Rania Soussi
email: rania.soussi@ecp.fr

Etienne Cuvelier
email: etienne.cuvelier@ecp.fr

Marie-Aude Aufaure
email: marie-aude.aufaure@ecp.fr

Amine Louati
email: amine.louati@inria.fr

Yves Lechevallier
email: yves.lechevallier@inria.fr

DB2SNA: an All-in-one Tool for Extraction and Aggregation of underlying Social Networks from Relational Databases

Keywords: relational database, graph database, social network analysis, graph extraction and aggregation

In the enterprise context, People need to visualize different types of interactions between heterogeneous objects (e.g. product and site, customers and product, people interaction (social network)...). The existing approaches focus on social networks extraction using web document. However a considerable amount of information is stored in relational databases. Therefore, relational databases can be seen as rich sources for extracting a social network. The extracted network has in general a huge size which makes it difficult to analyze and visualize. An aggregation step is needed in order to have more understandable graphs. In this chapter, we propose a heterogeneous object graph extraction approach from a relational database and we present its application to extract social network. This step is followed by an aggregation step in order to improve the visualisation and the analyse of the extracted social network. Then, we aggregate the resulting network using the k-SNAP algorithm which produces a summarized graph.

Introduction

The data manipulated in an enterprise context are structured data as well as unstructured data such as e-mails, documents, etc. Graphs are a natural way of representing and modeling such data in a unified manner (structured semistructured and unstructured ones). The main advantage of such structure relies on (or resides in) its dynamic aspect and its capability to represent relations, even multiple ones, between objects. It also facilitates data query using graph operations. Explicit graphs and graph operations allow a user to express a query at a very high level of abstraction.

People need to visualize different types of interactions between heterogeneous objects (e.g. product and site, customers and product, people interaction like social networks, etc.).

In order to analyze these interactions and facilitate their querying using graph query languages and social network analysis methods, it is relevant to modulate such interaction by using a graph structure.

Indeed, these different graphs can help enterprises sending product recommendations (using the graph of Products and client), finding experts (using social network), etc.

Nevertheless, in a business context, important expertise information is stored in files, databases and especially relational databases. Relational database pervades almost all businesses. Many kinds of data, from e-mails and contact information to financial data and sales records, are stored in databases. Also, databases used in business contain information about all people, objects and processes related to the enterprise. This data source is a rich one to extract object interaction.

However, a relational database is not the most suited data structure to store the "graph-like" information about a social network. By nature, a graph database is more preferable, because its structure is close to the structure of a social network.

Then, this chapter presents a new approach of social network extraction from relational database which allows discovering hidden relationships between entities. This approach has been generalized to extract different kind of heterogeneous objects graphs: such graph contains several kinds of relations and objects. Each object owns a set of characteristics which can be different from object to another. In order to facilitate the visualization and data interpretation, it seems interesting to aggregate the extracted graphs. This aggregation should use not only the relations between nodes but also the characteristics of each one and very few algorithms do that. In this context, we use the aggregation algorithm K-SNAP.

Then, the structure of this chapter is the following. First, we propose in section 2, as a pre-treatment, to migrate the social network information stored in a classical relational database towards a graph database model . Starting from this new representation of the social network information contained in the original databases, we extract the social network structure, but it would be a pity to lose a lot of information using the classical graph representation of a social network. Indeed, in the graph theory used to model such networks, all nodes are of the same type, and all relationships are of the same kind. But, in real life, all people in a social network do not play the same role, and all relationships dot not necessary share the same type. In other words, we are not all friends, or only friends, with our neighbors or colleagues. The enterprise framework is a perfect example for this: accountants do not have the same relationship with their accountant colleagues, with the salesmen, with the workers and, finally with their manager. And all these people play, of course, different roles in the business of their enterprise. That is why we propose in section 3 to use heterogeneous graphs to model and extract such complex social networks, by working directly on the resulting graph database. The extraction of the social network is made using graph transformations. In a last step, we propose a visualization process because the "raw data" of a network can have, in general, a huge size which makes its difficult to analyze and visualize. In order to ease the latter tasks we propose to use an aggregation process in section 4. After a study of the existing graph aggregation methods, we propose to use an existing technique which takes into account the heterogeneity of our networks. A global view of our all-in-one solution is given in Figure 1. Finally, we conclude and give some perspectives to this work. 2 Graph database Models and Graph Aggregation Algorithm

Graph database Models

A graph database is defined [START_REF] Angles | Survey of graph database models[END_REF] as a "database where the data structures for the schema and/or instances are modeled as a (labeled) (directed) graph, or generalizations of the graph data structure, where data manipulation is expressed by graph-oriented operations and type constructors, and has integrity constraints appropriate for the graph structure. There is a variety of models for a graph database (for more details see [START_REF] Angles | Survey of graph database models[END_REF]). All these models have their formal foundation as variations of the basic mathematical definition of a graph. The structure, used for modeling entities and relations, influences the way that data is queried and visualized. In this section, we compare existing models in order to find the one most suitable one for storing and representing a social network. We will focus on the representation of entities and relations in these models. In the following, we present some models classified according to the data structure used to model entities and relations.

