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Abstract. In the enterprise context, People need to visualize different
types of interactions between heterogeneous objects (e.g. product and
site, customers and product, people interaction (social network)...). The
existing approaches focus on social networks extraction using web doc-
ument. However a considerable amount of information is stored in re-
lational databases. Therefore, relational databases can be seen as rich
sources for extracting a social network. The extracted network has in
general a huge size which makes it difficult to analyze and visualize.
An aggregation step is needed in order to have more understandable
graphs. In this chapter, we propose a heterogeneous object graph extrac-
tion approach from a relational database and we present its application
to extract social network. This step is followed by an aggregation step
in order to improve the visualisation and the analyse of the extracted
social network. Then, we aggregate the resulting network using the k-
SNAP algorithm which produces a summarized graph.

Keywords: relational database, graph database, social network analy-
sis, graph extraction and aggregation

1 Introduction

The data manipulated in an enterprise context are structured data as well as
unstructured data such as e-mails, documents, etc. Graphs are a natural way
of representing and modeling such data in a unified manner (structured semi-
structured and unstructured ones). The main advantage of such structure relies
on (or resides in) its dynamic aspect and its capability to represent relations,
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even multiple ones, between objects. It also facilitates data query using graph
operations. Explicit graphs and graph operations allow a user to express a query
at a very high level of abstraction.

People need to visualize different types of interactions between heterogeneous
objects (e.g. product and site, customers and product, people interaction like
social networks, etc.).

In order to analyze these interactions and facilitate their querying using graph
query languages and social network analysis methods, it is relevant to modulate
such interaction by using a graph structure.

Indeed, these different graphs can help enterprises sending product recom-
mendations (using the graph of Products and client), finding experts (using
social network), etc.

Nevertheless, in a business context, important expertise information is stored
in files, databases and especially relational databases. Relational database per-
vades almost all businesses. Many kinds of data, from e-mails and contact in-
formation to financial data and sales records, are stored in databases. Also,
databases used in business contain information about all people, objects and
processes related to the enterprise. This data source is a rich one to extract
object interaction.

However, a relational database is not the most suited data structure to store
the ”graph-like” information about a social network. By nature, a graph database
is more preferable, because its structure is close to the structure of a social
network.

Then, this chapter presents a new approach of social network extraction
from relational database which allows discovering hidden relationships between
entities. This approach has been generalized to extract different kind of heteroge-
neous objects graphs: such graph contains several kinds of relations and objects.
Each object owns a set of characteristics which can be different from object to
another. In order to facilitate the visualization and data interpretation, it seems
interesting to aggregate the extracted graphs. This aggregation should use not
only the relations between nodes but also the characteristics of each one and
very few algorithms do that. In this context, we use the aggregation algorithm
K-SNAP.

Then, the structure of this chapter is the following. First, we propose in
section 2, as a pre-treatment, to migrate the social network information stored
in a classical relational database towards a graph database model . Starting
from this new representation of the social network information contained in the
original databases, we extract the social network structure, but it would be a pity
to lose a lot of information using the classical graph representation of a social
network. Indeed, in the graph theory used to model such networks, all nodes are
of the same type, and all relationships are of the same kind. But, in real life,
all people in a social network do not play the same role, and all relationships
dot not necessary share the same type. In other words, we are not all friends,
or only friends, with our neighbors or colleagues. The enterprise framework is
a perfect example for this: accountants do not have the same relationship with
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their accountant colleagues, with the salesmen, with the workers and, finally with
their manager. And all these people play, of course, different roles in the business
of their enterprise. That is why we propose in section 3 to use heterogeneous
graphs to model and extract such complex social networks, by working directly
on the resulting graph database. The extraction of the social network is made
using graph transformations. In a last step, we propose a visualization process
because the ”raw data” of a network can have, in general, a huge size which
makes its difficult to analyze and visualize. In order to ease the latter tasks we
propose to use an aggregation process in section 4. After a study of the existing
graph aggregation methods, we propose to use an existing technique which takes
into account the heterogeneity of our networks. A global view of our all-in-one
solution is given in Figure 1. Finally, we conclude and give some perspectives to
this work.

Fig. 1. Graph extraction approach.

2 Graph database Models and Graph Aggregation

Algorithm

2.1 Graph database Models

A graph database is defined [13] as a “database where the data structures for
the schema and/or instances are modeled as a (labeled) (directed) graph, or
generalizations of the graph data structure, where data manipulation is expressed
by graph-oriented operations and type constructors, and has integrity constraints
appropriate for the graph structure. There is a variety of models for a graph
database (for more details see [13]). All these models have their formal foundation
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as variations of the basic mathematical definition of a graph. The structure, used
for modeling entities and relations, influences the way that data is queried and
visualized. In this section, we compare existing models in order to find the one
most suitable one for storing and representing a social network. We will focus
on the representation of entities and relations in these models. In the following,
we present some models classified according to the data structure used to model
entities and relations.

