Property 2 and Fig. 3.Via the ation of [D⋄]
−1, we thus retrieve the losure-ambiguity point Nc up to the vetor Bµ(N̆st) of Eb(Z).Remark 3.1. In fat, [D⋄] is a version of the D-matrixof Blewitt (1989). In the appendix B of that paper,the spanning tree Gst is impliitly de�ned by arbitrar-ily seleting a set of �n − m undi�erened biases whihpass the Gram-Shmidt test� of that appendix, i.e., inour algebrai framework, by arbitrarily seleting a set of`nst edges whose harateristi funtions pass the Gram-Shmidt test.' Property 2 therefore ompletes the analy-sis of the UD-DD relationship of Blewitt (1989) by spe-ifying how the ambiguity solution N̆ is related to Nc bythe hoie of N̆st ·Remark 3.2. Equation (57) orresponds to Eq. (8) of Geet al. (2012) in whih

[

G → [Qst]

D → [Dd,e]

]

→ [D⋄],

[

b → [N̆st]

N → [Nd]

]

, B → N̆Here, the notation `a → b' means `a stands for b.' Thearbitrary ambiguity set b → [N̆st], whih is then referredto as the referene ambiguity, has of ourse nothing to dowith the ambiguity set v̄ of the referene solution de�nedin Set. 2.5 ·4 CAA prinipleAs already emphasized, with regard to the variables in-trodued in Eqs. (14) and (15), the hoie of µ in Z
nst isde�ned via appropriate onstraints; see Set. 2.3. As amatter of fat, the most natural way of removing the rankdefet is to selet µ via a priori onstraints on the am-biguity variable v. Indeed, these onstraints an then beintegrated in the very de�nition of v. The CAA priniplepresented in this setion results from the following pre-liminary analysis. (A possible introdution of this prin-iple via the S-system approah is presented in Set. 5;it should however be noted that the other lasses of pos-sible hoies for µ do not then appear so easily.)

Let Gst be a spanning tree of G hosen arbitrarily; seeSet. A2 and Fig. 1. In the algebrai framework de�nedin Set. 3, the ambiguity vetor N an be deomposedin the form N = Nb + Nc where
Nb

def

= Bµ(N), Nc = N − Bµ(N) (58)in whih µ(N) def

= B−1
st QstN ; see Eq. (42). In these equa-tions, Nb and Nc have an impliit subsript: st for Gst.Note that µ(N) is de�ned from the values of N on theedges of Gst in a unique manner. (As N is unknown,this de�nition is virtual.) By onstrution, µ(N) liesin Vb(Z) ∼= Z

nst , and Nc vanishes on the edges of Gst.As spei�ed in Set. 3.3, Nc
def

= CN is the losure ambi-guity of N with regard to Gst.The spanning tree Gst is built progressively from epoh 1to k. More preisely, when new satellites are to be takeninto aount, it is ompleted as spei�ed in Set. 6.3 (seeFigs. 1 and 5); nst is thus equal to nb1 plus the numberof satellites having appeared in the �eld of view of thenetwork from epoh 2 until k inluded. The numberof values of Nc that are not equal to zero by de�nitionis equal to nc = ne − nst (Eq. (29)). For example, inFig. 1, for k = 3, we have ne = 20, nst = nb1 + 2 + 1with nb1 = 8, hene nc = 9.With regard to Eqs. (14) to (16), the CAA solution or-responds to the following hoie of µ:
µ := µ(N) (59)From Eq. (58), we then have v = N − Bµ = Nc: theambiguity funtional variable v vanishes on the edgesof Gst. Aording to Eqs. (14) and (15), the `estimablefuntional variable' of the orresponding LS approah isthen (w1, . . . , wk; v) where
∣

∣

∣

∣

∣

wκ = βκ + Rv
κµ, v = Ncwith µ := µ(N)

(60)The hoie of µ de�ned in Eq. (59) therefore de�nes thelosure-ambiguity approah (CAA). Clearly, this hoiedepends on the seleted spanning tree Gst; the de�nitionof the integer-valued funtion v therefore also depends onthis hoie. Note that all these spanning trees have thesame number of edges: nst = nv − 1; see Set. A2. As aresult, whatever the hoie of Gst, the number of ambi-guities to be �xed is the same: nc = ne − nst (Eq. (29)).Let us now denote by (w̌1, . . . , w̌k; v̌) the LS solutionresulting from suh a hoie. The referene solution of itsequivalent solutions, whih an be obtained as spei�edin Set. 2.5, does not depend on the hoie of Gst. Indeed,a hange in Gst amounts to seleting another µ in Vb(Z);see Eq. (42) and Fig. 6 further on.Remark 4.1. Although the ambiguity variables of thelosure-ambiguity approah are losure ambiguities, it isan UD approah. Indeed, the ation of the losure op-erator C (indued by the seleted spanning tree Gst) isnever expliitly performed; see Set. 6 ·



Lannes and Prieur: Calibration of the lok-phase biases of GNSS networks 11Remark 4.2. Aording to Property 1 and Eq. (12),Eq. (5) an always be written in the form
Bκwκ + Re

κv = bκ (for κ = 1, . . . , k)where wκ and v are de�ned in Eq. (60). In the situationswhere the partiular problem to be dealt with has still arank defet (owing to other variables involved in bκ forexample), this rank defet an be removed by taklingthe problem with wκ and v substituted for βκ and N , re-spetively. In that sense, the losure-ambiguity approahan be extended to all the situations where an equation(or several equations) of type (5) is (are) involved in theproblem; see, for example, the ase of small networks inLannes and Teunissen (2011) ·5 Derivation of the CAA priniplevia the S-system approahThe S-system approah (Baarda 1973) was used by someinvestigators to remove various GNSS rank defets; see,e.g., Teunissen 1984, de Jonge, 1998, Teunissen and Odijk2003. In the previous setion, the CAA priniple wasintrodued in a onise manner in the theoretial frame-work de�ned through Sets. 2 and 3; the aim of thepresent setion is to show that this priniple an be in-trodued via the S-system approah diretly.In the general framework of the S-system approah pre-sented in Appendix B, the Eulidean spae E to be on-sidered is then the spae of the funtional variable
ξ

def

= (β1, . . . , βk; ϑ) (61)of Eq. (5); ϑ is then the �oat version of the integer-valuedfuntional variable N . Denoting by
Vβ

def

= Vβ1
⊕ Vβ2

⊕ · · · ⊕ Vβk
(62)the diret sum of the vertex-bias spaes Vβκ

with generivetor βκ, we have
E = Vβ ⊕ E (63)where E is the edge-delay spae with generi vetor ϑ;see Set. 3.1.2. As illustrated in Figs. 2 and 4, givensome spanning tree Gst of G, E an be deomposed inthe Eulidean orthogonal form
E = Est ⊕ Ec (64)From Eqs. (8) and (30), we have
∣

∣

∣

∣

∣

∣

∣

∣

dimVβ =

k
∑

κ=1

nbκ

dimEst = nst dimEc = nc

(65)The funtion bκ of Eq. (5) lies in some spae isomorphito R
neκ ; see the ontext of Eq. (3), and Fig. 1. Setting

m :=

k
∑

κ=1

neκ (66)

we then de�ne the operator A of the S-system approahas the operator from E into R
m:

Aξ
def

=







B1β1 + Re
1ϑ...

