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Abstract—The purpose of this paper is to provide a simple framework for determining the resonant 

pull-in of MEMS oscillators, either parallel-plate, CC-beam or cantilever, under one-sided and two-

sided sinusoidal, square-wave or pulse-actuation. Furthermore, the values of the resonant and static 

pull-in amplitudes are calculated and tabulated, in all the considered cases. 

Keywords-electrostatic actuation, resonant pull-in, MEMS design, nonlinear oscillators 

I.  INTRODUCTION 

While static pull-in of capacitive MEMS structures is a well-known phenomenon [1], resonant pull-in, 
either under closed-loop (i.e. “oscillators”) or open-loop (i.e. “resonators”) capacitive actuation, has received 
considerably less attention [2-5]. Yet, it is of interest to determine at what amplitude a MEMS structure may 
oscillate without incurring instability, since this limit defines the maximal signal magnitude achievable with 
the MEMS structure and, hence, the effort that must be put in the design of the electronics (amplification / 
feedback) associated with the structure and in the MEMS/electronics interconnection scheme. As a rule, the 
larger the signal magnitude, the more the design constraints on the electronics and the interconnection 
scheme can be relaxed [6]. For example, in [2], it is shown that a parallel-plate oscillator with two-sided 

square-wave actuation (Fig. 1) cannot have stable oscillations with an amplitude larger than / 3g , where g  

is the electrostatic gap. In [7], we show that a CC-beam oscillator with two-sided pulse actuation (Fig. 1) is 

stable provided the amplitude is smaller than 2/31g  , where 2 2/b piV V   is the square of the ratio of the bias 

voltage 
bV  and the static pull-in voltage piV , defined as the value of the voltage making the central position 

unstable (Fig. 2). Note that in [2], the resonant pull-in amplitude is established under the hypothesis that 
1  .  

The purpose of this paper is to provide a simple framework for determining the resonant pull-in of MEMS 
oscillators, either parallel-plate, CC-beam or cantilever (Fig. 1), under two-sided sinusoidal, square-wave or 
pulse-actuation (Fig. 3). Furthermore, the values of the pull-in amplitudes are calculated, for the 9 considered 
cases, for values of   between 0 (very small bias voltage) and 1. 

II. STATIC PULL-IN CALCULATION 

For the three structures of Fig. 1, it is assumed that      xwtatxw 0,  , where  xw0  is the first bending mode 

and a  is the position of the midpoint of the beam in the CC case or of its free extremity in the cantilever case, 



 

normalized with respect to the gap ( 1a  means that the structure touches the lower electrode). For a flat 
structure,   10 xw . We derive the governing equations as in [7]. Using the Galerkin procedure leads to:  
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where 22 / pib VV ,  SkGVpi 0

3 /2  , k  is the (modal) stiffness of the structure, S  is the surface of the 

electrodes and 1/  bc VVv . The electrostatic force consists of two terms, one corresponding to biasing:  
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Figure 1.  Parallel-plate (top), CC-beam (bottom left) and cantilever (bottom right) MEMS structures with two-

sided actuation. The displacement is capacitively sensed through the middle (moving) electrode (e.g. via a 

charge amplifier). The upper (resp. lower) electrode is at a voltage of / 2
b c

V V  (resp. / 2
b c

V V  ), where cV  is 

a control voltage. 
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where, following [8], we have  



 

   

 

 

   

0

1
21

0 0

0

2

2

3 2

N 2, 1

1
, for a flat structure

1

1 1 74 10
0.523 , for a CC-beam

1

0 531 0 114 log 1

0 392 , for a cantilever1 0 783

1

w

-

/

a w aw dx

- a

+ . a

- a

. + . a - a  

. + . a
+ 

a


 






 

 



 
 
   

 



 

and 









 
cantilever afor  ,25.0

beam-CC afor  ,396.0

structureflat  afor  1,
1

0

2

02 dxwI . 

 

 

Figure 2.  Potential energy (arbitrary units) vs. normalized position for a parallel-plate structure. For values of 

1  , the central position is stable and there exist two symmetric statically unstable equilibrium positions. 

For 1  , the central position is the only equilibrium position and it is unstable. 

