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A new characterisation of exponential stability

Elena Panteley Antonio Lorı́a

Abstract— We present a new characterization of exponential
stability for nonlinear systems in the form of Lyapunov func-
tions which may be upper and lower bounded by monotonic
functions satisfying a growth order relationship rather than
being polynomials of the state’s norm. In particular, one may
allow for Lyapunov functions with arbitrary weakly homoge-
neous bounds.

I. INTRODUCTION

Consider the ordinary differential equation

ẋ = f(t, x) (1)

where f is continuous in t and locally Lipschitz in x
uniformly in t. Let x = 0 be an equilibrium point of the

latter and denote the solutions with initial conditions t◦ ∈ R+

and x◦ ∈ R
n, by x(t, x◦, t◦). We recall that the trivial

solution x = 0 is uniformly exponentially stable if there

exist constants k, λ an r such that

|x◦| < r, t ∈ R+ ⇒ |x(t, x◦, t◦)| ≤ k|x◦|e
−λ(t−t◦) .

(2)

We say that the origin is uniformly globally exponentially

stable if r = ∞.

Exponential stability of nonlinear systems described

by ordinary differential equations dates back at least to

Krasovskii’s work in the late 1950s –cf. [4, Theorem 11.1].

The classical characterisation of uniform global exponential

stability involves a Lyapunov function which satisfies upper

and lower quadratic bounds of |x|. This has been extended

to bounds that are polynomial of any order –cf. [2], [10], [3]:

Theorem 1 Let x = 0 be an equilibrium point for ẋ =
f(t, x), where f is a locally Lipschitz function and D ⊂ Rn

be a domain containing x = 0. Then x = 0 is uniformly

exponentially stable if and only if there exist a continuously

differentiable function V : [0,∞) × D → R+ such that

k1|x|
p ≤ V (t, x) ≤ k2|x|

p, (3a)

∂V

∂t
+

∂V

∂x
f(x) ≤ −k3|x|

p (3b)

for all t ≥ t◦ ≥ 0 and all x ∈ D, where p and ki, i = 1, 2, 3
are positive constants. If the assumptions hold globally, then

x = 0 is uniformly globally exponentially stable.

Equivalent characterizations, in terms of a Lyapunov func-

tions decreasing at sampling times have been reported in the

context of adaptive control. See for instance [6], [3, Theorem

4.5] and [1]. For time-varying differential equations with
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locally Lipschitz right-hand side, the following is essentially

contained in [5]:

[Integral characterization of UGES] For the dynami-

cal system ẋ = f(x, t) with f locally Lipschitz and

supx6=0 |f(x, t)|/|x| < ∞ the origin is uniformly globally

exponentially stable if and only if there exists γ > 0 and

p ≥ 1 such that
∫ ∞

0

|x(t, x◦, t◦)|
pdt ≤ γ|x◦|

p . (4)

In [9] exponential stability is characterized by integral

conditions for systems described by differential inclusions

(convex, upper semi-continuous). Such characterization is

useful to establish UGES from inputoutput interconnection

properties involving, e.g. L2 bounds. In this short note

we give new differential characterisation of exponential

stability equivalent to (3) but which does not rely on explicit
polynomial bounds but functions satisfying a growth-order

relation. Further results are established for weakly homoge-

neous systems.

II. MAIN RESULTS

Consider the system

ẋ = f(t, x), f(t, 0) = 0 (5)

Theorem 2 Let Br := {x ∈ Rn : |x| < r} and suppose that

f(t, ·) is Lipschitz on Br uniformly in t. Let V : R+×Br →
R+ be a continuously differentiable function such that for all

x ∈ Br, all t ≥ t◦ and all t◦ ∈ R+

α1(|x|) ≤ V (t, x) ≤ α2(|x|) (6)

V̇ (t, x) ≤ −µV (t, x), (7)

where µ > 0 is a constant and α1, α2 ∈ K∞ (functions

R+ → R+, strictly increasing, zero at zero and proper).