Bkβk + Re
kϑ






(67)Clearly, Eq. (5) an then be expliitly written in the form
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β1...
βk

N











=







b1...
bk






(68)Let K now be the operator from Vb

∼= R
nst into E (seeSet. 3.1.1):

Kα
def

=













−Rv
1α...

−Rv
kα

Bα













(69)The �oat version of Eq. (12) yields
−BκR

v
κα + Re

κBα = 0 (for κ = 1, . . . , k) (70)The null spae of A is therefore the range of K; seeEqs. (67) and (69). We thus have
kerA = Ran K with dim(kerA) = nst (71)The dimension of the null spae of A is therefore equalto that of Est; see Eq. (65) and Fig. 4.In the framework of the S-system approah, we now re-move the rank defet of Eq. (5) by imposing the followingonstraint: the funtional variable to be estimated lies inthe orthogonal omplement of Est in E; see Appendix B.We thus de�ne F via the relation F := E⊥

st . Clearly, thatonstraint is the same as that introdued in Set. 4; seeFig. 2. The orresponding estimable funtional variableis then obtained as follows.From Eqs. (63) and (64), F is the diret sum of Vβ and Ec:
F = Vβ ⊕ Ec (72)We now show that E is the diret sum of F and kerA(see Fig. 4):
E = F ⊕ kerA (73)Proof. Let ξ be a funtion lying in F ∩ kerA. As ξ liesin F, its omponent ϑ vanishes on Gst. As ξ also liesin Ran K from Eq. (71), ϑ is in the range of B fromEq. (69). We then have ϑ = Bstα = 0, hene α = 0from Eq. (33), and therefore ξ = 0 from Eq. (69). Asa result, F ∩ kerA = {0}. As dim(kerA) = dimEst and

dimE=dimF+dim(kerA), Eq. (73) is thus established
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ξ −Qstξ

r r
Cϑ

r r r
ϑ

r

r

r

rr

r
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(nst)
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(nc)Figure 4: Geometrial illustration of the CAA priniple in the S-system approah. In this 3D-geometrial illustration,whih ompletes Fig. 2, the Eulidean spae E of the funtional variable ξ involved in Eqs. (67) and (68) is representedas a 3D-spae; E is the orthogonal sum of Vβ and E, where Vβ is the diret sum of the vertex-bias spaes Vβκ (seeEq. (62)), and E is the edge-delay spae of the �oat ambiguity variable ϑ (the projetion of ξ on E). Aording to thede�nitions introdued in Set. 3.1.3, E an be regarded as the orthogonal sum of the spanning-tree delay spae Est andthe losure-delay spae Ec. Note that the projetion of ξ on Est oinides with that of ϑ: Qstξ = Qstϑ. As shown inSet. 3.2, we have α(ϑ) = B−1
st Qstϑ (Eq. (35)). The operator A de�ned by Eq. (67) is not of full rank. Its null spae is asubspae of E of dimension nst; more preisely, kerA is the range of the operator K; see Eq. (69). The edge-bias spae Ebis the projetion of kerA on E. In the CAA approah, the following ondition is imposed: the funtional variable tobe estimated lies in F, the orthogonal omplement of Est in E. As E is the diret sum of F and kerA (see text), theestimable funtional variable is the oblique projetion of ξ on F along kerA, i.e., Sξ with ϑ := N ; see Eqs. (77) and (78).The projetion of Sξ on E, ϑc

def

= Cϑ, is the losure omponent of ϑ, i.e., the losure ambiguity Nc
def

= CN when ϑ := N .The oblique projetion S of E onto F along kerA plays akey role in the S-system approah (see Appendix B). Itis de�ned by the relation Sξ = ξ − η with η ∈ kerA and
ξ − η ∈ F; see Eq. (B4) and Fig. B1. We now speify itsde�nition expliitly.Let Qst be the orthogonal projetion of E onto Est. Wethen have (see Fig. 4):
Qstη = Qstξ = Qstϑ (74)From Eqs. (71) and (69), η = Kα for some α in Vb

∼= R
nst .From Eq. (74), that bias funtion α satis�es the ondi-tion

QstKα = QstϑAording to Eq. (69), we have QstKα = QstBα, i.e.,
QstKα = Bstα, where Bst is the operator de�ned inSet. 3.1.4. We thus have α = α(ϑ) where α(ϑ) is de-�ned by Eq. (35): α(ϑ) def

= B−1
st Qstϑ. It then follows fromEq. (B4) that

Sξ = ξ − η where η = Kα(ϑ) (75)Here, the matries [S⊥] and [W ] of Eq. (B7) have beenimpliitly de�ned by the standard bases of Est and Ran K,respetively. From Eq. (69), we thus have
Sξ =













β1 + Rv
1α

(ϑ)...
βk + Rv

kα(ϑ)

ϑ − Bα(ϑ)













(76)

hene, in partiular (when ϑ is set equal to N),
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β1...
βk
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β1 + Rv
1µ(N)...

βk + Rv
kµ(N)

N − Bµ(N)













(77)where µ(N) = B−1
st QstN (Eq. (42)). We thus retrieve theestimable funtional variables of Eq. (60):

wκ = βκ + Rv
κµ(N) v = Nc (78)The estimable funtional variable of the CAA method istherefore the oblique projetion of (β1, . . . , βk; N) on Falong kerA; see Fig. 4.This introdution of the CAA priniple gives anotherinsight into the analysis presented through Sets. 3 and 4.It also ompletes the study developed in Sets. 3.3, 3.4and 3.15 of de Jonge (1998) on two points:(i) operator A is de�ned with regard to the union ofthe observational graphs until the urrent epoh;see Set. 2.1, and Eqs. (67) and (68);(ii) a related geometrial representation is proposed:Fig. 4; in that representation, Cϑ is the CD pointof ϑ; when ϑ := N , Cϑ is therefore the losure-ambiguity point of N .