Models based on simple node Data are represented in these models by a
(directed or undirected) graph with simple nodes and edges. Most of these models
(GOOD [14]), GMOD [15], etc.) represent both schema and instance database
as a labeled directed graph. Moreover, LDM [16] represents the graph schema as
a directed graph where leaves represent data and whose internal nodes represent
connections between the data. LDM instances consist of two-column tables, one
for each node of the schema. Entities in these model are represented by nodes
labeled with type name and also with type value or object identifier (in the
case of instance graph). Some models have nodes for explicit representation of
tuples and sets (PaMaL[17], GDM [18]), and n-ary relations (GDM). Relations
(attributes, relations between entities) are generally represented in these models
by means of labeled edges. LDM and PaMaL use tuple nodes to describe a
set of attributes which are used to define an entity. GOOD defines edges to
distinguish between mono-valued (functional edge) and multi-valued attributes
(nonfunctional edge). Nevertheless, these models do not allow the presentation
of nested relations and are not very well suited for complex objects modeling.

Models based on complex node. In these models, the basic structure of a
graph (node and edge) and the presentation of entities and relations are based on
hypernodes (and hypergraphs). Indeed, a hypernode is a directed graph in which
nodes themselves can be graphs (or hypernodes). Hypernodes can be used to
represent simple (flat) and complex objects (hierarchical, composite, and cyclic)
as well as mappings and records. A hypergraph is a generalized notion of graph
where the notion of edge is extended to hyperedge, which relates to an arbitrary
set of nodes. The Hypernode Model [19] and GGL[20] emphasize the use of
hypernodes for representing nested complex objects. GROOVY [21] is focused on
the use of hypergraphs. The hypernode model is characterized by using nested
graphs at the schema and instance levels. GGL introduces, in addition to its
support for hypernodes (called Master-nodes), the notion of Master-edge for
the encapsulation of paths. It uses hypernodes as an abstraction mechanism
consisting in packaging other graphs as an encapsulated vertex, whereas, the
Hypernode model additionally uses hypernodes to represent other abstractions
like complex objects and relations. Most models have explicit labels on edges. In
the hypernode model and GROOVY, labeling can be obtained by encapsulating
edges, that represent the same relation, within one hypernode (or hyperedge)
labeled with the relation name.
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Discussion The purpose of this review of graph database models is to find the
most suited one to model many complex data objects and their relationships,
such as social networks. Social Network is an explicit representation of relation-
ships between people, groups, organizations, computers or other entities [22]. As
other networks, it can be represented as a complex graph [23].

Indeed, the social network structure can contain one or more types of rela-
tions, one or more types or levels of entities and many attributes over the entities.
This structure is dynamic due to growth of the volume, change of attributes and
relations.

Then, we compare the previous graph database models using some charac-
teristics related to social network: the ability to present dynamic and complex
objects, nested and neighborhood relations and the ability to give a good visu-
alization of social network. We resume the comparison on Table 1 where “+”
indicates the graph model support, “-” indicates that the graph model does not
support and “+/-” partial support. From this comparison, we have concluded
that models based on hypernodes can be very appropriate to represent complex
and dynamic objects. In particular, the hypernode model with its nested graphs
can provide an efficient support to represent every real-world object as a separate
database entity. Moreover, models based on a simple graph are unsuitable for
complex networks where entities have many attributes and multiple relations.

Entity Relation Visualization
Complex Dynamic Nested Neighborhood

Hypernode + + + + +
Groovy + + + + -
GGL + + + + -
GOOD - + - - +
GMOD - + - - +
PaMaL + + - + +/-
GDM + + - - +
LDM + + - - -

Table 1. Graph database model comparison

2.2 Graph Aggregation Algorithms

When graphs of extracted social networks are large, effective graph aggregation
and visualization methods are helpful for the user to understand the underlying
information and structure. Graph aggregations produce small and understand-
able summaries and can highlights communities in the network, which greatly
facilitates the interpretation.

The automatic detection of communities in a social network, can provide
this kind of graph aggregation. The community detection is a clustering task,
where a community is a cluster of nodes in a graph [4] [31], such the nodes of
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the cluster must be more connected with inside nodes, than with nodes outside
of the cluster (see found [5] and [6] for extended reviews).

The first class of clustering algorithms are the partitional algorithms, which
try to find a partition of a set of data, with a given number of clusters, using
jointly, most of the times, similarity or a dissimilarity measures and a quality
criterion of the found partition. The most popular partitional algorithm (with
several variants), the k-means clustering [7], tries to find a partition of the set
of objects which minimizes the sum-of-square criterion which adds the dissimi-
larities from each object to the centre of its own cluster. Several (di)similarity
measures can be defined in the social network context, like those based on the
Jaccard index, which measures similarity between the sets of neighbours of the
two nodes, but other measures can be defined ([5] and [6]).

Hierarchical clustering algorithms try to organize data into a hierarchical
structure, and are divided into agglomerative and divisive algorithms, depend-
ing on whether the partition is coarsened, or refined, at each iteration. The basic
idea beyond agglomerative algorithms is simple: at the starting point, the ob-
jects to cluster are their own classes, and then at each stage we merge the two
more similar clusters. Of course a dissimilarity measure between two clusters
is mandatory, and for a given dissimilarity measure d between objects, several
cluster-dissimilarities exist. The result of the clustering process is a dendrogram,
which can be cut to give one single partition. Divisive clustering algorithms,

split the dataset iteratively or recursively into smaller and smaller clusters, with
respect to a quality criterion. The most popular method for divisive hierarchical
clustering of social networks uses the notion of edge betweenness [8], because
finding the connecting edges between communities is also finding these commu-
nities. The algorithm given in [4] splits the network into clusters by removing,
step after step, the edge with the higher betweenness value. The use of a stopping
criterion which measures the improvement at each step should permit to stop
when no improvement is gained with an iteration. In most cases the modularity

[9] is used. SuperGraph [28] employs hierarchical graph partitioning to visualize
large graphs.