Models based on simple node Data are represented in these models by a (directed or undirected) graph with simple nodes and edges. Most of these models (GOOD [START_REF] Gyssens | A graph-oriented object model for database end-user interfaces[END_REF]), GMOD [START_REF] Andries | Concepts for Graph-Oriented Object Manipulation[END_REF], etc.) represent both schema and instance database as a labeled directed graph. Moreover, LDM [START_REF] Kuper | The Logical Data Model[END_REF] represents the graph schema as a directed graph where leaves represent data and whose internal nodes represent connections between the data. LDM instances consist of two-column tables, one for each node of the schema. Entities in these model are represented by nodes labeled with type name and also with type value or object identifier (in the case of instance graph). Some models have nodes for explicit representation of tuples and sets (PaMaL [START_REF] Gemis | An object-oriented pattern matching language[END_REF], GDM [START_REF] Hidders | Typing Graph-Manipulation Operations[END_REF]), and n-ary relations (GDM). Relations (attributes, relations between entities) are generally represented in these models by means of labeled edges. LDM and PaMaL use tuple nodes to describe a set of attributes which are used to define an entity. GOOD defines edges to distinguish between mono-valued (functional edge) and multi-valued attributes (nonfunctional edge). Nevertheless, these models do not allow the presentation of nested relations and are not very well suited for complex objects modeling.

Models based on complex node. In these models, the basic structure of a graph (node and edge) and the presentation of entities and relations are based on hypernodes (and hypergraphs). Indeed, a hypernode is a directed graph in which nodes themselves can be graphs (or hypernodes). Hypernodes can be used to represent simple (flat) and complex objects (hierarchical, composite, and cyclic) as well as mappings and records. A hypergraph is a generalized notion of graph where the notion of edge is extended to hyperedge, which relates to an arbitrary set of nodes. The Hypernode Model [START_REF] Levene | A Graph-Based Data Model and its Ramifications[END_REF] and GGL [START_REF] Graves | Graph database systems for genomics[END_REF] emphasize the use of hypernodes for representing nested complex objects. GROOVY [START_REF] Levene | An object-oriented data model formalized through hyper-graphs[END_REF] is focused on the use of hypergraphs. The hypernode model is characterized by using nested graphs at the schema and instance levels. GGL introduces, in addition to its support for hypernodes (called Master-nodes), the notion of Master-edge for the encapsulation of paths. It uses hypernodes as an abstraction mechanism consisting in packaging other graphs as an encapsulated vertex, whereas, the Hypernode model additionally uses hypernodes to represent other abstractions like complex objects and relations. Most models have explicit labels on edges. In the hypernode model and GROOVY, labeling can be obtained by encapsulating edges, that represent the same relation, within one hypernode (or hyperedge) labeled with the relation name.

Discussion The purpose of this review of graph database models is to find the most suited one to model many complex data objects and their relationships, such as social networks. Social Network is an explicit representation of relationships between people, groups, organizations, computers or other entities [START_REF] Barnes | Class and committees in a Norwegian island parish[END_REF]. As other networks, it can be represented as a complex graph [START_REF] Xu | Using Social Networks to Organize Researcher Community[END_REF]. Indeed, the social network structure can contain one or more types of relations, one or more types or levels of entities and many attributes over the entities. This structure is dynamic due to growth of the volume, change of attributes and relations.

Then, we compare the previous graph database models using some characteristics related to social network: the ability to present dynamic and complex objects, nested and neighborhood relations and the ability to give a good visualization of social network. We resume the comparison on Table 1 where "+" indicates the graph model support, "-" indicates that the graph model does not support and "+/-" partial support. From this comparison, we have concluded that models based on hypernodes can be very appropriate to represent complex and dynamic objects. In particular, the hypernode model with its nested graphs can provide an efficient support to represent every real-world object as a separate database entity. Moreover, models based on a simple graph are unsuitable for complex networks where entities have many attributes and multiple relations.

Graph Aggregation Algorithms

When graphs of extracted social networks are large, effective graph aggregation and visualization methods are helpful for the user to understand the underlying information and structure. Graph aggregations produce small and understandable summaries and can highlights communities in the network, which greatly facilitates the interpretation.

The automatic detection of communities in a social network, can provide this kind of graph aggregation. The community detection is a clustering task, where a community is a cluster of nodes in a graph [START_REF] Girvan | Community structure in social and biological networks[END_REF] [START_REF] Newman | Finding and evaluating community structure in networks[END_REF], such the nodes of the cluster must be more connected with inside nodes, than with nodes outside of the cluster (see found [START_REF] Schaeffer | Graph clustering[END_REF] and [START_REF] Santo | Community detection in graphs[END_REF] for extended reviews).

The first class of clustering algorithms are the partitional algorithms, which try to find a partition of a set of data, with a given number of clusters, using jointly, most of the times, similarity or a dissimilarity measures and a quality criterion of the found partition. The most popular partitional algorithm (with several variants), the k-means clustering [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], tries to find a partition of the set of objects which minimizes the sum-of-square criterion which adds the dissimilarities from each object to the centre of its own cluster. Several (di)similarity measures can be defined in the social network context, like those based on the Jaccard index, which measures similarity between the sets of neighbours of the two nodes, but other measures can be defined ([START_REF] Schaeffer | Graph clustering[END_REF] and [START_REF] Santo | Community detection in graphs[END_REF]).

