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The purpose of this paper is to provide a simple framework for determining the resonant pull-in of MEMS oscillators, either parallel-plate, CC-beam or cantilever, under one-sided and twosided sinusoidal, square-wave or pulse-actuation. Furthermore, the values of the resonant and static pull-in amplitudes are calculated and tabulated, in all the considered cases.

INTRODUCTION

While static pull-in of capacitive MEMS structures is a well-known phenomenon [START_REF] Batra | Review of modeling electrostatically actuated microelectromechanical systems[END_REF], resonant pull-in, either under closed-loop (i.e. "oscillators") or open-loop (i.e. "resonators") capacitive actuation, has received considerably less attention [START_REF] Fargas-Marques | Resonant pull-in condition in parallel-plate electrostatic actuators[END_REF][START_REF] Krylov | Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures[END_REF][START_REF] Leus | On the dynamic response of electrostatic MEMS switches[END_REF][START_REF] Elata | On the dynamic pull-in of electrostatic actuators with multiple degrees of freedom and multiple voltage sources[END_REF]. Yet, it is of interest to determine at what amplitude a MEMS structure may oscillate without incurring instability, since this limit defines the maximal signal magnitude achievable with the MEMS structure and, hence, the effort that must be put in the design of the electronics (amplification / feedback) associated with the structure and in the MEMS/electronics interconnection scheme. As a rule, the larger the signal magnitude, the more the design constraints on the electronics and the interconnection scheme can be relaxed [START_REF] Arndt | System architecture and circuit design for micro and nanoresonators-based mass sensing arrays[END_REF]. For example, in [START_REF] Fargas-Marques | Resonant pull-in condition in parallel-plate electrostatic actuators[END_REF], it is shown that a parallel-plate oscillator with two-sided square-wave actuation (Fig. 1) cannot have stable oscillations with an amplitude larger than /3 g , where g is the electrostatic gap. In [START_REF] Juillard | Large amplitude dynamics of micro/nanomechanical resonators actuated with electrostatic pulses[END_REF], we show that a CC-beam oscillator with two-sided pulse actuation (Fig. 1) is stable provided the amplitude is smaller than is the square of the ratio of the bias voltage b V and the static pull-in voltage pi V , defined as the value of the voltage making the central position unstable (Fig. 2). Note that in [START_REF] Fargas-Marques | Resonant pull-in condition in parallel-plate electrostatic actuators[END_REF], the resonant pull-in amplitude is established under the hypothesis that 1   .

The purpose of this paper is to provide a simple framework for determining the resonant pull-in of MEMS oscillators, either parallel-plate, CC-beam or cantilever (Fig. 1), under two-sided sinusoidal, square-wave or pulse-actuation (Fig. 3). Furthermore, the values of the pull-in amplitudes are calculated, for the 9 considered cases, for values of  between 0 (very small bias voltage) and 1.

II. STATIC PULL-IN CALCULATION

For the three structures of Fig. 1, it is assumed that      

x w t a t x w 0 , 
, where   x w 0 is the first bending mode and a is the position of the midpoint of the beam in the CC case or of its free extremity in the cantilever case, normalized with respect to the gap ( 1  a means that the structure touches the lower electrode). For a flat structure,   1 0  x w . We derive the governing equations as in [START_REF] Juillard | Large amplitude dynamics of micro/nanomechanical resonators actuated with electrostatic pulses[END_REF]. Using the Galerkin procedure leads to:
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k is the (modal) stiffness of the structure, S is the surface of the electrodes and
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. The electrostatic force consists of two terms, one corresponding to biasing: 
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, the other to forcing:
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, where, following [START_REF] Juillard | Modeling of micromachined beams subject to nonlinear restoring or damping forces[END_REF], we have
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1 , for a flat structure + . a + a For all three structures, the central position 0  a becomes statically unstable when 1   (Fig. 2). When the central position is stable, the structures are statically pulled-in when . Describing function analysis [START_REF] Gelb | Multiple-input describing functions and nonlinear system design[END_REF] can then be used to study the three different actuation
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, where the waveform   t  is either a square wave, in phase with the structure velocity, a sine wave, also in phase with the structure velocity, or a "pulse wave", where the structure is actuated with pulses of duration p  (small compared to the period of the oscillation), of the same sign as a  (Fig. 3). We are interested in finding for what oscillation amplitude the structure reaches resonant pull-in in each of these three cases.