Lannes and Prieur: Calibration of the lok-phase biases of GNSS networks 136 CAA implementationIn the losure-ambiguity approah, the rank defet ofEq. (5) is removed via the hoie of the variables wκand v de�ned in Eq. (60). The equation to be solved inthe LS sense is then Eq. (16) with the onstraint v = 0on the edges of Gst. The CAA problem is therefore: solvein the LS sense the equation
∣

∣

∣

∣

∣

Bκwκ + Re
κv = bκ (κ = 1, . . . , k)subjet to the onstraint `v = 0 on Gst' (79)In what follows, the noise is taken into aount by usingthe variane-ovariane matrix Vκ of bκ in the de�nitionof the `Eulidean forms'Bκ, Aκ and bκ ofBκ,Re

κ and bκ,respetively; see the ontext of Eq. (C6) in Set. C3. Thesystem (79) to be solved in the Eulidean LS sense is thenthe following:
Bκwκ + Aκv = bκ (κ = 1, . . . , k) (80)i.e.,
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b1

b2...
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v
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(81)The angular blok struture of matrix [B A] is well suitedto reursive QR fatorization. (A omplete implemen-tation of the orresponding LS proedure is presentedin Appendix C.) The advantage of this proedure is toprovide some gain in numerial auray when dealingwith large-sale problems; see Björk (1996). More inter-estingly, the orresponding tehniques prove to be verye�ient for GNSS quality ontrol; see, e.g., Blewitt 1989;Tiberius 1998; Loehnert et al. 2000; Lannes and Gratton2009. As spei�ed in Sets. 9.5 and 7.3 of this last paper,the reursive identi�ation of the outliers is made easier(with regard to the related variational alulations) bystoring in memory the parameters of the Givens rotationsinvolved in the two QR steps of epoh k.In this setion, we �rst give a survey of the QR imple-mentation of the CAA priniple (Set. 6.1). We thenspeify the de�nitions of the olumn matries wk and vof Eq. (81); this is done in Sets. 6.2 and 6.3, respe-tively. More information about the tehnial aspets ofthis implementation, like for instane the onstrution ofmatries Ak, Bk and bk, is to be found in Appendix C.Remark 6.1. In most situations enountered in pratie,the seond member of equations suh as (79) inludesa large number of additional variables; see, e.g., Ge etal. 2005; Loyer et al. 2012. In the remainder of thepaper, we assume that the related models have been wellseleted so that we an onentrate on the �rst membersof these equations only ·

Remark 6.2. The method presented in this setion anbe applied as suh for solving the wide-lane (WL) equa-tion (4) of Loyer et al. (2012); NWL and τWL are thento be substituted for N and β, respetively; b is thenthe term on the left-hand side of that equation. Inour approah, the WL ambiguity point v̌WL would thenbe the losure-ambiguity point of NWL: v̌WL = CNWL;
NWL would thus be retrieved up to a vetor of Eb(Z) ·6.1 SurveyIn a �rst stage, at eah epoh k, the `�oat solution' v̂ isomputed or updated. This is done by solving the �oatversion of Eq. (81) in the Eulidean LS sense via reur-sive QR fatorization; see Set. C1 and Eq. (C1). Theinteger least-squares (ILS) solution v̌, and thereby v̌, isthen de�ned as the solution of the nearest-lattie-point(NLP) problem (C3). This solution is obtained in aseond stage via appropriate integer-programming teh-niques; see Lannes and Prieur (2013), and Lannes (2013)for the parallelization of the related LLL3/Lambda re-dution/deorrelation algorithms. The ambiguities arethus �xed. One at some epoh kval, these ambigui-ties an be validated (see Verhagen and Teunissen 2006),the bias matries w̌k, and thereby the phase biases w̌k,are obtained via the relations (C4) for k ≤ kval. Thevariane-ovariane matrix of w̌κ, whih is required forimplementing the PPP mode properly (see Set. 9 inLannes and Teunissen 2011), is obtained in that frame-work; see the end of Set. C1.Remark 6.3. One at some epoh kval, all the losure am-biguities have been validated, the QR reursive proessonly needs to fous on the few losure ambiguities assoi-ated with the new losure edges. At the epohs k > kval,the new losure ambiguities an therefore be determinedvery quikly. Indeed, the dimension of the matrix v han-dled by the QR proess is then muh smaller than pre-viously. This shows that this approah is well suited tointeger-ambiguity resolution in real time. For instane,the satellite-lok biases ould then be broadasted tothe network users in real time; see Remark 2.2 ·6.2 De�nition of wkIf we assume for instane that all the reeivers of the net-work are ative (see Fig. 1), the reeiver phase bias wrk(i)is then the entry of wk with index i − 1. The indies areshifted by −1 sine we used the onvention βrk(1) = 0(Eq. (7)).The satellite phase bias wsk(j) is then the entry of wkwith index (nr − 1 + j); see for example the �rst twoepohs of Fig. 1. To handle the ases of disappearaneof one or more satellite(s), we introdue an index fun-tion ̟sk de�ned so that wsk(j) is the entry of wk withindex (nr − 1 + ̟sk(j)). For example, at epoh k = 3 ofFig. 1, for j > 3, we have ̟sk(j) = j − 1.3Here LLL stands for Lenstra, Lenstra, Lovász, the authors ofthe famous LLL algorithm (Lenstra et al. 1982).
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Figure 5: Spanning trees Gst,k and losure-edgelists Lc,k. The example shown here orresponds to thatintrodued in Fig. 1. From top to bottom, epoh k = 1(nst,1 = 8), epoh k = 2 (nst,2 = 10), and epoh
k = 3 (nst,3 = 11). The large dots orrespond tothe edges of these spanning trees; the small dots de-�ne the edges (ri, sj) that do not appear in Gk at thoseepohs. The spanning tree of G2 is obtained from thatof G1 by adding the edges (r1, s7) and (r2, s6). Likewise,the spanning tree of G3 is obtained from that of G2 byadding the edge (r2, s8). The losure edges of Lc,k areordered as numbered; see text.Di�ulties with some reeivers would be handled in asimilar manner by introduing index funtions ̟rk(i).6.3 De�nition of vThe entries of v in Eq. (81) are the losure ambiguitiesto be taken into aount from epohs 1 to k inluded.The orresponding losure-edge list Lc,k is de�ned in thissetion; see for example the lower grid of Fig. 5. In theimplementation of the QR method, those entries are tobe put at the top of the olumn matrix v at the epoh

κ ≤ k where they appear; see Set. C2. This means thatfor all κ′ < κ, the matries Aκ′ have then (on their left-hand side) impliit additional olumns whose entries arezero. We now onentrate on the losure-edge lists Lc,κfor κ = 1, . . . , k.