Hierarchical clustering algorithms try to organize data into a hierarchical structure, and are divided into agglomerative and divisive algorithms, depending on whether the partition is coarsened, or refined, at each iteration. The basic idea beyond agglomerative algorithms is simple: at the starting point, the objects to cluster are their own classes, and then at each stage we merge the two more similar clusters. Of course a dissimilarity measure between two clusters is mandatory, and for a given dissimilarity measure d between objects, several cluster-dissimilarities exist. The result of the clustering process is a dendrogram, which can be cut to give one single partition. Divisive clustering algorithms, split the dataset iteratively or recursively into smaller and smaller clusters, with respect to a quality criterion. The most popular method for divisive hierarchical clustering of social networks uses the notion of edge betweenness [START_REF] Freeman | A set of measures of centrality based upon betweenness[END_REF], because finding the connecting edges between communities is also finding these communities. The algorithm given in [START_REF] Girvan | Community structure in social and biological networks[END_REF] splits the network into clusters by removing, step after step, the edge with the higher betweenness value. The use of a stopping criterion which measures the improvement at each step should permit to stop when no improvement is gained with an iteration. In most cases the modularity [START_REF] Newman | Detecting community structure in networks[END_REF] is used. SuperGraph [START_REF] Rodrigues | Supergraph visualization[END_REF] employs hierarchical graph partitioning to visualize large graphs.

Specially designed for graphs, spectral algorithms [START_REF] Von Luxburg | A tutorial on spectral clustering[END_REF] are based on the notion of connected components. These algorithms work with a Laplacian, matrix based onthe adjacency (or weight) matrix [START_REF] Shi | Normalized cuts and image segmentation[END_REF] [START_REF] Ng | Advances in Neural Information Processing Systems, 14[END_REF]. If the graph of the social network contains k , completely disjoints communities (i.e. without any link between them), called connected components, then the k eigenvectors associated to the eigenvalue 0 are indicator vectors of the k connected components . If the clusters of the social network do not contain "clean" connected components (i.e. if there are links between existing communities), then a simple clustering on the k eigenvectors associated to the k least eigenvalues, can retrieve the k communities.

Some other algorithms works on graph aggregation use statistical methods to study graph characteristics, such as degree distributions [START_REF] Newman | The structure and function of complex networks[END_REF], hop-plots [START_REF] Chakrabarti | Visualization of large networks with mincutplots, a-plots and r-mat[END_REF] and clustering coefficients [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF]. The results are often useful but difficult to control and especially to exploit. Methods for mining frequent graph patterns [START_REF] Yan | gSpan: Graph-based substructure pattern mining[END_REF] are also used to understand the characteristics of large graphs. Washio and Motoda [START_REF] Newman | The structure and function of complex networks[END_REF] provide an elegant review on this topic.

However, all the previous algorithms use only on links between nodes of the graph of the network, and do not take into account the internal values contained in each node, while classical clustering algorithms applied on tables of values, work only on these values ignoring completely the possible link between individual. An algorithm which can take into account both kind of information would be very valuable. Designed for graphical graph aggregation the k-SNAP algorithm [START_REF] Tian | Efficient aggregation for graph summarization[END_REF], in its divisive version, begins with a grouping based on attributes of the nodes, and then tries to divide the existing groups thanks to their neighbours groups, trying minimizing a loss information measure.

Social Network extraction from relational databases

In this section we describe our approach of graph extraction which is based on two steps. The first step to perform is to transform relational databases into graph databases according to a graph model.

This transformation allows the extraction of all the entities in the relational database on the form of nodes and outlines the relations between them which facilitate, in further steps, the selection of the desired entities. Also, nodes in graph database are more complex than a simple graph which can encapsulate all the attribute of entities in the same node and give us a simple graph of entities.

The second step is to define a method to transform the graph according to chosen entities. This method has to deal with the identification of entities of interest for a particular user and to reorganize the graph -nodes and relationships -according to this point of view. Then, we applied this approach to extract social network.

Graph extraction

The graph extraction approach is based on two main steps: (1) converting the relational database into graph database and (2) Extracting the heterogeneous graph (with chosen entities) from the graph database.

Converting relational database into hypernode database Having a graph database instead of a relational database will provide a clearer view of existing objects in the initial database. Indeed, all these objects will be presented in the form of nodes, and the relations between them will be outlined thus facilitating the selection of the desired objects of interest in a further step. In addition, nodes in a graph database can encapsulate all the attributes of objects in the same node and give us a simple graph of objects.

Using the comparison between existing graph database models (Table 1), we have chosen to work with the hypernode model [START_REF] Levene | A Graph-Based Data Model and its Ramifications[END_REF] because the hypernode database with its nested graphs can provide an efficient support to represent each real-world object as a separate database entity.