Specially designed for graphs, spectral algorithms [10] are based on the no-
tion of connected components. These algorithms work with a Laplacian, matrix
based onthe adjacency (or weight) matrix [11] [12]. If the graph of the social
network contains k , completely disjoints communities (i.e. without any link be-
tween them), called connected components, then the k eigenvectors associated
to the eigenvalue 0 are indicator vectors of the k connected components . If
the clusters of the social network do not contain “clean” connected components
(i.e. if there are links between existing communities), then a simple clustering
on the k eigenvectors associated to the k least eigenvalues, can retrieve the k

communities.

Some other algorithms works on graph aggregation use statistical methods to
study graph characteristics, such as degree distributions [26], hop-plots [27] and
clustering coefficients [30]. The results are often useful but difficult to control
and especially to exploit. Methods for mining frequent graph patterns [32] are
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also used to understand the characteristics of large graphs. Washio and Motoda
[26] provide an elegant review on this topic.

However, all the previous algorithms use only on links between nodes of the
graph of the network, and do not take into account the internal values contained
in each node, while classical clustering algorithms applied on tables of values,
work only on these values ignoring completely the possible link between individ-
ual. An algorithm which can take into account both kind of information would be
very valuable. Designed for graphical graph aggregation the k-SNAP algorithm
[29], in its divisive version, begins with a grouping based on attributes of the
nodes, and then tries to divide the existing groups thanks to their neighbours
groups, trying minimizing a loss information measure.

3 Social Network extraction from relational databases

In this section we describe our approach of graph extraction which is based on
two steps. The first step to perform is to transform relational databases into
graph databases according to a graph model.

This transformation allows the extraction of all the entities in the relational
database on the form of nodes and outlines the relations between them which
facilitate, in further steps, the selection of the desired entities. Also, nodes in
graph database are more complex than a simple graph which can encapsulate all
the attribute of entities in the same node and give us a simple graph of entities.

The second step is to define a method to transform the graph according to
chosen entities. This method has to deal with the identification of entities of
interest for a particular user and to reorganize the graph – nodes and relation-
ships – according to this point of view. Then, we applied this approach to extract
social network.

3.1 Graph extraction

The graph extraction approach is based on two main steps: (1) converting the
relational database into graph database and (2) Extracting the heterogeneous
graph (with chosen entities) from the graph database.

Converting relational database into hypernode database Having a graph
database instead of a relational database will provide a clearer view of existing
objects in the initial database. Indeed, all these objects will be presented in the
form of nodes, and the relations between them will be outlined thus facilitating
the selection of the desired objects of interest in a further step. In addition,
nodes in a graph database can encapsulate all the attributes of objects in the
same node and give us a simple graph of objects.

Using the comparison between existing graph database models (Table 1),
we have chosen to work with the hypernode model [19] because the hypernode
database with its nested graphs can provide an efficient support to represent
each real-world object as a separate database entity.
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The transformation of a relational database into a graph database includes
schema translation and data conversion [24]. The schema translation can turn
the source schema into the target schema by applying a set of mapping rules.
In our work, we propose a translation process which directly transforms the
relational schema into a hypernode schema. A data conversion process converts
data from the source to the target database based on the translated schema. Data
stored as tuples (rows) in the relational database are converted into nodes and
edges in the graph database. This involves unloading and restructuring relational
data, and then reloading them into a target database in order to populate the
schema generated during the translation process. The main advantages of this
transformation are (1) to discover underlying graphs of objects from relational
databases, taking into account the implicit relations expressed by the means of
primary and foreign keys and (2) to model data in a more flexible way (objects
can easily be added or removed in a graph). The reader interested by details
about this approach can refer to [25]. The resulting hypernode database schema

Fig. 2. Relational database

(Fig. 3) is composed by two sets Hb and Rb built from the sets of hypernodes
H and relations R. The first set Hb := {(h,Nh), h ∈ H}is defined by:

– h denotes the name of H,

– Nh denotes a set of nodes Nh := {nh|nh := 〈n, t〉} where n is the node name,
t is the type. t is a predefined type (Integer, String,...) or a H element.

The second one Rb := {〈r, hs, hd〉 , r ∈ R, hs, hd ∈ H}:

– r denotes the name of R,

– hs denotes the hypernode source name

– hd denotes the hypernode destination name

From the relational database tables (Fig. 2), we extract six hypernodes (Fig. 3) :
Thesis, Laboratory, Thesis hasStudent, Student,Director thesis and ForeignStudent.
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The table Thesis hasLab is transformed into a relation because it contains only
foreign keys. The hypernode Thesis:

Thesis = (“Thesis′′ , { < Th id, Integer >,

< Th name, String >,

< Topic, String >,

< Dir id >,

< Director thesis >})

has three nodes (Th id, Th name, Topic), with predefined types and one node
Dir − id having Director thesis as type because it is a foreign key exported
from Director thesis hypernode. Thesis has the relation

< “Part of ′′, Thesis, Thesis hasStudent >

with the hypernode Thesis hasStudent. Then, for each hypernode in the hyper-

Fig. 3. Hypernode database schema

node database, a set of instances hypernode HI is extracted from the relational
tuples.