At epoh k = 1, the spanning tree Gst,1 of G1 = H1 isbuilt as spei�ed in Set. A2. For example, for the se-nario de�ned in Fig. 1, the edges of Gst,1 then orrespondto the large dots of the upper grid of Fig. 5; Lc,1 theninludes three losure edges ordered as they are enoun-tered when sanning that grid line by line:
Lc,1 = {(r3, s3), (r3, s4), (r4, s4)} (k = 1)At epoh k = 2, the spanning tree Gst,2 of G2 = H1 ∪H2is ompleted by adding the edges orresponding to the�rst ative edges involving the new satellites, for example

(r1, s7), and (r2, s6) in Fig. 5. When implementing theQR method, the new losure edges must then be the �rstterms of Lc,2; see Fig. C4 in Set. C2. The previous termsof that list are then shifted rightwards. In the exampleof Fig. 1, we then have
Lc,2 = {(r2, s7), (r3, s2), (r3, s6), (r4, s5),

(r3, s3), (r3, s4), (r4, s4)}
(k = 2)We proeed similarly for the next epohs; see the lowergrid of Fig. 5.By onstrution, the number of losure edges nc is anon-dereasing funtion of k; see Eq. (29) and Fig. 5. Infat, this number de�nes the dimension of the NLP prob-lem (C3) to be solved at epoh k.7 Equivalent ambiguity solutions:related methodologial aspetsIn this setion, we analyse some other methods whihare used for solving the GNSS phase-alibration prob-lem, and ompare the orresponding solutions with theCAA solution. This done for Blewitt (1989) in Set. 7.1,for Collins et al. (2010) in Set. 7.2, and for Loyer et al.(2012) in Set. 7.3.7.1 The Blewitt (1989) approahIn his original ontribution published in 1989, Blewittproposes a resolution of the problem in three stages. Inthe �rst one, the �oat solution is obtained in UD mode.In the seond one, double di�erening of the �oat biasedambiguities thus obtained provides DD ambiguities. Thelatter are then �xed via some sequential adjustment al-gorithm. In the third and �nal stage, the UD ambigui-ties are derived from those �xed DD ambiguities. Thisis done via the inverse of the operator D de�ned in theappendix B of that paper. The estimates of station-reeiver loations, orbital parameters, et., are then up-dated. Brie�y, one may therefore say that the Blewittapproah is hybrid: it is a `UD-DD-UD approah.'The D-matrix of our analysis is the matrix [D⋄] intro-dued in Set. 3.6: Eq. (54). Given some DD ambiguityset Nd (suh as that de�ned in Eq. (55)), some span-ning tree Gst, and some ambiguity point N̆st arbitrarily



Lannes and Prieur: Calibration of the lok-phase biases of GNSS networks 15�xed in Est(Z), it is possible to retrieve N up to a vetorof Eb(Z). More preisely, the UD ambiguity obtainedvia Eq. (57),
N̆ := [D⋄]

−1

[

[N̆st]

[Nd]

]is equal to Nc + Bµ(N̆st); see Fig. 3. Removing the rankdefet via the inverse of [D⋄] therefore amounts to impos-ing the onstraint Qstv = N̆st where N̆st an be hosenin an arbitrary manner in Est(Z).7.2 The Collins et al. (2010) approahIn the last statement of Set. 7.1, one reognizes theonept of ambiguity datum �xing of the UD approahof Collins et al. 2010; the latter is thus losely linked tothat of Blewitt. However, with regard to Eq. (16), the`diret problem' to be solved in the LS sense is then
∣

∣

∣

∣

∣

Bκwκ + Re
κv = bκ (κ = 1, . . . , k)subjet to the onstraint Qstv = N̆st

(82)Let us denote by (w̆1, . . . , w̆k; v̆) the solution of this prob-lem, i.e., the Blewitt/Collins solution. Let (w̌1, . . . , w̌k; v̌)now be the CAA solution obtained with the same span-ning tree Gst. As shown below, we then have (see Fig. 6)
w̆κ = β̌κ −Rv

κ µ(N̆st), v̆ = v̌ + Bµ(N̆st) (83)Proof. The LS solutions of Eq. (5) are of the form(18)-(19). Equation (83) then follows from the fat thatby onstrution v̌ + Bµ(N̆st) satis�es the onstraint ofEq. (82). Indeed, as Qstv̌ = 0, we have
Qst

(

v̌ + Bµ(N̆st)
)

= QstBµ(N̆st) = Bstµ
(N̆st)

= Bst(B
−1
st QstN̆st) = N̆stRemark 7.1. In the speial ase where N̆st is set equalto zero on all the edges of Gst, the Blewitt/Collins so-lution oinides with the CAA solution; see Eq. (83)and Fig. 6. This expliitly shows that the Blewitt andCollins approahes an lead to the same results as theCAA method. However, even in that ase, Blewitt's ap-proah is not equivalent in terms of e�ieny. The diretimplementation of the Collins/CAA priniple is a prioripreferable: the results are then obtained without anydi�erening operation, and without any generalized in-version of the �xed ambiguity set; see Sets. 4 and 6. Asillustrated in Fig. 6, the referene ambiguity solutions v̄obtained with the Blewitt, Collins and CAA methodsmust of ourse be idential on every edge of G, and thisfor any hoie of Gst and N̆st; see Remark 2.4 ·Remark 7.2. The algebrai analysis of the PPP modean also be illustrated by a �gure suh as Fig. 6. Thedimension of E is then equal to the number of satellitesseen by the PPP-user reeiver rι: E ∼= R
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b (Z) passing through N andparallel to the integer lattie Eb(Z) of the edge-biasspae Eb (here for larity the vertial axis). The Blewittor Collins solution v̆ obtained by imposing the onstraint

Qstv = N̆st (for some N̆st arbitrarily �xed in Est(Z)) or-responds to the intersetion of E
(N)
b (Z) with the a�nespae passing through N̆st and parallel to Ec(Z) (thelosure-ambiguity lattie indued by the hoie of Gst);see Fig. 3. The CAA solutions indued by the hoie ofthe spanning trees Gst and Gst′ , v̌ and v̌′, orrespond tothe intersetions of E

(N)
b (Z) with Ec(Z) and E′

c(Z), re-spetively. Note that v̌ = N − Bµ(N) from Property 1,and v̆ = v̌ +Bµ(N̆st) from Property 2. Here, v̄ representsthe referene solution: v̄ = v̌ − Bµ̌; see Eqs. (21), (23)and (25). Likewise, v̄ is obtained from the Blewitt orCollins solution v̆ via the relation v̄ = v̆ − Bµ̆.the spae Eι,1
def

= {ϑ ∈ E : ϑ(ι, j) = 0 if j 6= 1}. Here, 1 isthe index of the �rst satellite for example; Eι,1 is aone-dimensional spae. Note that Eb then redues tothe one-dimensional spae whose vetors are of the form
(11, 12, . . . , 1ns

) × β where β is the unknown reeiverlok-phase bias. The hoie N̆st := 0 then amounts tosetting N(ι, 1) := 0. The reader is invited to ompletethat transposition ·7.3 The Loyer et al. (2012) approahWith regard to the way the narrow-lane (NL) ambigu-ity N1 is �xed, the zero-di�erene approah of Loyer etal. (2012) an be onsidered as a variant of the Collinset al. (2010) approah. We now larify this point.In that partiular approah, the rank defet is removedafter having obtained the `�oat ambiguity solution' N̂1via the introdution of some additional onstraints; seeSet. 2.6 of that paper. These authors then impliitlyhoose some spanning tree Gst, and set the ambiguitiesto ⌊N̂1(i, j)⌉ on the edges (ri, sj) of Gst. The remainingUD ambiguities (i.e., the nc ambiguities assoiated with