The transformation of a relational database into a graph database includes schema translation and data conversion [START_REF] Maatuk | Relational Database Migration: A Perspective[END_REF]. The schema translation can turn the source schema into the target schema by applying a set of mapping rules. In our work, we propose a translation process which directly transforms the relational schema into a hypernode schema. A data conversion process converts data from the source to the target database based on the translated schema. Data stored as tuples (rows) in the relational database are converted into nodes and edges in the graph database. This involves unloading and restructuring relational data, and then reloading them into a target database in order to populate the schema generated during the translation process. The main advantages of this transformation are [START_REF] Culotta | Extracting social networks and contact information from email and the web[END_REF] to discover underlying graphs of objects from relational databases, taking into account the implicit relations expressed by the means of primary and foreign keys and (2) to model data in a more flexible way (objects can easily be added or removed in a graph). The reader interested by details about this approach can refer to [START_REF] Soussi | Towards Social Network Extraction Using a Graph Database[END_REF]. The resulting hypernode database schema The second one

R b := { r, h s , h d , r ∈ R, h s , h d ∈ H}:
r denotes the name of R, -h s denotes the hypernode source name h d denotes the hypernode destination name

From the relational database tables (Fig. 2), we extract six hypernodes (Fig. 3) : T hesis, Laboratory, T hesis hasStudent, Student, Director thesis and F oreign S tudent.

The table T hesis hasLab is transformed into a relation because it contains only foreign keys. The hypernode Thesis: h i denotes the instance hypernode, -h denotes the hypernode source name, -l i denotes the name of H i , -N i denotes a set of nodes N i := {n|n := l n , t n , val n } where l n is the label of the node, t n is the type, and val n mentions the node value.

T hesis = ("T hesis ′′ , { < T h id,
For example , T hesis 1 is an instance of T hesis and is defined by: of keys on the relational tables. RI is defined by R := {r i |r i := r, h si , h di } where:

T hesis 1 = T hesis, T hesis 1 , { < T h id,
r denotes the relation which is instanciated by r i , -h si denotes the hypernode source instance, -h di denotes the hypernode destination instance, Finally, transformed data are loaded into the hypernode database schema. An excerpt of the hypernode database instance is shown in Fig. 4.

Converting the graph database to a graph containing objects of interest (from a user point of view) The Hypernode database represents the graph of objects. From this graph, we may apply transformation rules according to the user's interest (the set of objects the user would like to see their interaction). The graph containing the objects of interest is defined by: GO = (O I , R O) where:

-O I is a finite set of object such O I = {o I |o I ∈ H}, -R O is a finite set of relations between objects such R O := {r|r := l, o I1 , o I2 , o I1 , o I2 ∈ O I }
where l is the relation name.

Transforming the graph leads to cope with two main problems: objects of interest (named objects in the following) identification and relations extraction and transformation.

Objects identification Object identification is the process used to identify hypernodes that contain the elements of interest for the user (for example Laboratory or Student). These objects will constitute the nodes of the transformed graph according to the user's point of view.

The identified objects have the type chosen by the user, e.g. persons, organization, process, etc.

Many problems occur at this step. First, an object can be described by the mean of different tables in the relational database, and then many hypernodes can represent the same object. Second, the names of the hypernodes are not all the time significant.

Each object has a number of characteristics which help to identify it. In order to identify the chosen objects in the graph database, a domain ontology is used. In fact, ontology contains concepts and relationships that describe a domain.

Then, we use an ontology having the same domain than the initial database. For instance, we use an enterprise ontology if the initial relational database is an enterprise database. This ontology, which describes the objects and their relations, is built semi-automatically by using information collected from domain documents.

The proposed approach is based on three main phases:

-Building minimal enterprise ontology from scratch (manually) using existing enterprise models and pattern, -Learning ontology from web document: Global enterprise ontology is learned from enterprise websites and using the minimal ontology, -Population and enrichment of the generic ontology: more specific enterprise ontology is obtained by enriching the enterprise ontology.

The hypernode set in the hypernode database schema is analyzed, considering ontology concepts, and more specifically concepts related to the objects chosen by the user. If the hypernode contains some characteristics related to the desired object, it will be selected to be one of the objects in the transformed graph.

After identifying the hypernodes that contain objects of interest for the user, from the hypernode schema, we add their hypernodes instances to O I .

Relation construction After the objects identification step, we define relations (edges) between identified entities. The identified objects are instance hypernodes. In the hypernode database, instance hypernodes can share relations. Then, we try to use the existing relations and find hidden ones.

In our process to transform the relational database into a hypernode database [START_REF] Soussi | Towards Social Network Extraction Using a Graph Database[END_REF], we have defined four types of relations: IS-A, Part-of, dependency with known name (using the initial relational tables containing only foreign keys), dependency with unknown name.

Identified objects can be related by these exiting relations. In this step we try to find other hidden relations between these objects.

In order to facilitate this task, we define a set of relation patterns (Table . 2) using the schema of the hypernode database. These patterns are used to create the objects relations. A pattern relation P r is defined by P r = n, o I1 , o I2 , o m such as n is the name of the relation, o I1 and o I2 the entities which share the relation, o m a mediator for this relation (the hypernode used to find the new relation).

Indeed, these patterns will be used to find relations between the identified objects: existing relations objects already share in the hypernode database and new relations (build using key value and mediator objects). A mediator is an object facilitating the communication between two other objects (acting as a router). After having identified relations and objects (of interest), we build the transformed graph corresponding to chosen objects. In the next section, we present a use case experimentation corresponding to a social network perspective extracted from an actual relational database.