The set of instances hypernode H is defined by H = {hi|hi := 〈h, li, Ni〉}
where:

– hidenotes the instance hypernode,
– h denotes the hypernode source name,
– li denotes the name of Hi,
– Ni denotes a set of nodes Ni := {n|n := 〈ln, tn, valn〉} where ln is the label

of the node, tn is the type, and valn mentions the node value.
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For example , Thesis 1 is an instance of Thesis and is defined by:

Thesis 1 = 〈Thesis, Thesis 1 , { < Th id, Integer, 102 >,

< Th name, String,′′ Logic′′ >,

< Topic, String,′′ Electronic′′ >,

< Dir id,Director thesis,Director thesis 1 >}〉

For each relation in Rb, a set of instance relations R is extracted using the value

Fig. 4. Part of the Hypernode database instance.

of keys on the relational tables. RI is defined by R := {ri|ri := 〈r, hsi , hdi
〉}

where:

– r denotes the relation which is instanciated by ri,
– hsi denotes the hypernode source instance,
– hdi

denotes the hypernode destination instance,

Finally, transformed data are loaded into the hypernode database schema. An
excerpt of the hypernode database instance is shown in Fig. 4.

Converting the graph database to a graph containing objects of in-

terest (from a user point of view) The Hypernode database represents the
graph of objects. From this graph, we may apply transformation rules accord-
ing to the user’s interest (the set of objects the user would like to see their
interaction).

The graph containing the objects of interest is defined by: GO = (OI , RO)
where:



DB2SNA: Extraction and Aggregation of Social Networks from DB 11

– OI is a finite set of object such OI = {oI |oI ∈ H},
– RO is a finite set of relations between objects suchRO := {r|r := 〈l, oI1 , oI2〉, oI1 , oI2 ∈ OI}

where l is the relation name.

Transforming the graph leads to cope with two main problems: objects of
interest (named objects in the following) identification and relations extraction
and transformation.

Objects identification Object identification is the process used to identify
hypernodes that contain the elements of interest for the user (for example Lab-
oratory or Student). These objects will constitute the nodes of the transformed
graph according to the user’s point of view.

The identified objects have the type chosen by the user, e.g. persons, orga-
nization, process, etc.

Many problems occur at this step. First, an object can be described by the
mean of different tables in the relational database, and then many hypernodes
can represent the same object. Second, the names of the hypernodes are not all
the time significant.

Each object has a number of characteristics which help to identify it. In order
to identify the chosen objects in the graph database, a domain ontology is used.
In fact, ontology contains concepts and relationships that describe a domain.

Then, we use an ontology having the same domain than the initial database.
For instance, we use an enterprise ontology if the initial relational database
is an enterprise database. This ontology, which describes the objects and their
relations, is built semi-automatically by using information collected from domain
documents.

The proposed approach is based on three main phases:

– Building minimal enterprise ontology from scratch (manually) using existing
enterprise models and pattern,

– Learning ontology from web document: Global enterprise ontology is learned
from enterprise websites and using the minimal ontology,

– Population and enrichment of the generic ontology: more specific enterprise
ontology is obtained by enriching the enterprise ontology.

The hypernode set in the hypernode database schema is analyzed, considering
ontology concepts, and more specifically concepts related to the objects chosen
by the user. If the hypernode contains some characteristics related to the desired
object, it will be selected to be one of the objects in the transformed graph.

After identifying the hypernodes that contain objects of interest for the user,
from the hypernode schema, we add their hypernodes instances to OI .

Relation construction After the objects identification step, we define relations
(edges) between identified entities. The identified objects are instance hypern-
odes. In the hypernode database, instance hypernodes can share relations. Then,
we try to use the existing relations and find hidden ones.
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In our process to transform the relational database into a hypernode database
[25], we have defined four types of relations: IS-A, Part-of, dependency with

known name (using the initial relational tables containing only foreign keys),
dependency with unknown name.

Identified objects can be related by these exiting relations. In this step we
try to find other hidden relations between these objects.

In order to facilitate this task, we define a set of relation patterns (Table. 2)
using the schema of the hypernode database. These patterns are used to create
the objects relations. A pattern relation Pr is defined by Pr = 〈n, oI1 , oI2 , om〉
such as n is the name of the relation, oI1 and oI2 the entities which share the
relation, om a mediator for this relation (the hypernode used to find the new
relation).

Indeed, these patterns will be used to find relations between the identified ob-
jects: existing relations objects already share in the hypernode database and new
relations (build using key value and mediator objects). A mediator is an object
facilitating the communication between two other objects (acting as a router).
After having identified relations and objects (of interest), we build the trans-
formed graph corresponding to chosen objects. In the next section, we present a
use case experimentation corresponding to a social network perspective extracted
from an actual relational database.