16 J Geod 2013 DOI: 10.1007/s00190-013-0641-4 (in press)the losure edges) are �xed via some `bootstrapping op-eration.' This operation provides the `Babai point' ofthe disrete-searh algorithms presented in Lannes andPrieur (2013).Setting N := N1 and N̆st := ⌊QstN̂1⌉, we thus have
N − Bµ = N̆st on Gst, hene µ := B−1

st Qst(N − N̆st).It then follows from Eqs. (42) and (58) that the ambigu-ity solution of the Loyer et al. (2012) approah is
N − Bµ = (N − Bµ(N)) + Bµ(N̆st) = Nc + Bµ(N̆st)Provided that the solution provided by the bootstrap-ping proess is the right NLP solution v̆, we then have(like for the Blewitt and Collins solutions in Fig. 6)
v̆ = v̌ + Bµ(N̆st)where v̌ is the CAA solution obtained with the samespanning tree. The hoie N̆st := 0 would lead to a `mildversion' of the orresponding NL losure-ambiguity ap-proah; see how the NLP problem is solved in Set. 6.1.8 ConlusionIn this paper, we have examined the problem of ali-brating the lok-phase biases of GNSS networks. Inthe ontext spei�ed in Set. 1, the basi rank defetof this problem is related to the way these phase biasesand the arrier-wave ambiguities are involved in the ob-servational equations. We have analysed the di�erentways of removing this rank defet, and de�ned a parti-ular strategy for obtaining lok-phase bias estimates ina standard form.This rank defet is intrinsially related to the strutureof Eq. (1), and annot be resolved by additional exper-imental data. As a result, aording to Eq. (13), anyvariation of the vertex ambiguity vetor µ an be om-pensated by a variation of the edge-ambiguity vetor N ;

µ is a vetor of Z
nst ; see Set. 2.2. For PPP applia-tions, the satellite lok-phase biases an be estimatedup to onstant integers. The hoie of µ in Z

nst does nottherefore a�et the signi�ant part of these bias values.The retrieved ambiguities are of ourse a�eted by thishoie, but this has no atual impat on the GNSS resultssuh as the estimates of the station-position parameters,for example.In this paper, we propose a partiular approah, thelosure-ambiguity approah (CAA), whih is a naturalway of �nding a solution; see Sets. 4 to 6. It is an un-di�erened method based on some partiular onstraints.The related hoie of µ, whih is assoiated with the no-tion of losure ambiguity, is similar to that impliitlymade by de Jonge (1998); it de�nes the very prinipleof the losure-ambiguity approah. Thanks to the intro-dution of graph G, the union of the observational graphsuntil the urrent epoh, the losure ambiguities are dealtwith in an optimal manner. In partiular, ompared to

the approahes presented in de Jonge (1998) and Lannesand Gratton (2009), no graph transition is to be per-formed. These new aspets have been illustrated withsome simple and generi examples; see Figs. 1 and 5.We have analysed the main lasses of other methods usedfor alibrating GNSS networks, and established the linkbetween those methods and our CAA method. More pre-isely, this paper presents a uni�ed interpretative frame-work in whih all those methods an be understood andompared more easily (see Set. 7). We have thus beenable to derive funtional relations between the solutionsprovided by the methods of Blewitt (1989), Collins et al.(2010) and Loyer et al. (2012). Those solutions are dis-played in Fig. 6 whih gives a syntheti representationof the results provided by our approah (CAA) and allthose methods.We have also shown that the intermediate di�ereningstage of Blewitt's approah an be avoided, without anyounterpart, by removing the rank defet via our ap-proah or that of Teunissen (1984): the losure ambi-guities to be �xed then appear in the very formulationof the UD problem to be solved. The NLP tehniquesof ambiguity resolution an thus be diretly applied tothe �oat solution; see Set. 6.1. Compared to the hy-brid UD-DD-UD methods deriving from the basi on-tribution of Blewitt (1989), the tehnial implementationof the CAA method is simpler and more e�ient; someCPU time an thus be saved.It also appeared that the onept of ambiguity datum�xing of Collins et al. (2010) omes within our CAA-(S-system) framework. When the ambiguities are �xedat zero on the edges of some arbitrary spanning tree of G,the remaining ambiguities to be �xed are nothing elsethan the losure ambiguities of the ambiguity set N un-der onsideration. Compared to Blewitt's approah, onemay therefore say that the UD approahes of Collins etal. (2010) and Loyer et al. (2012) are loser to our CAA-(S-system) priniple.To ompare the methods providing LS estimates of lok-phase biases, we have introdued a referene partiularsolution. For this solution, when a lok-phase bias is es-timated for the �rst time, its frational part is on�ned tothe one-yle width interval entred on zero; the integer-ambiguity set is modi�ed aordingly. The notion of ref-erene solution is very useful for testing the ompatibilityof all those GNSS methods: pertinent methods shouldlead to the same referene ambiguity solution; see Fig. 6.This test is independent of the seleted spanning tree.The QR implementation of the CAA method has beenpresented in Set. 6 and Appendix C, in an exhaustivemanner. Completed by the NLP algorithms developedfor huge networks (Lannes 2013, Lannes and Prieur 2013),all the elements are now gathered for implementing verypowerful tehniques. The impliations of our approahmay onern the software pakages used for proessingmost GNSS networks, and partiularly global networks