Social network extraction using graph transformation

In this section, we present an experiment to transform a graph extracted from a relational database into another one according to a social network perspective. A social network can be represented as a graph [START_REF] Xu | Using Social Networks to Organize Researcher Community[END_REF], where the nodes represent people and the edges represent relationships among people, such as values, visions, idea, financial exchange, friends, kinship, conflict, trade, web links, airline routes, etc.

As a consequence, the resulting structures are often very complex. Choosing the right methods and techniques of information extraction requires having a rich and high quality source of information.

The existing approach of social network extraction uses just web data like: e-mail messages [START_REF] Culotta | Extracting social networks and contact information from email and the web[END_REF], Friend-of-a-Friend (FOAF) documents [START_REF] Mika | Flink: Semantic web technology for the extraction and analysis of social networks[END_REF], and observing face-to face communications [START_REF] Pentland | Socially Aware computation and communication[END_REF].

For example, Flink [START_REF] Mika | Flink: Semantic web technology for the extraction and analysis of social networks[END_REF] uses four different types of knowledge sources: HTML pages, FOAF profiles, public collections of emails and bibliographic data. Flink employs a co-occurrence analysis technique to extract the social network from this data. However, these existing approaches are designed only to extract social network from web data and are not able to use other rich sources like relational databases.

Indeed, in the context of enterprise and business data are principally stored into a database. Enterprise databases contain information about people, objects manipulated in the enterprise and the associated processes. The objective is to highlight all this information and the relationships between people, objects and processes for a better performance in the enterprise. We have applied our approach to extract an underlying social network from a relational database. In this section, we describe this process using the Hypernode database depicted in Fig. 3 and Fig. 4.

Person identification

The chosen objects in this case are the hypernode representing persons. Then, in this step, we describe the process to identify people. The hypernode database schema is used to extract candidate hypernodes (those which may represent persons). Then, the instances are used to deeply analyze the candidates and detect those containing people.

Hypernodes candidates detection. A person has a number of characteristics like name, surname, birthday, address, email, etc. Some of these characteristics are used when designing databases containing persons. Based on characteristics from various ontologies such FOAF ontology and person ontology (schemaWeb), we have manually designed a person ontology (PO) containing all these characteristics and their synonyms (collected from WordNet). Figure 5 shows an excerpt of this ontology. Using the person ontology, the set of nodes related to each hypernode in the hypernode database is analyzed. Candidate hypernodes Analysis. Each candidate hypernode has a set of instance hypernodes h i . In order to analyze the name found in each instance (we take just the 10 first instances), the name is sent to a web search engine. The top 10 returned documents are downloaded and form the set D i of the considered instance, and this set is parsed using DOM 4 . Each document in D i is analyzed using the NER tool (Named Entity Recognition) developed in Stanford 5 and which is able to put three kinds of tags (Person, Location or Organization). We give for each document d, a weight w d . If the name is tagged in the document by Person, the document is weighted by w d = 1, otherwise w d = 0. The mean assigned to the name found in the hypernode instance h i (h i) counts how many times it is considered as a person name in the documents (where the tag of this name is Person):

h i = d∈Di w d |D i | (1)
The mean assigned to the hypernode (H) calculates the mean where the names found in its instances are considered as a person name:

H = hi h i |{h i }| (2)
NER has a precision around 90% for finding Person entities; so, a hypernode is considered as representative of a person if more than 60% of its instances contain a person name (we take only 60% as a threshold due to problems such as wrongly written names, use of abbreviations, etc. which lower the precision of NER).

Relation construction From the previous step, the entities identification process identifies the Hypernodes "Student "and "Director thesis" as person entities. Then, all their instance hypernodes are added to the entities set.

The relation construction process is then performed using the identified entities. We start by identifying the relation R 1 in order to search hidden entities.

In our example, the process identifies "Foreign-Student" as an entity due the relation R 1 =< ′′ IS -A ′′ , F oreign -Student, Student >.

We will detail the identified relation in what follows using the set of pattern described in Table . 2.

From the relation R h1 :=< " ′′ , Director thesis, Student >, we identify two patterns (Table 3): From the relation R h2 :=< ′′′′ , Director thesis, Laboratory >, we identify one pattern (Table 4): Laboratory is not an entity (of interest) then its instances are not included in the final graph:

-P r 1 :< " ′′ ,
-P r 3 :=< Same Laboratory, Director thesis i , Director thesis j , Laboratory >: using the value of the foreign key Lab id in each hypernode instance of the entity Director thesis, we will link those having the same value of Lab id by the relation Same Laboratory.

Relation and identified pattern Example of extracted relations Relation: R h2 :=< ′′′′ , Director thesis, Laboratory > Pattern: P r3 :=< Same Laboratory, Director thesisi, Director thesisj, Laboratory > Laboratory is not connected to other entities Table 4. Relation R h2 Pattern

From the relation R h3 :=< ′′ P art-of ′′ , Student, thesis hasStudent >, we identify one pattern (Table 5) and we add some information:

-T hesis hasStudent shares two relations "Part-of" with Student and T hesis.