Then, the origin of (5) is exponentially stable on Br if and

only if there exist constants c > 0, c1 > 0 and c2 ∈ (0, 1)
such that the following inequalities hold for all s ≥ 0:

α−1
1 ◦ α2(s) ≤ cs (8)

α−1
1 ◦ (c1α2(s)) ≤ c2s . (9)

If all the conditions of the theorem are satisfied globally (i.e.if

r = +∞ then the origin is uniformly globally exponentiable.

Proof of Theorem 2

I. Sufficiency.

Following the arguments of the proof of [3, Theorem 3.8]

we can show that, for any given D and any constants ρ > 0
and r > 0 which satisfy Br ⊂ D and ρ < α1(r), all the
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solutions of (5) starting from the set of initial conditions x0 ∈
{

x ∈ Bα−1

2
(ρ)

}

are well defined and moreover x(x0, t) ∈ Br

for all t ≥ 0.

Now, let T = 1−c1

µc1

if c1 < 1 and T = 1 otherwise.

From (7) it follows that V (x(t)) ≤ V (x(τ))e−µ(t−τ) for all

t ≥ τ ≥ 0 hence, V (x(t)) ≤ V (x(τ)) for all τ ∈ [0, t).

Integrating (6) from t to t + T (with T defined above) we

obtain

V (x(t + T )) − V (x(t)) ≤ −µ

∫ t+T

t

V (x(τ))dτ

≤ −µ

∫ t+T

t

V (x(t + T ))dτ

≤ −µTV (x(t + T )) ∀ t ≥ 0,(10)

where in the second step above we used the fact that

V (x(τ)) ≥ V (x(t + T )) for all τ ∈ [t, t + T ]. Hence,

(1+µT )V (x(t+T )) ≤ V (x(t)) for all t ≥ 0. From this we

obtain

V (x(t + T )) ≤
1

1 + µT
V (x(t))

≤ c1V (x(t)) if c1 ≤ 1

V (x(t + T )) ≤
1

1 + µT
V (x(t))

≤ V (x(t)) ≤ c1V (x(t)) if c1 ≥ 1 .(11)

Therefore, V (x(t + T )) ≤ c1V (x(t)) for all t ≥ 0. Using

the bounds (11) and (6) we obtain

α1(|x(t + T )|) ≤ c1α2(|x(t)|) ∀ t ≥ 0 .

Then, from (9) it follows that for all t ≥ 0

|x(t + T )| ≤ c2|x(t)|. (12)

The rest follows the proof guidelines of [3, Theorem 4.5].

For any t ≥ 0 let N = ⌊ t
T ⌋, where ⌊ · ⌋ stands for the lower

integer part. Divide the interval [t − NT, t] into N equal

subintervals then,

|x(t)| ≤ c2|x(t − T )|

≤ c2
2|x(t − 2T )|

...

≤ cN
2 |x(t − NT )|. (13)

Since for all t ≥ 0 we have V (x(t)) ≤ V (x0) therefore,

|x(t)| ≤ α−1
1 α2(|x0|) ∀ t ∈ [0, T ] (14)

consequently, from (8) it follows that |x(t)| ≤ c|x0| for all

t ∈ [0, T ]. Combining the last bound with (13) we obtain

|x(x0, t)| ≤ cN
2 c|x0| ≤ cc

t/T
2 |x0| = c|x0|e

−bT ,

where b = 1
T ln 1

c2

. In case conditions (11)-(9) are satisfied

globally we obtain that the system is UGES.

II. Necessity

Assume that the system (5) is (globally) exponentially

stable for all x ∈ D (x ∈ Rn) i.e., there exist k, γ > 0
such that the trajectories of (5) satisfy

|x(t, x0)| ≤ k|x0|e
−γt ∀ t ≥ 0, x0 ∈ D (x0 ∈ Rn).

Then, from the converse theorem on exponential stability

(see for example [3]) it follows that there exists a Lyapunov

function V : D → R+ ( V : Rn → R+) that satisfies the

inequalities

a1|x|
2 ≤ V (x) ≤ a2|x|

2

dV

dx
f(x) ≤ −a3|x|

2

for some positive constants ai, i = 1, 2, 3.

Hence, the functions αi (i = 1, 2, 3) in (11), (7) are given

by αi(s) = ais
2. Simple calculations show that inequalities

(8), (9) are satisfied. Indeed, α−1
1 (s) =

(

s
a1

)1/2

therefore,

for arbitrary c > 0 we have

α−1
1 (c2α2(s)) =

(

cα2(s)

a1

)1/2

=

(

ca2s
2

a1

)1/2

=

√

ca2

a1
s .