Lannes and Prieur: Calibration of the lok-phase biases of GNSS networks 17using GPS,Glonass, Galileo, or BeiDou/Compass satel-lites. The CAA priniple is well suited for handling theinteger-ambiguity problem of all those networks. As out-lined in Remark 6.3, it ould lead to appliations in real-time kinemati preise point positioning (RTK-PPP).In order to failitate its integration in existing GNSSsoftware pakages, our approah has been desribed ina preise manner. The gain of suh an implementa-tion would be both in terms of performane and reliabil-ity. Indeed, our undi�erened approah proposes an ap-propriate proedure for ambiguity resolution and lok-phase bias alibration, and this with a rigorous handlingof the rank defet to be removed. Another possible appli-ation of this work would be to use the method desribedin Set. 2.5 for omparing the solutions obtained by dif-ferent software pakages.Appendix A Elementary notionson GNSS graphsIn this appendix, we present some preliminary notionsof algebrai graph theory; these elementary notions areused throughout the paper. Further details about thefuntional spaes and the operators involved in theGNSS problems an be found in Set. 3. We �rst de�nethe notions of GNSS grid and GNSS graph (Set. A1).We then introdue the onepts of spanning tree and loop(Set. A2).A1 GNSS grid and graphFor our present purpose (see Sets. 2.1 and 2.2 in partiu-lar), we onsider a typial situation in whih the networkhas nr reeivers ri and ns satellites sj . (We reall that`satellite' should be here understood as `satellite trans-mitter;' see Set. 1.) The `network grid' Go then in-ludes nr rows, ns olumns, and nrns points; see Fig. A1.A funtion suh as N(i, j) for example takes its valueson some points (i, j) of that grid. Those points form asubgrid denoted by G.In the example presented in Fig. A1, the points (i, j)of G are displayed as large dots in the upper part of this�gure. Those points orrespond to the `edges' (ri, sj) ofthe graph assoiated with the GNSS network; this graphis displayed in the lower part of Fig. A1; E denotes theset of its edges; ne is their number. The reeivers and thesatellites involved in the de�nition of these edges de�nethe `verties' of this graph; V denotes the set of its ver-ties, and nv their number: nv = nr + ns. A graph suhas G is therefore de�ned by the pair (V , E): G ≡ G(V , E).We now assume that G is onneted: given any two ver-ties of V , there exists a path of edges of E onnetingthese verties; see, e.g., Biggs 1996.A2 GNSS spanning tree and loopsAs illustrated in Fig. A2, a spanning tree of a onnetedgraph G ≡ G(V , E) is a subgraph Gst ≡ Gst(V , Est) formed
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Figure A1: Subgrid G and graph G. In the exampledesribed here, the network grid Go inludes twelvepoints (nr = 3, ns = 4), while its subgrid G inludesnine points only; these points are shown as large dots.The orresponding graph G inludes seven vertiesand nine edges: nv = nr + ns = 7, ne = 9; r1 does notsee s2, r2 does not see s3, and r3 does not see s1.by nv verties and nv − 1 edges, with no `yle' in it.Here, `yle' is used in the sense de�ned in algebraigraph theory; see, e.g., Biggs (1996). In the GNSS om-munity, to avoid any onfusion with the usual notion ofwave yle, the term of `loop' an be substituted for thatof `yle.' In this ontext, the number of loops de�nedthrough a given �xed (but arbitrary) spanning tree is thenumber of edges of E that do not lie in Est . These edges,
c(ℓ)

def

= (riℓ
, sjℓ

), are said to be `(loop-)losure edges' (seeFig. A2). Their number is denoted by nc:
nc = ne − nst (A1)where
nst

def

= nv − 1 = nr + ns − 1 (A2)Many spanning trees of the same graph an be on-struted. Here, we are going to present the Kruskal al-gorithm whih is often used in algebrai graph theory;see Biggs 1996. The �rst step of this algorithm onsistsin ordering the edges of E , thus generating a sequeneof the form {(riq
, sjq

) : q = 1, . . . , ne}. The spanningtree is then obtained as follows. Set q = 0, nst = 0, and
Est = ∅ (the empty set). Then,(i) if nst = nv − 1, terminate the proess; otherwise,set q := q + 1;(ii) when the verties of edge (riq

, sjq
) are not on-neted via edges of Est, set Est := Est ∪ {(riq

, sjq
)},

nst := nst + 1; then go to step (i).By onstrution, the spanning tree thus found dependson how the edges are ordered in the �rst step. The sub-grid of G orresponding to the edges of Gst is denoted
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Figure A2: GNSS spanning tree and loops. Here,the edges of the seleted spanning tree Gst of thegraph G introdued in Fig. A1 are shown as thiklines. The points of the orresponding subgrid Gstare shown as large dots. The remaining points of G(the small dots of G) orrespond to the (loop-)losureedges (the thin edges of G). We then have one loopof order four, and 2 loops of order six: (r2, s4, r1, s1),
(r3, s3, r1, s1, r2, s2) and (r3, s4, r1, s1, r2, s2). InG,these orders are shown as small numbers.by Gst; Gc is that orresponding to the losure edges:

Gc
def

= {(i, j) ∈ G : (i, j) /∈ Gst} (A3)Clearly, Gc inludes nc loop-losure points; see Eq. (A1)and Fig. A2.To illustrate the ation of the Kruskal algorithm, let usonsider the graph G of Fig. A1. To build a spanningtree of G from its grid G, let us order the edges of G bysanning G from left to right and top to bottom. The al-gorithm examines the edges of G in that order and addsthem to the urrent version of Est when ondition (ii)holds. In this example, this is the ase for the �rst �veedges; the verties s1, s3, s4, r1, r2 are thus onneted.The sixth edge, (r2, s4), therefore inludes two vertiesalready onneted. This edge is therefore the �rst lo-sure edge: c(1) = (r2, s4). The next edge, (r3, s2), isadded to Est sine it orresponds to the �rst onne-tion of s2 with the edges of the urrent version of Est.All the verties of G are then onneted. The remain-ing edges are therefore losure edges: c(2) = (r3, s3),
c(3) = (r3, s4). The Gst-edge set thus obtained is thefollowing (see Fig. A2):
Est := {(r1, s1), (r1, s3), (r1, s4), (r2, s1), (r2, s2), (r3, s2)}Note that this proedure does not provide the edge pathof Est that links the verties of the losure edge underonsideration. Clearly, losure paths are not needed tobe known for the onstrution of Gst. In simple ases suhas that of Fig. A2, suh a path an visually be obtainedby moving on grid G horizontally and vertially, in al-ternate manner from the seleted losure-edge point; see

the related telesoping sums introdued in Set. 3.3. Ifneed be, the edges paths an be obtained automatiallyin an algebrai manner; see Set. 3.4.Appendix B The S-system approahIn this appendix, we give a survey of the general frame-work of the S-system approah; for further details andrelated appliations, see Baarda 1973; Teunissen 1984;de Jonge 1998; Teunissen and Odijk 2003.Denoting by E a Eulidean spae of dimension n, we on-sider some linear operator A from E into R
m with m ≥ nfor example. The problem to be solved in a sense to bede�ned is governed by a relation of the form

Aξ = γ (B1)The omponents of ξ are the unknown parameters ofthe problem, whereas γ is the data vetor. In manysituations enountered in pratie, A is not of full rank;its null spae (i.e., its kernel) is not redued to {0}:
n0

def

= dim(kerA) ≥ 1 (B2)In the S-system approah, this rank defet is removedvia an appropriate redution and rede�nition of the un-known parameters. Those new parameters are the `es-timable funtions of parameters' of some minimum-onstrained problem thus de�ned; see, e.g., de Jonge1998. We now give a geometrial interpretation of theS-system priniple.Let us hoose some subspae F of E of dimension n − n0suh that F∩kerA = {0}; E an then be regarded as thediret sum of F and kerA (see Fig. B1):
E = F ⊕ kerA (B3)The `estimable funtional variable' is then de�ned as theoblique projetion of ξ on F along kerA: Sξ. The obliqueprojetion (operator) S is the S-transformation of theS-system method; see, e.g., de Jonge 1998.We now show how the S-system approah an provide thematrix of S in the standard basis of E. The estimablefuntional variable Sξ, whih basially depends on thehoie of F, an thus be expliitly de�ned.Aording to its de�nition,
Sξ = ξ − η (B4)where η is the vetor of kerA suh that ξ − η lies in F;see Fig. B1. Denoting by [W ] a matrix whose olumnvetors form a basis of kerA, we have
[η] = [W ][ζ] (B5)where ζ is some vetor of R

n0 . Clearly, the entries of [η],
[W ] and [ζ] are expressed in the standard basis of E.Let [S⊥] now be a matrix whose olumn vetors form a
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FFigure B1: S-system priniple. In this geo-metrial representation, E is a Eulidean spaeof dimension n. The unknown funtional vari-able ξ is a vetor of E. The null spae ofthe operator A involved in Eq. (B1) is of di-mension n0: dim(kerA) = n0; F is a sub-spae of E of dimension n − n0 suh that