We add a new node on the hypernode Student < Thesis, Thesis i >, corresponding to his Thesis. Then, we can apply the pattern P r 4 . -P r 4 :=< Same T hesis, Student i , Student j , T hesis hasStudent >, by this pattern we search all the students which share the same thesis. We did not find such relation which is semantically inexact. From the relation R h4 :=< ′′′′ , T hesis, Director thesis >, there are no identified patterns because T hesis is not related to other entities (Table 6). Considering

Relation and identified Pattern

Example of extracted relation Relation: R h4 :=< ′′′′ , T hesis, Director thesis > Pattern:

-Thesis has no relations with other entities then no pattern detected. -Add the node n :< T hesis, T hesis i > to each instance of Student Table 6. Relation R h4 Pattern the identified patterns and the hypernode database instance (Fig. 4), a first social network is extracted by applying the set of patterns to the instance hypernodes.

In order to obtain a more sophisticated social network, we merge the entities which share a relation "IS-A". For example, we merge the entity "Foreignstudent" with the entity "Student" by adding all the information found in this hypernode to the hypernode "Student". Additionally, if "Foreign-student" has relations with other entities, these relations will be added to "Student". Finally, we obtain the social network depicted in Fig. 6. In the previous steps, we have Fig. 6. The corresponding Social Network extracted a social network from a relational database. However, a relational database can contain hundreds or thousands of tuple then we will obtain a very large social network.

From the resultant social network in Figure Fig. 6, a graph composed with homogeneous hypernodes has been extracted. The type of the selected hypernode is specified by the user (for example Director-Thesis) in order to perform K-SNAP algorithm. Then we will have an aggregated view of this graph which will facilitate its visualization and analysis.

The extracted graph has the hypernode instances of "Director thesis" as vertex and their relations as edges. [START_REF] Girvan | Community structure in social and biological networks[END_REF] Visualizing the social network using the k-SNAP graph aggregation

In the previous section, we were able to extract a social network from a graph database. However, as the actual relational databases contain hundreds or even thousands of records, we obtain as a result, the large social network seen in figure 7. An efficient graph aggregation will be valuable to visualize such graph in highlighting its underlying structure. And even if any classical community detection could be used to aggregate such a graph, do not use the inner values of the extracted nodes would be a wasting of efforts and information. Then we chose to aggregate our graphs with the k-SNAP algorithm because it permits an aggregation on the both kind of information : links and attributes. Let use recall here the basic concepts of graph theory. A graph G is defined as a pair of sets: G = (V, E) , where V is the set of vertices or nodes, and E the set of edges or links which connect vertices. The two vertices connected by an edge are called endpoints of this latter. Conversely, the edges connecting a vertice to the other vertices are called incident edges of the node. A graph can be directed or undirected. In the first case, also called digraph, an edge is denoted as pair (v, w), where v is the origin and w the target, and in the social networks framework it means: "v is in relation with w", the opposite being true if and only if there exists an edge (w, v). If the graph G is undirected, then an edge is denoted as the set of its vertices: {v, w}. Most of the times, vertices are labelled, but it can also be the case for edges, then G is called a labelled graph. Moreover, if exists a function ω : E → R that assigns a weight for each edge, then G is a weighted graph. Two vertices v and u are called neighbors or adjacent, if they are connected by an edge. The set of neighbors of a node v, denoted Γ (v), is called its neighborhood. The topology of the graph can be captured in the adjacency matrix A, where the element a i,j is equal to one when (v i , v j) ∈ E, and zero otherwise.

From here, when we denote a graph by G = (V, E) with V the set of nodes, the set of edges will be E = {E 1 , E 2 ,, E r } the set of edge types, with each E i ⊆ V × V representing the set of edges of a particular type.

And each node of V will be characterized by a set of attributes Λ(G). For a set of attributes A ⊆ Λ(G), a function Φ defined on V which is called Attributes Compatible Grouping or simply A-compatible, if it satisfies the following condition: ∀u, v ∈ V, if Φ(u) = Φ(v) then ∀a i ∈ A, a i (u) = a i (v), it will be simply denoted by Φ A . This function induce a partition {g 1 , g 2 , ...g k } on V where in each group g i , every node has exactly the same values for the set of attributes A.

In fact, The A-compatible Φ A only considers the node attributes. However, nodes do not just have attributes, but also participate in pairwise relationships represented by the edges.

For that, we consider now relationships when grouping nodes. For a grouping, we denote the neighbor-groups of node v in E i as N eighborGroups Φ,Ei (v) = {Φ(u)|(u, v) ∈ E i } which represents the set of groups on the partition associated with Φ where at least one element is connected to v by the relation E i .