The amplitude osc

A and the frequency osc  of the oscillation regime corresponding to a value of 0 v are obtained by solving the nonlinear system given by the Barkhausen conditions:
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The oscillation regime becomes unstable when, for
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In the case of square wave or sine wave excitation, b J and c J are independent of  . Using (3), it is then straightforward to show that ( 5) is equivalent to:
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where the prime denotes derivation with respect to A . This equation boils down to a polynomial in A in the case of a parallel-plate structure or a CC-beam. In all the considered cases, it is simple to solve it numerically. Functions b J and c J and their derivatives may be approximated following [START_REF] Juillard | Modeling of micromachined beams subject to nonlinear restoring or damping forces[END_REF], which greatly lightens the computational load. It is notable that the resonant pull-in amplitude derived from (6) depends on the value of  , not on that of 0 v or Q . The case of pulse actuation is covered in [START_REF] Juillard | Large amplitude dynamics of micro/nanomechanical resonators actuated with electrostatic pulses[END_REF]. It is possible to show that the resonant pull-in condition predicted by [START_REF] Elata | On the dynamic pull-in of electrostatic actuators with multiple degrees of freedom and multiple voltage sources[END_REF] 

corresponds to 0  osc 
, which is outside the range of validity of describing function analysis, and that the resonant pull-in amplitude is in fact equal to the static pull-in amplitude, predicted by [START_REF] Krylov | Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures[END_REF].

The resonant pull-in amplitudes predicted by (3)in the case of pulse-actuationand (6)in the case of square or sine wave actuationare represented in Fig. 4, for the three geometries under study. We note that, in the limit of small  , for a square-wave actuated parallel-plate structure, the same result as in [START_REF] Fargas-Marques | Resonant pull-in condition in parallel-plate electrostatic actuators[END_REF] is found. The main result is that, for a given value of  , the resonant pull-in amplitude is larger for a pulse-actuated structure than for a sine-wave-actuated structure, and larger for a sine-wave-actuated structure than for a square-wave-actuated structure. In other words, the more the energy used for actuating the MEMS is concentrated in time, the more stable the oscillation is. Finally, we note that, for a given type of actuation and a given value of  , the resonant pull-in amplitude is larger for a cantilever beam than for a CC-beam, and larger for a CC-beam than for a parallel-plate structure.

IV. DISCUSSION Provided

1  Q
, the values of the resonant pull-in amplitudes given in Fig. 4 correspond almost perfectly to those obtained through transient simulation of [START_REF] Batra | Review of modeling electrostatically actuated microelectromechanical systems[END_REF]. For lower quality factor values (typically 10  Q

), the harmonics generated by the various nonlinearities (electrostatic nonlinearity and/or actuation nonlinearity) can no longer be neglected and our predictions become less accurate. It should also be noted that, in the case of parallel-plate and CC-beam structures, the stress-stiffening (Duffing) phenomenon might also be taken into account [START_REF] Juillard | Large amplitude dynamics of micro/nanomechanical resonators actuated with electrostatic pulses[END_REF]. Equation (1) would then become: However, the approach presented in this paper can also be applied to that case. The main difference will be that the resonant pull-in amplitude will not only depend on  , but also on the Duffing coefficient  . Interaction between different oscillation modes (as described in [START_REF] Van Der Avoort | Amplitude saturation of MEMS resonators explained by autoparametric resonance[END_REF]) is another phenomenon limiting the validity of this study.
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V. CONCLUSION In this paper, we have shown how the resonant pull-in amplitude of different MEMS oscillators with twosided actuation may be derived. We have shown that this pull-in amplitude depends not only on the geometry of the considered device, but also on the waveform being used for the actuation, our main result being that the more concentrated in time the actuation is, the more stable the oscillation is. The extension of this work to more complex cases (one-sided actuation, Duffing, multiple-mode interaction) is the subject of on-going work.
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 12 Figure 1. Parallel-plate (top), CC-beam (bottom left) and cantilever (bottom right) MEMS structures with twosided actuation. The displacement is capacitively sensed through the middle (moving) electrode (e.g. via a charge amplifier). The upper (resp. lower) electrode is at a voltage of /2 bc VV  (resp.
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 2 Figure 2. Potential energy (arbitrary units) vs. normalized position for a parallel-plate structure. For values of 1   , the central position is stable and there exist two symmetric statically unstable equilibrium positions. For 1   , the central position is the only equilibrium position and it is unstable.
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 3 Figure 3. From left to right: square, sinusoidal and pulse waveforms (continuous line). The dashed line represents   sin t .
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 4 Figure 4. Normalized resonant pull-in amplitude for a parallel-plate structure (top), a CC-beam (bottom left) and a cantilever beam (bottom right). The values are obtained from (6) in the case of square-wave and sinewave actuation or from (3) in the case of pulse-actuation
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