From this it follows trivially that (8) is satisfied with c =
√

a2/a1 and (9) is satisfied for arbitrary c2 ∈ (0, 1) with

c1 =
a1c2

2

a2

. �

Remark 1

• If all conditions of the theorem 2 are satisfied except

(8), then proceeding as before we obtain from (13) and

(14) that

|x(t, x0)| ≤ α(|x0|)e
−bt

• The first part of the statement i.e., without requiring (8),

(9) is equivalent to UGAS –cf. [8], [7].

III. EXPONENTIAL STABILITY FROM WEAKLY

HOMOGENEOUS BOUNDS

Definition 1 A real function f : Rn → R is said to be

homogeneous of order k if for any constant α ≥ 0 the

following inequality holds:

f(αx) = αkf(x).

Classical conditions imposed on the bounds of V (x) and

its derivative to insure exponential stability are formulated

in terms of powers of x which are evidently homogeneous

functions. In this section we show that this classical result

can be extended to the class of systems with weakly homo-

geneous bounds on V (x) and its derivative.

Our second theorem is stated in terms of Lyapunov func-

tions satisfying weakly homogeneous bounds. We recall that

real function f : R+ → R+ is weakly homogeneous if for

some function L ∈ K∞ one has

f(λx) ≤ L(λ)f(x) (15)

for all λ > 0.
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Theorem 3 The origin of ẋ = f(x) is a uniformly ex-

ponentially stable equilibrium if and only if there exists

continuously differentiable function V : Br → R+, a weakly

homogeneous function α ∈ K∞ such that for all x ∈ D and

all t ≥ 0

a1α(|x|) ≤ V (x) ≤ a2α(|x|) (16)

V̇ (x) ≤ −a3V, (17)

for some positive constants a1, a2, a3. If all the conditions

of the theorem are satisfied globally (with r = +∞) then the

system (5) is uniformly globaly exponentially stable.

We wrap up this note with an example for which uniform

global exponential stability is difficult to conclude from

Theorem 1 yet, it may be concluded from our main results.

Example. Consider the system

ẋ1 = −x1 +
x2g(x)

1 + x2
1

ẋ2 = −x2 +
x1g(x)

1 + x2
2

where g is any locally Lipschitz function. It is easy to show

that the origin is uniformly globally exponentially stable by

invoking Theorem 3 and using the Lyapunov function

V (x) =
1

2
(x4

1 + x4
2) + x2

1 + x2
2 .

Indeed the total time derivative of V yields V̇ ≤ −2V . Note

that this function does not have lower nor upper polynomial

bounds however, the function α1(s) := 1
2V (s) is of the same

growth order as α2(s) := 2V (s). ⋄

Proof. I. Sufficiency.

From theorem 2 it follows that we need only to verify

that conditions (8) and (9) are satisfied. To simplify the

calculations let us take a1 = 1 (what can be always done

just by choosing e.g. Vnew(x) = V (x)/a1). Since α(s) is

a weakly homogeneous function, then there exists l ∈ K∞

such that α(λs) ≥ l(λ)α(s) for all λ > 0. Then, for any

c1 > 0, defining k = l−1(c1a2) we have

α−1(c1a2α(s)) ≤ α−1 (l(k)α(s)) ≤ α−1 (α(ks)) = ks
(18)

Inequality (18) is valid for any c1 > 0, therefore it is valid

for c1 = 1, hence (8) is satisfied. Moreover, we can always

choose c1 so that k = l−1(c1a2) < 1, so that (9) is satisfied

as well. Therefore all the conditions of the theorem 2 are

satisfied and therefore the system (5) is exponentially stable.

II. Necessity

The “only if” part of the proof follows directly the steps

of the proof of Theorem 2. �

IV. CONCLUSIONS

We have presented a new Lyapunov-like characterization

of exponential stability for ordinary differential equations.

Such characterization covers naturally sufficient and neces-

sary conditions for particular cases such as K-exponential

stability and for homogeneous systems.
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