F ∩ kerA = {0}; E an then be regarded asthe diret sum F ⊕ kerA. In the S-systemapproah, the `estimable funtional variable'is then de�ned as the oblique projetion of ξon F along kerA: Sξ.basis of F⊥, the orthogonal omplement of F in E. As
ξ − η is orthogonal to all the vetors of F⊥, we have (inpartiular) [S⊥]T

(

[ξ] − [W ][ζ]
)

= 0, i.e.,
[S⊥]T[W ][ζ] = [S⊥]T[ξ] (B6)As shown further on, [S⊥]T[W ] is invertible. It then fol-lows that [ζ] =

(

[S⊥]T[W ]
)−1

[S⊥]T[ξ], hene fromEqs. (B4) and (B5),
[S] = [I] − [W ]

(

[S⊥]T[W ]
)−1

[S⊥]T (B7)where [I] is the identity matrix on E.We now show that the n0-by-n0 matrix [M0]
def

= [S⊥]T[W ]is invertible.Proof. Let ξ⊥ be the projetion of some vetor η of kerAon F⊥; see Fig. B1. By onsidering the ase where
ξ = ξ⊥, Eq. (B6) yields [M0][ζ] = [S⊥]T[ξ⊥]. The on-dition [M0][ζ] = 0 implies [S⊥]T[ξ⊥] = 0, hene ξ⊥ = 0.As a result, η then lies in F. As F ∩ kerA = {0}, it fol-lows that η = 0, hene ζ = 0. The null spae of [M0] istherefore redued to {0}; but [M0] is an n0-by-n0 matrix;
[M0] is therefore invertible.Remark B1. In the S-system approah as it is imple-mented by de Jonge (1998) for example, one hoosessome basis for F. The orresponding matrix is denotedby S; F is then regarded as the range of S; [S⊥]Tξ isalled the `S-basis.' Note that [S⊥] is then denotedby S⊥ ·

Appendix C QR implementationIn this appendix, we show how the �oat version of Eq. (81)an be solved in the LS sense via reursive QR fa-torization. Here, for simpliity, we will assume thatthe elementary orthogonal transformations involved inthat fatorization are Givens rotations; see Eqs. (2.3.10)to (2.3.13) in Björk (1996).In the losure-ambiguity approah, the number of entriesof v, nc, is a non-dereasing funtion of k; see Set. 6.3.In Set. C1, we onsider the ase where nc is onstant;the ases where at some epohs k, nc inreases is dealtwith in Set. C2. In that QR framework, we �nally de-sribe in Set. C3 the onstrution of the matries Ak,
Bk and bk involved in Eq. (81).C1 Reursive QR fatorizationAs shown in this setion, the �oat version of the followingequation (Eq. (81)) an be solved in the LS sense viareursive QR fatorization:
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v
]Throughout this setion, nc is assumed to be �xed; forrelated notions, see Set. 6.3 of Björk 1996; Golub andvan Loan 1989; Bierman 1977.C1.1 Initialization: epoh 1At epoh 1, the problem is to minimize the funtional(see the �rst line of Eq. (81))

f1(w1, v)
def

= ‖(B1w1 + A1v) − b1‖
2
Rne1The LS solution (ŵ1, v̂) is then obtained via two QR fa-torizations (see Fig. C1).1) QR fatorization of B1: the Givens rotations of thisstep are those required for �nding the upper-triangularmatrix K1. The modi�ed version of A1 thus obtained in-ludes an upper blok L1 and a lower blok L′

1. Likewise,the modi�ed version of b1 inludes two olumn subma-tries: c1 and c′1.2) QR fatorization of L′

1: the Givens rotations of thatstep yield the upper-triangular matrix R1. The lowerpart of L′

1 is redued to 0; c′1 then yields (d1 , d′

1); seeFig. C1. Note that K1, L1 and c1 are not a�eted bythose rotations.
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K1 L1 c1

R1

B1 A1 b1

c′1

d1

d′

1Figure C1: QR fatorization at epoh 1.The priniple of the reursive QR method isskethed here for the �rst epoh with the in-put blok matries B1 , A1 and the data ol-umn matrix b1. The initialization proessis performed in two steps: K1 , (L1 , L
′

1),
(c1 , c

′

1) are built in the �rst step (see textfor L
′

1), whereas R1 , (d1 , d
′

1) are built in theseond one; for the LS solution thereby ob-tained at epoh 1, see text.At the end of this initialization stage, we thus have
f1(w1, v) = ‖(K1w1 − (c1 − L1v)‖2

R
nb1

+ ‖R1v − d1‖2
Rnc

+ ‖d′

1‖
2
R

ne1−nb1−ncThe �oat solution in v at epoh 1 is therefore given bythe formula v̂ = R−1
1 d1, hene ŵ1 = K−1

1 (c1 − L1v̂).These solutions an therefore be omputed by bak sub-stitution. Note that ‖d′

1‖
2
R

ne1−nb1−nc
is the square of theLS residual norm at epoh 1.C1.2 Next epoh: epoh 2The funtional to be minimized is then

f1(w1, v) + f2(w2, v) where
f2(w2, v)

def

= ‖(B2w2 + A2v) − b2‖
2
Rne2As skethed in Fig. C2, the LS solution (ŵ1, ŵ2, v̂) isagain obtained via two QR fatorizations. The �rst stepof epoh 2 is similar to that of epoh 1; the seond oneis di�erent.1) QR fatorization of B2One thus obtains the upper-triangular matrix K2; seeFig. C2. The modi�ed version of A2 then inludes anupper blok L2 and a lower blok L′

2. Likewise, themodi�ed version of b2 inludes two olumn submatries:
c2 and c′2.

K1 L1 c1

R1→R2

K2 L2

L′

2 → 0

B1 A1

B2 A2

b1

b2

c′1

c2

c′2 d′

2

d1

d′

1

d2

Figure C2: QR fatorization at epohs 1 and 2. Thepriniple of the reursive QR method is skethed here forthe �rst two epohs: epoh 1 with the input blok ma-tries B1 , A1 and the data olumn matrix b1; epoh 2with the input blok matries B2 , A2 and the data ol-umn matrix b2. The initialization proess is performedin two steps as desribed in Fig. C1. At epoh 2, one�rst builds K2 , (L2 , L
′

2), (c2 , c
′

2) like at epoh 1, andthen R2, (d2 , d
′

2); for the LS solution thereby obtainedat epoh 2, see text.2) QR fatorization of [