Attributes and Relationships Compatible Grouping

For a set of attributes A ⊆ Λ(G) and a set of relations R, a grouping is compatible with the set of attributes A and relationship types R or simply (A, R)-compatible, if Φ satisfies the following conditions:

1. Φ is A-compatible, 2. ∀u, v ∈ V if Φ(u) = Φ(v), then ∀E i ∈ R, N eighborGroups Φ,Ei (u) ≡ N eighborGroups Φ,Ei (v).
In each group of an (A, R)-compatible grouping, all the nodes are homogeneous in terms of both the set of attributes A and the set of relations R. In other words, every node inside a group has exactly the same attributes of A, and is adjacent to nodes in the same set of groups for all the relations in R. Now, we can formally define the graph aggregation algorithm k-SNAP. Note that all calculations will be made from the incidence matrix A t = (a t i,j) 1<i,j<n associated with the relation E i .

k-SNAP Algorithm

First of all, we must mention that k-SNAP has been introduced to improve SNAP by relaxing the homogeneity requirement for the relations, i.e, for all relationships between two groups for example, there is no requirement that all nodes in these two groups are involved, however we want to maximize the ratio of participation while maintaining the homogeneity requirement for the attributes (the grouping remains A-compatible).

For this, we propose the evaluation measure ∆ that allows to determine for each iteration the best group to be split until the size of the grouping is equal to k.

But first, we define N Et the participation matrix of rank |Φ A |(|Φ A | is the cardinal of the partition of V induced by Φ A) corresponding to the relation E t by:

(n t i,j) 1<i,j<|ΦA| = |gi| k=0 (1 - |gj | l=0 (1 -a t kl)) (3)
Then, we define P the matrix of rank |Φ A | which contains the ratios of participation of different groups with respect to the relation E t :

(p t i,j) 1<i,j<|ΦA| = n t ij + n t ji |g i | + |g j | (4)
For a given graph G, a set of attributes A and a set of relations R, the evaluation measure ∆ of a A-compatible grouping Φ A is defined as follows:

∆(Φ A) = 1≤i,j≤|ΦA| Et∈R δ t ij avec δ t ij n t ij if p t ij ≤ 0.5 |g i | -n t ij otherwise (5)
This measure is based on determining the difference in participation of each pair of groups with respect to the relationship E t ,i.e, ∆-measure counts the minimum number of differences in participations of group relationships between the given A-compatible grouping and a hypothetical (A, R)-compatible grouping of the same size. According to equation (5) we have two possible cases:

1. If this group, the relationship is weak (p t i,k ≤ 0.5), then it counts the participation differences between this weak relationship and a non-relationship (p t i,k = 0).

2. On the other hand, if the group relationship is strong (p t i,k > 0.5) , it counts the differences between this strong relationship and a 100% participationratio group relationship (p t i,k = 1).

Finally we define a matrix W Et = (δ t ij) 1≤i,j≤|ΦA| from equation (5), that evaluates the part of the ∆ value contributed by a group g i with one of its neighbors g j in a group relationship of type E t .

Given k the desired number of groups, the k-SNAP operation produces an (A, R)-compatible grouping with the minimum ∆ value, starting from a Acompatible grouping and ∆ initialized to zero, the procedure is to look for each iteration the group to split. For this, we introduce a heuristic that chooses the group that makes the most contribution to ∆ with one of its neighbour groups. More formally, for each group g i , we denote CT (g i) as follows: CT (g i) = max δ t ij . Then, at each iterative step, we always choose the group with the maximum CT value to split, based on whether nodes in this group g i which have relationships with nodes in its neighbour group g t , where: g t = arg max gj {δ t ij } and then split it into two sub-groups according to the following strategy: one of these groups contains all nodes participating in the relationship with the group g t and the other contains the rest, i.e. the nodes that have no relation with the group g t . Now we will apply the algorithm on the graph extracted from the social network of thesis director (Fig. 7). In this experiment, we are interested in analysing subdivision of the HDR group into two subgroups according to the relationship Same Student, because it maximizes the contribution of ∆. This iteration gives rise to two groups: HDR 1 group consists of the HDRs that supervise a student with at least one professor or "co-supervisor".

However, HDR 2 group consists of the HDRs who supervise students that have only as director, HDRs. After the second iteration (Fig. 8.c), the group of professors is divided into two subgroups according to the relationship Same Laboratory (Fig 9); the professor of prof 1 group shares the lab with at least one of the other groups (HDR and co-supervisor), i.e, the laboratory to which they belong has members with various degrees. Even if our aggregation algorithm is rather of a semantic nature (takes into account the contents of the node), it's interesting to apply some of SNA metrics and try to compare its results with our criterion. We have chosen degree centrality as a measure and it distribution within the network is shown in the figure below (We can say that our results are consistent with the centrality measure. However, if two nodes (highlighted and written in italic (Fig 10)) have the same median index of centrality, they may do not belong to the same group because their relationships with others are of different types. In this case, the measure of centrality is not adequate to our criterion; it depends on the nature of the relationship.

By changing the resolutions of summaries, users can better understand the characteristics of the original graph data and also explore the differences and similarities across different iterative steps.

Conclusion

In this paper, we have presented an approach to extract a social network from a relational database, then the aggregation method of the resulted social network using K-SNAP algorithm.

The social network extraction process is an application of the graph extraction approach from a relational database. This process allows having different graphs using as input the same relational database and the type of entities chosen by the user. The extraction approach is based on two steps: (1) translation of a relational database into a graph database, and (2) graph transformation which is realized after a process of objects identification then a graph rearrangement (nodes and relations). We have applied our approach using a real database.