3.2 Social network extraction using graph transformation

In this section, we present an experiment to transform a graph extracted from a
relational database into another one according to a social network perspective.
A social network can be represented as a graph [23], where the nodes represent
people and the edges represent relationships among people, such as values, vi-
sions, idea, financial exchange, friends, kinship, conflict, trade, web links, airline
routes, etc.

As a consequence, the resulting structures are often very complex. Choosing
the right methods and techniques of information extraction requires having a
rich and high quality source of information.

The existing approach of social network extraction uses just web data like:
e-mail messages [1], Friend-of-a-Friend (FOAF) documents [3], and observing
face-to face communications [2].

For example, Flink [3] uses four different types of knowledge sources: HTML
pages, FOAF profiles, public collections of emails and bibliographic data. Flink
employs a co-occurrence analysis technique to extract the social network from
this data. However, these existing approaches are designed only to extract social
network from web data and are not able to use other rich sources like relational
databases.

Indeed, in the context of enterprise and business data are principally stored
into a database. Enterprise databases contain information about people, objects
manipulated in the enterprise and the associated processes. The objective is to
highlight all this information and the relationships between people, objects and
processes for a better performance in the enterprise.
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Initial Relation Pattern Process and description

R1 :=
〈”IS −A”, hs, hd〉
where hs or hd

instances ∈ OI

hs or hd instances are added to
OI

R2 := 〈r, hs, hd〉
where hs and hd in-
stances ∈ OI

Pr1 := 〈r, hs, hd, null〉 Find all the existing relations
between hs and hd instances
then add them to RO

Pr2 :=<Same (hd.name),
oIi, oIj , hd >
where
oIi = his , oIj = his and
i! = j

Find all the hs instances
which have relations with a
same hd instances and link
them with a new relation
“Same (hd.name)”

R3 := 〈r, hs, hd〉
where hs instances ∈
OI (finite set of enti-
ties) and hd /∈ OI

Pr3 :=<Same (hd.name),
oIi, oIj , hd >
where
oIi = his , oIj = his,
i! = j and r! = “Part-of”

Find all the hs instances which
have relations with a same hd

instances and link them with a
new relation

Pr4 :=<Same hj .name,
oI1, oI2, hj >
where
oI1 = hs , oI2 =
hs, r =”Part-of” and
hj ∈ {h|h has the rela-
tion Rh :=< ”Part-of”,
hj , hd >}

-Find all the hypernodes hj

having a “Part-of” relation
with hd such as R :=<”Part-
of”, hj , hd >
- add new node to hs contain-
ing the name of hj

- then the pattern Pr4 is ap-
plied: Find all the hd instances
which have relations with a
same hj instances and link
them with a new relation

R4 := 〈r, hs, hd〉
where hs /∈ OI and
hd ∈ OI

Pr5 :=<Same hs.name,
oI1, oIj , hd >
where
oI1 = hd and oIj ∈
{oI |oI has relation with
hs}.

-add a new node on hs contain-
ing hd

-if hs have relations with other
entities hj :we link each hj with
each hd instance if they are in
relation with the same hs.

Table 2. Pattern used to extract relations
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We have applied our approach to extract an underlying social network from a
relational database. In this section, we describe this process using the Hypernode
database depicted in Fig. 3 and Fig. 4.

Person identification The chosen objects in this case are the hypernode rep-
resenting persons. Then, in this step, we describe the process to identify people.
The hypernode database schema is used to extract candidate hypernodes (those
which may represent persons). Then, the instances are used to deeply analyze
the candidates and detect those containing people.

Hypernodes candidates detection. A person has a number of characteristics
like name, surname, birthday, address, email, etc. Some of these characteristics
are used when designing databases containing persons. Based on characteristics
from various ontologies such FOAF ontology and person ontology (schemaWeb),
we have manually designed a person ontology (PO) containing all these char-
acteristics and their synonyms (collected from WordNet). Figure 5 shows an
excerpt of this ontology. Using the person ontology, the set of nodes related to
each hypernode in the hypernode database is analyzed.

Fig. 5. Part of the Person Ontology

– If the node’s name is one of the PO concepts, the number of characteristics
for this hypernode is incremented.

– If the number of characteristics for the hypernode >= 1 and one of them
contains a name, the hypernode h is a candidate to contain persons.

Candidate hypernodes Analysis. Each candidate hypernode has a set of instance
hypernodes hi. In order to analyze the name found in each instance (we take
just the 10 first instances), the name is sent to a web search engine. The top
10 returned documents are downloaded and form the set Di of the considered
instance, and this set is parsed using DOM4 . Each document in Di is analyzed

4 http://www.w3.org/DOM/
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using the NER tool (Named Entity Recognition) developed in Stanford 5 and
which is able to put three kinds of tags (Person, Location or Organization). We
give for each document d, a weight wd. If the name is tagged in the document
by Person, the document is weighted by wd = 1, otherwise wd = 0. The mean
assigned to the name found in the hypernode instance hi (hi) counts how many
times it is considered as a person name in the documents (where the tag of this
name is Person):

hi =

∑

d∈Di
wd

|Di|
(1)

The mean assigned to the hypernode (H) calculates the mean where the names
found in its instances are considered as a person name:

H =

∑

hi
hi

|{hi}|
(2)

NER has a precision around 90% for finding Person entities; so, a hypernode
is considered as representative of a person if more than 60% of its instances
contain a person name (we take only 60% as a threshold due to problems such
as wrongly written names, use of abbreviations, etc. which lower the precision
of NER).