R1

L
′

2

]:The Givens rotations of the seond step then operateon (R1 , L′

2) and (d1 , c′2) so as to transform L′

2 into azero-blok matrix. One thus gets R2 and (d2 , d′

2).At the end of this stage, we thus have
f1(w1, v) + f2(w2, v) = ‖(K1w1 − (c1 − L1v)‖2

R
nb1

+ ‖R2v − d2‖2
Rnc

+ ‖d′

1‖
2
R

ne1−nb1−nc

+ ‖(K2w2 − (c2 − L2v)‖2
R

nb2

+ ‖d′

2‖
2
R

ne2−nb2The �oat solution in v at epoh 2 is therefore given bythe formula v̂ = R−1
2 d2, hene the LS solutions in w1and w2:

ŵ1 = K−1
1 (c1 − L1v̂), ŵ2 = K−1

2 (c2 − L2v̂)The square of the LS residual norm at epoh 2 is thenequal to ‖d′

1‖
2
R

ne1−nb1−nc
+ ‖d′

2‖
2
R

ne2−nb2
.
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Kk Lk ck

Rk dk

Figure C3: Reursive QR tri-angular struture. Aording tothe priniple of the reursive QRmethod skethed in Fig. C2, thealulation of Rk+1 and dk+1 re-quires to have kept in memory theupper-triangular matrix Rk andthe olumn matrix dk; see text.C1.3 Next epohsIn summary, one thus operates, reursively, with the keystruture shown in Fig. C3: Kk, (Lk , L′

k) and (ck , c′k)are omputed from Bk, Ak and bk, the quantities Rkand (dk , d′

k) being then omputed from (Rk−1 , L′

k) and
(dk−1 , c′κ). The generalization is straightforward; wethen have

k
∑

κ=1

fκ(w1, v) = ‖(K1w1 − (c1 − L1v)‖2
R

nb1

+ ‖Rkv − dk‖2
Rnc

+ ‖d′

1‖
2
R

ne1−nb1−nc

+ ‖(K2w2 − (c2 − L2v)‖2
R

nb2

+ ‖d′

2‖
2
R

ne2−nb2...
+ ‖(Kkwk − (ck − Lkv)‖2

R
nbk

+ ‖d′

k‖
2
R

nek−nbkThe �oat solution in v at epoh k is therefore given bythe formula
v̂ = R−1

k dk (C1)hene the LS solutions in w1, . . . ,wk:
ŵκ = K−1

κ (cκ − Lκv̂) (κ = 1, . . . , k) (C2)The solution of the orresponding NLP problem is there-fore de�ned as follows:
v̌ = argmin

v∈Znc

‖Rk(v − v̂)‖2
Rnc (C3)Indeed, Rkv − dk = Rk(v − v̂). The phase biases w̌κare then given by the relations

w̌κ = K−1
κ (cκ − Lκv̌) (κ = 1, . . . , k) (C4)Their variane-ovarianematrix is equal toK−1

κ [K−1
κ ]T.

C2 Handling new omponents of thelosure-ambiguity variableWe now onsider the ase where Lc,k inludes na
c new lo-sure edges (see Set. 6.3); supersript a stands for added.One then proeeds in three steps:1) na

c losure-ambiguity entries are added at the topof olumn matrix v;2) as spei�ed in Set. C3.2, na
c olumns are added onthe right-hand side of Bk;3) as shown in Fig. C4, to build Rk, the last na

c linesof K and L obtained through the �rst QR stepare added at the top of R. Matries dk, Kk, Lkand ck are then updated aordingly.
Kk

K Lk L c

d

R

ck

dkRk

Figure C4: Handling new omponents of thelosure-ambiguity variable. When new entriesof v appear at epoh k, the �rst olumns of Akare proessed as the last olumns of Bk (seeFig. C2). The reursive QR operation thenyields the quantities K, L, c, R and d. Toget Kk, Lk, ck, Rk and dk, one then proeedsas illustrated here.C3 Constrution of matries Bk, Ak and bkWe �rst onsider the ase where the variane-ovarianematrix Vk of the data involved in the de�nition of bk isthe identity: Vk = I. Denoting by bk the olumn ma-trix whose entries are the values of bk on the edges ofthe observational graph Hk (see Set. 1), we then have
bk = bk. To build Bk = Bk and Ak = Ak, we then dis-tinguish the ases where at epoh k, nc does not inrease(Set. C3.1), or inreases (Set. C3.2). The ase Vk 6= Iis dealt with in Set. C3.3.C3.1 Case where nc does not inreaseMatrix Bk, whose number of olumns is nbk, is builtfrom the harateristi funtion Hk of Hk; see Fig. 1.The pth line of Bk orresponds to the pth edge (ri, sj)on whih Hk(i, j) = 1. All the matrix elements of that



22 J Geod 2013 DOI: 10.1007/s00190-013-0641-4 (in press)line are zero, exept (one or) two of them (see Eq. (6)and the de�nition of ̟sk in Set. 6.2):
Bp,i−1

k = 1 (for i > 1), B
p, nr−1+̟sk(j)
k = −1Matrix Ak has nc olumns: the number of elementsof Lc,k; see Set 6.3 and Fig. 5. Aording to the a-tion of Re

k, the entries of the olumn assoiated withsome losure edge (ri, sj) are then all zero, exept thatorresponding to the line assoiated with that edge if
Hk(i, j) = 1; that entry is then set equal to unity. Thelines of Ak are of ourse sorted as the lines of Bk.C3.2 Case where nc inreasesWe here onsider the ase where na

c new losure edge(s)appear(s) in Lc,k at some epoh k > 1: nc := nc + na
c ;see Set 6.3.Matrix Bp,q

k is de�ned as in Set. C3.1, but na
c olumnsare then added on its right-hand side. (For example, atepoh 2 of Fig. 5, B2 has four additional olumns.) Theentries of the olumn of Bk assoiated with some newlosure edge (ri, sj) are all zero, exept that orrespond-ing to the line assoiated with that edge; that entry isset equal to unity.Matrix Ak is then built as in Set. C3.1, exept for thenew losure-edges, sine they are then taken into aountin the augmented de�nition of Bk.C3.3 Case where Vk is not the identityWe here onsider the general ase where the variane-ovariane matrix Vk is to be taken into aount. In theQR implementation under onsideration, the inverse of Vkis then fatorized in the form

V −1
k = U T

k Uk (C5)where Uk is an upper-triangular matrix. As
(Bkwk + Akv − bk)T V −1

k (Bkwk + Akv − bk)

= ‖Uk(Bkwk + Akv − bk)‖2
R

nekmatries Bk, Ak and bk are then given by the relations
Bk = UkBk, Ak = UkAk, bk = Ukbk (C6)The problem is then to solve Eq. (81) in the EulideanLS sense.AknowledgmentsThe authors are very grateful to Flavien Merier andFélix Perosanz for helpful disussions.
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