The main interest to use K-SNAP was to show that algorithms designed for being applied on other kind of data sources can be use without any adaptation after applying our method for extracting social networks.

In our future work, we will focus on how to improve the extracting method by the use of an automatically built ontology describing the relations between the entities on the relational database. Then, we will try to define a storage system based on the hypernode model and a graph query language better suited to the social network structure. We will also improve the aggregation method by combining it with conceptual clustering.

Fig. 1 .

 1 Fig. 1. Graph extraction approach.

Fig. 2 .

 2 Fig. 2. Relational database

Fig. 3 .

 3 Fig. 3. Hypernode database schema

Fig. 4 .

 4 Fig. 4. Part of the Hypernode database instance.

Fig. 5 .

 5 Fig. 5. Part of the Person Ontology

 Director thesis, Student, null >: in the database schema, Student and Director thesis share the relation R h1 . Using P r 1 and the value of the foreign key Stid, we search on the instance hypernode database for each Student the corresponding Director thesis. R h1 relates directly Student and Director thesis then we have no mediator (null). -P r 2 :=< Same Student, Director thesis i , Director thesis j , Student >: two thesis director may have the same Student (same value of Stid). Then, we search on the instance hypernode database all the instances of Director thesis which have the same Student (mediator for this pattern) in order to add between them the relation Same Student. Relation and identified pattern Example of extracted relations Relation: R h1 :=< ′′′′ , Director thesis, Student, > Patterns: P r1 :=< ′′′′ , Director thesis, Student, null > P r2 :=< Same Student, Director thesisi, Director thesisj, Student >Table 3. Relation R h1 Pattern

 Relation and identified PatternExample of extracted relation Relation: R h :=< ′′ P art -of ′′ , Student, thesis hasStudent > Pattern:-Thesis hasStudent shares two relations "Partof" with Student an Thesis -Add the node n :< T hesis, T hesis i > to each instance of Student -P r4 :=< Same T hesis, Studenti, Studentj, T hesis hasStudent Table 5. Relation Rh3 Pattern.

Fig. 7 .

 7 Fig. 7. The complete graph

Fig. 8 .

 8 Fig. 8. The A-Compatible Grouping and the 2 first iterations

Fig. 9 .

 9 Fig. 9. Overview of the graph after the second iteration

 Fig 10). According to the subdivision of the HDR group (Fig 8.b), we can notice that nodes belonging to the HDR 1 group have globally a high degree of centrality. This is in accordance with our

Fig. 10 .

 10 Fig. 10. Degree centrality of the graph

Table 1 .

 1 Graph database model comparison

		Entity			Relation	Visualization
		Complex Dynamic Nested Neighborhood	
	Hypernode	+	+	+	+	+
	Groovy	+	+	+	+	-
	GGL	+	+	+	+	-
	GOOD	-	+	-	-	+
	GMOD	-	+	-	-	+
	PaMaL	+	+	-	+	+/-
	GDM	+	+	-	-	+
	LDM	+	+	-	-	-

Table 2 .

 2 -if hs have relations with other entities hj :we link each hj with each h d instance if they are in relation with the same hs. Pattern used to extract relations

	Initial Relation	Pattern	Process and description
	R1	:=		hs or h d instances are added to
	"IS -A", hs, h d		OI
	where hs or h d		
	instances ∈ OI		
	R2 :=	r, hs, h d	Pr1 := r, hs, h d , null	Find all the existing relations
	where hs and h d in-		between hs and h d instances
	stances ∈ OI		then add them to RO
			P r2 :=<Same (h d .name),	Find all the hs instances
			oIi, oIj, hd >	which have relations with a
			where	same h d instances and link
			oIi = his , oIj = his and	them with a new relation
			i! = j	"Same (hd.name)"
	R3 :=	r, hs, h d	P r3 :=<Same (h d .name),	
	where hs instances ∈ OI (finite set of enti-ties) and h d / ∈ OI	oIi, oIj, h -
				ing the name of hj
				-then the pattern P r4 is ap-
				plied: Find all the h d instances
				which have relations with a
				same hj instances and link
				them with a new relation
	R4 :=	r, hs, h d	P r5 :=<Same hs.name,	-add a new node on hs contain-
	where hs / ∈ OI and	oI1, oIj, h d >	ing h d
	h d ∈ OI		where	
			oI1 = h d and oI j ∈	
			{oI |oI has relation with	
			hs}.	

d > where oIi = his , oIj = his, i! = j and r! = "Part-of" Find all the hs instances which have relations with a same h d instances and link them with a new relation P r4 :=<Same hj.name, oI1, oI2, hj > where oI1 = hs , oI2 = hs, r ="Part-of" and hj ∈ {h|h has the relation R h :=< "Part-of", hj, h d >} -Find all the hypernodes hj having a "Part-of" relation with h d such as R :=<"Partof", hj, h d > -add new node to hs contain

http://www.w3.org/DOM/

http://nlp.stanford.edu/ner/index.shtml

Acknowledgments

This work is partially financed by the ARSA project (Social Networks Analysis for Public Administrations) and by the STIC INRIA-Tunisia project "Social network exploration for recommender systems". The Academic chair in Business Intelligence is funded by SAP.