Relation construction From the previous step, the entities identification pro-
cess identifies the Hypernodes “Student “and “Director thesis” as person enti-
ties. Then, all their instance hypernodes are added to the entities set.

The relation construction process is then performed using the identified en-
tities. We start by identifying the relation R1 in order to search hidden entities.

In our example, the process identifies “Foreign-Student” as an entity due the
relation R1 =<′′ IS −A′′, Foreign− Student, Student >.

We will detail the identified relation in what follows using the set of pattern
described in Table. 2.

From the relation Rh1 :=< “′′, Director thesis, Student >, we identify two
patterns (Table 3):

– Pr1 :< “′′, Director thesis, Student, null >: in the database schema, Student
and Director thesis share the relation Rh1. Using Pr1 and the value of the
foreign key St− id, we search on the instance hypernode database for each
Student the corresponding Director thesis. Rh1 relates directly Student

and Director thesis then we have no mediator (null).
– Pr2 :=< Same Student,Director thesisi, Director thesisj , Student >: two

thesis director may have the same Student (same value of St− id). Then, we
search on the instance hypernode database all the instances ofDirector thesis

which have the same Student (mediator for this pattern) in order to add be-
tween them the relation Same Student.

5 http://nlp.stanford.edu/ner/index.shtml
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Relation and identified pattern Example of extracted relations

Relation:
Rh1 :=<′′′′, Director thesis, Student,>
Patterns:
Pr1 :=<′′′′, Director thesis, Student, null >

Pr2 :=< Same Student, Director thesisi,
Director thesisj , Student >

Table 3. Relation Rh1 Pattern

From the relation Rh2 :=<′′′′, Director thesis, Laboratory >, we identify one
pattern (Table 4): Laboratory is not an entity (of interest) then its instances are
not included in the final graph:

– Pr3 :=< Same Laboratory,Director thesisi, Director thesisj , Laboratory >:
using the value of the foreign key Lab id in each hypernode instance of the
entity Director thesis, we will link those having the same value of Lab id

by the relation Same Laboratory.

Relation and identified pattern Example of extracted relations

Relation:
Rh2 :=<′′′′, Director thesis, Laboratory >
Pattern:
Pr3 :=< Same Laboratory,Director thesisi,
Director thesisj , Laboratory >

Laboratory is not connected to other entities
Table 4. Relation Rh2 Pattern

From the relation Rh3 :=<′′ Part−of ′′, Student, thesis hasStudent >, we iden-
tify one pattern (Table 5) and we add some information:
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– Thesis hasStudent shares two relations “Part-of” with Student and Thesis.
We add a new node on the hypernode Student < Thesis, Thesis i >, corre-
sponding to his Thesis. Then, we can apply the pattern Pr4.

– Pr4 :=< Same Thesis, Studenti, Studentj , Thesis hasStudent >, by this
pattern we search all the students which share the same thesis. We did not
find such relation which is semantically inexact.

Relation and identified Pattern Example of extracted relation

Relation:
Rh :=<′′ Part− of ′′, Student,
thesis hasStudent >
Pattern:
- Thesis hasStudent shares two relations “Part-
of” with Student an Thesis

- Add the node n :< Thesis, Thesis i > to
each instance of Student
- Pr4 :=< Same Thesis, Studenti, Studentj ,
Thesis hasStudent >

Table 5. Relation Rh3 Pattern.

From the relation Rh4 :=<′′′′, Thesis,Director thesis >, there are no identified
patterns because Thesis is not related to other entities (Table 6). Considering

Relation and identified Pattern Example of extracted relation

Relation:
Rh4 :=<′′′′, Thesis,Director thesis >
Pattern:
- Thesis has no relations with other entities
then no pattern detected.
- Add the node n :< Thesis, Thesis i > to
each instance of Student

Table 6. Relation Rh4 Pattern

the identified patterns and the hypernode database instance (Fig.4), a first social
network is extracted by applying the set of patterns to the instance hypernodes.
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In order to obtain a more sophisticated social network, we merge the enti-
ties which share a relation “IS-A”. For example, we merge the entity “Foreign-
student” with the entity “Student” by adding all the information found in this
hypernode to the hypernode “Student”. Additionally, if “Foreign-student” has
relations with other entities, these relations will be added to “Student”. Finally,
we obtain the social network depicted in Fig. 6. In the previous steps, we have

Fig. 6. The corresponding Social Network

extracted a social network from a relational database. However, a relational
database can contain hundreds or thousands of tuple then we will obtain a very
large social network.

From the resultant social network in Figure Fig. 6, a graph composed with
homogeneous hypernodes has been extracted. The type of the selected hypernode
is specified by the user (for example Director-Thesis) in order to perform K-
SNAP algorithm. Then we will have an aggregated view of this graph which will
facilitate its visualization and analysis.

The extracted graph has the hypernode instances of “Director thesis” as
vertex and their relations as edges.