For all three structures, the central position 0a  becomes statically unstable when 1  (Fig. 2). When 
the central position is stable, the structures are statically pulled-in when  

 afa b  0a  

 

Figure 3.   From left to right: square, sinusoidal and pulse waveforms (continuous line). The dashed line 

represents  sin t . 
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Using (1) and (2), one obtains 2/11 pia  for a flat structure, and 3/21 pia  for a CC-beam. In the 

cantilever case, the static pull-in amplitude can be approximated by 9.01 pia . 

III. RESONANT PULL-IN CALCULATION 

In the absence of a DC component to the electrostatic force acting on the structure, we may assume that 
   tAta sin . Describing function analysis [9] can then be used to study the three different actuation 

strategies    tvtv 0 , where the waveform  t  is either a square wave, in phase with the structure velocity, a 

sine wave, also in phase with the structure velocity, or a “pulse wave”, where the structure is actuated with 
pulses of duration 

p  (small compared to the period of the oscillation), of the same sign as a  (Fig. 3). We are 

interested in finding for what oscillation amplitude the structure reaches resonant pull-in in each of these 
three cases. 

The amplitude 
oscA  and the frequency 

osc  of the oscillation regime corresponding to a value of 0v  are 

obtained by solving the nonlinear system given by the Barkhausen conditions: 
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The oscillation regime becomes unstable when, for oscAA   and osc  : 
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In the case of square wave or sine wave excitation, bJ  and cJ  are independent of  . Using (3), it is then 

straightforward to show that (5) is equivalent to: 
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where the prime denotes derivation with respect to A . This equation boils down to a polynomial in A  in the 
case of a parallel-plate structure or a CC-beam. In all the considered cases, it is simple to solve it 
numerically. Functions bJ  and cJ  and their derivatives may be approximated following [8], which greatly 

lightens the computational load. It is notable that the resonant pull-in amplitude derived from (6) depends on 
the value of  , not on that of 0v  or Q .  

The case of pulse actuation is covered in [7]. It is possible to show that the resonant pull-in condition 
predicted by (5) corresponds to 0osc , which is outside the range of validity of describing function analysis, 

and that the resonant pull-in amplitude is in fact equal to the static pull-in amplitude, predicted by (3). 

The resonant pull-in amplitudes predicted by (3) – in the case of pulse-actuation – and (6) – in the case of 
square or sine wave actuation – are represented in Fig. 4, for the three geometries under study. We note that, 
in the limit of small  , for a square-wave actuated parallel-plate structure, the same result as in [2] is found. 
The main result is that, for a given value of  , the resonant pull-in amplitude is larger for a pulse-actuated 



 

structure than for a sine-wave-actuated structure, and larger for a sine-wave-actuated structure than for a 
square-wave-actuated structure. In other words, the more the energy used for actuating the MEMS is 
concentrated in time, the more stable the oscillation is. Finally, we note that, for a given type of actuation and 
a given value of  , the resonant pull-in amplitude is larger for a cantilever beam than for a CC-beam, and 
larger for a CC-beam than for a parallel-plate structure. 

IV. DISCUSSION 

Provided 1Q , the values of the resonant pull-in amplitudes given in Fig. 4 correspond almost perfectly 

to those obtained through transient simulation of (1). For lower quality factor values (typically 10Q ), the 

harmonics generated by the various nonlinearities (electrostatic nonlinearity and/or actuation nonlinearity) 
can no longer be neglected and our predictions become less accurate. It should also be noted that, in the case 
of parallel-plate and CC-beam structures, the stress-stiffening (Duffing) phenomenon might also be taken 
into account [7]. Equation (1) would then become: 
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Figure 4.  Normalized resonant pull-in amplitude for a parallel-plate structure (top), a CC-beam (bottom left) 

and a cantilever beam (bottom right). The values are obtained from (6) in the case of square-wave and sine-

wave actuation or from (3) in the case of pulse-actuation

However, the approach presented in this paper can also be applied to that case. The main difference will 
be that the resonant pull-in amplitude will not only depend on  , but also on the Duffing coefficient  . 
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Interaction between different oscillation modes (as described in [10]) is another phenomenon limiting the 
validity of this study. 

V. CONCLUSION 

In this paper, we have shown how the resonant pull-in amplitude of different MEMS oscillators with two-
sided actuation may be derived. We have shown that this pull-in amplitude depends not only on the geometry 
of the considered device, but also on the waveform being used for the actuation, our main result being that 
the more concentrated in time the actuation is, the more stable the oscillation is. The extension of this work to 
more complex cases (one-sided actuation, Duffing, multiple-mode interaction) is the subject of on-going 
work. 
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