4 Visualizing the social network using the k-SNAP graph

aggregation

In the previous section, we were able to extract a social network from a graph
database. However, as the actual relational databases contain hundreds or even
thousands of records, we obtain as a result, the large social network seen in
figure 7. An efficient graph aggregation will be valuable to visualize such graph
in highlighting its underlying structure. And even if any classical community
detection could be used to aggregate such a graph, do not use the inner values
of the extracted nodes would be a wasting of efforts and information. Then we
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chose to aggregate our graphs with the k-SNAP algorithm because it permits an
aggregation on the both kind of information : links and attributes.

Let use recall here the basic concepts of graph theory. A graph G is defined
as a pair of sets: G = (V,E) , where V is the set of vertices or nodes, and E

the set of edges or links which connect vertices. The two vertices connected by
an edge are called endpoints of this latter. Conversely, the edges connecting a
vertice to the other vertices are called incident edges of the node. A graph can
be directed or undirected. In the first case, also called digraph, an edge is denoted
as pair (v, w), where v is the origin and w the target, and in the social networks
framework it means: “v is in relation with w”, the opposite being true if and
only if there exists an edge (w, v). If the graph G is undirected, then an edge is
denoted as the set of its vertices: {v, w}. Most of the times, vertices are labelled,
but it can also be the case for edges, then G is called a labelled graph. Moreover,
if exists a function ω : E → R that assigns a weight for each edge, then G is a
weighted graph. Two vertices v and u are called neighbors or adjacent, if they are
connected by an edge. The set of neighbors of a node v, denoted Γ (v), is called
its neighborhood. The topology of the graph can be captured in the adjacency

matrixA, where the element ai,j is equal to one when (vi, vj) ∈ E, and zero
otherwise.

From here, when we denote a graph by G = (V,E) with V the set of nodes,
the set of edges will be E = {E1, E2, ....., Er} the set of edge types, with each
Ei ⊆ V × V representing the set of edges of a particular type.

And each node of V will be characterized by a set of attributes Λ(G). For a
set of attributes A ⊆ Λ(G), a function Φ defined on V which is called Attributes

Compatible Grouping or simply A-compatible, if it satisfies the following condi-
tion: ∀u, v ∈ V, ifΦ(u) = Φ(v) then ∀ai ∈ A, ai(u) = ai(v), it will be simply
denoted by ΦA. This function induce a partition {g1, g2, ...gk} on V where in
each group gi, every node has exactly the same values for the set of attributes
A.

In fact, The A-compatible ΦA only considers the node attributes. However,
nodes do not just have attributes, but also participate in pairwise relationships
represented by the edges.

For that, we consider now relationships when grouping nodes. For a grouping,
we denote the neighbor-groups of node v in Ei as NeighborGroupsΦ,Ei

(v) =
{Φ(u)|(u, v) ∈ Ei} which represents the set of groups on the partition associated
with Φ where at least one element is connected to v by the relation Ei.

4.1 Attributes and Relationships Compatible Grouping

For a set of attributes A ⊆ Λ(G) and a set of relations R, a grouping is compatible
with the set of attributes A and relationship types R or simply (A,R)-compatible,
if Φ satisfies the following conditions:

1. Φ is A-compatible,

2. ∀u, v ∈ V if Φ(u) = Φ(v),
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then ∀Ei ∈ R, NeighborGroupsΦ,Ei
(u) ≡ NeighborGroupsΦ,Ei

(v).
In each group of an (A,R)-compatible grouping, all the nodes are homoge-

neous in terms of both the set of attributes A and the set of relations R. In other
words, every node inside a group has exactly the same attributes of A, and is
adjacent to nodes in the same set of groups for all the relations in R.

Now, we can formally define the graph aggregation algorithm k-SNAP. Note
that all calculations will be made from the incidence matrix At = (a

t

i,j)1<i,j<n

associated with the relation Ei.

4.2 k-SNAP Algorithm

First of all, we must mention that k-SNAP has been introduced to improve
SNAP by relaxing the homogeneity requirement for the relations, i.e, for all
relationships between two groups for example, there is no requirement that all
nodes in these two groups are involved, however we want to maximize the ratio of
participation while maintaining the homogeneity requirement for the attributes
(the grouping remains A-compatible).

For this, we propose the evaluation measure ∆ that allows to determine for
each iteration the best group to be split until the size of the grouping is equal
to k.

But first, we define NEt
the participation matrix of rank |ΦA|(|ΦA| is the

cardinal of the partition of V induced by ΦA) corresponding to the relation Et

by:

(n
t

i,j)1<i,j<|ΦA| =

|gi|
∑

k=0

(1−

|gj |
∏

l=0

(1− atkl)) (3)

Then, we define P the matrix of rank |ΦA| which contains the ratios of partici-
pation of different groups with respect to the relation Et:

(p
t

i,j)1<i,j<|ΦA| =
nt
ij + nt

ji

|gi|+ |gj |
(4)

For a given graph G, a set of attributes A and a set of relations R, the evaluation
measure ∆ of a A-compatible grouping ΦA is defined as follows:

∆(ΦA) =
∑

1≤i,j≤|ΦA|

∑

Et∈R

δtij avec δtij

{

nt
ij if ptij ≤ 0.5

|gi| − nt
ij otherwise

(5)

This measure is based on determining the difference in participation of each
pair of groups with respect to the relationship Et ,i.e, ∆-measure counts the
minimum number of differences in participations of group relationships between
the given A-compatible grouping and a hypothetical (A,R)- compatible grouping

of the same size. According to equation (5) we have two possible cases:

1. If this group, the relationship is weak (pti,k ≤ 0.5), then it counts the par-
ticipation differences between this weak relationship and a non-relationship
(pti,k = 0).
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2. On the other hand, if the group relationship is strong (pti,k > 0.5) , it counts
the differences between this strong relationship and a 100% participation-
ratio group relationship (pti,k = 1).

Finally we define a matrix WEt
= (δt

ij
)1≤i,j≤|ΦA| from equation (5), that evalu-

ates the part of the ∆ value contributed by a group gi with one of its neighbors
gj in a group relationship of type Et.

Given k the desired number of groups, the k-SNAP operation produces an
(A,R)-compatible grouping with the minimum ∆ value, starting from a A-

compatible grouping and ∆ initialized to zero, the procedure is to look for each
iteration the group to split. For this, we introduce a heuristic that chooses
the group that makes the most contribution to ∆ with one of its neighbour
groups. More formally, for each group gi, we denote CT (gi) as follows: CT (gi) =
max

{

δtij
}

.
Then, at each iterative step, we always choose the group with the maximum

CT value to split, based on whether nodes in this group gi which have rela-
tionships with nodes in its neighbour group gt, where: gt = argmaxgj{δ

t
ij} and

then split it into two sub-groups according to the following strategy: one of these
groups contains all nodes participating in the relationship with the group gt and
the other contains the rest, i.e. the nodes that have no relation with the group
gt.

Now we will apply the algorithm on the graph extracted from the social net-
work of thesis director (Fig. 7). In this experiment, we are interested in analysing

Fig. 7. The complete graph

how thesis directors in the database interact with each other based on two re-
lations Same Laboratory and Same student. Each node in this graph has one
attribute called grade, a direct visualization highlights our inability to interpret
this graph without further treatment.

In order to explain the process of classification of k-SNAP, we will analyze
the result of this classification on a sample of the real graph.
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At first, k-SNAP generates a summary formed by three groups ( A-Compatible

Grouping) in accordance with the modalities HDR , co-supervisor and prof of
the attribute grade as shown in Fig 8.a. The first iteration (Fig. 8.b) leads to the

Fig. 8. The A-Compatible Grouping and the 2 first iterations

subdivision of the HDR group into two subgroups according to the relationship
Same Student, because it maximizes the contribution of ∆. This iteration gives
rise to two groups: HDR 1 group consists of the HDRs that supervise a student
with at least one professor or “co-supervisor”.

However, HDR 2 group consists of the HDRs who supervise students that
have only as director, HDRs. After the second iteration (Fig.8.c), the group of

Fig. 9. Overview of the graph after the second iteration

professors is divided into two subgroups according to the relationship Same Laboratory

(Fig 9); the professor of prof 1 group shares the lab with at least one of the other
groups (HDR and co-supervisor), i.e, the laboratory to which they belong has
members with various degrees. Even if our aggregation algorithm is rather of a
semantic nature (takes into account the contents of the node), it’s interesting
to apply some of SNA metrics and try to compare its results with our criterion.
We have chosen degree centrality as a measure and it distribution within the
network is shown in the figure below (Fig 10). According to the subdivision of
the HDR group (Fig 8.b), we can notice that nodes belonging to the HDR 1
group have globally a high degree of centrality. This is in accordance with our
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Fig. 10. Degree centrality of the graph

principle of division. In fact, all nodes of HDR 1 group supervises a student
with at least one professor or “co-supervisor” thus, this creates a link which
consequently increases the degree of centrality. It’s the same interpretation for
professors in the second iteration (Fig 8.c).

We can say that our results are consistent with the centrality measure.
However, if two nodes (highlighted and written in italic (Fig 10)) have the

same median index of centrality, they may do not belong to the same group
because their relationships with others are of different types. In this case, the
measure of centrality is not adequate to our criterion; it depends on the nature
of the relationship.

By changing the resolutions of summaries, users can better understand the
characteristics of the original graph data and also explore the differences and
similarities across different iterative steps.

5 Conclusion

In this paper, we have presented an approach to extract a social network from a
relational database, then the aggregation method of the resulted social network
using K-SNAP algorithm.

The social network extraction process is an application of the graph extrac-
tion approach from a relational database. This process allows having different
graphs using as input the same relational database and the type of entities cho-
sen by the user. The extraction approach is based on two steps: (1) translation of
a relational database into a graph database, and (2) graph transformation which
is realized after a process of objects identification then a graph rearrangement
(nodes and relations). We have applied our approach using a real database.

The main interest to use K-SNAP was to show that algorithms designed for
being applied on other kind of data sources can be use without any adaptation
after applying our method for extracting social networks.

In our future work, we will focus on how to improve the extracting method
by the use of an automatically built ontology describing the relations between
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the entities on the relational database. Then, we will try to define a storage
system based on the hypernode model and a graph query language better suited
to the social network structure. We will also improve the aggregation method
by combining it with conceptual clustering.
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