
HAL Id: hal-00831716
https://centralesupelec.hal.science/hal-00831716v1

Submitted on 7 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting your next OLAP query based on recent
analytical sessions

Marie-Aude Aufaure, Nicolas Kuchmann Beauger, Patrick Marcel, Stefano
Rizzi, Yves Vanrompay

To cite this version:
Marie-Aude Aufaure, Nicolas Kuchmann Beauger, Patrick Marcel, Stefano Rizzi, Yves Vanrompay.
Predicting your next OLAP query based on recent analytical sessions. 15th International conference
on data warehousing and knowledge discovery (DaWaK 2013), Aug 2013, Prague, Czech Republic. 12
p., �10.1007/978-3-642-40131-2_12�. �hal-00831716�

https://centralesupelec.hal.science/hal-00831716v1
https://hal.archives-ouvertes.fr

Predicting your next OLAP query
based on recent analytical sessions

Marie-Aude Aufaure1, Nicolas Kuchmann-Beauger1, Patrick Marcel2, Stefano
Rizzi3, and Yves Vanrompay1

1 MAS Laboratory, École Centrale Paris, France
2 Université Franois Rabelais de Tours, France

3 DISI, University of Bologna, Italy

Abstract. In Business Intelligence systems, users interact with data
warehouses by formulating OLAP queries aimed at exploring multidi-
mensional data cubes. Being able to predict the most likely next queries
would provide a way to recommend interesting queries to users on the one
hand, and could improve the efficiency of OLAP sessions on the other. In
particular, query recommendation would proactively guide users in data
exploration and improve the quality of their interactive experience. In
this paper, we propose a framework to predict the most likely next query
and recommend this to the user. Our framework relies on a probabilistic
user behavior model built by analyzing previous OLAP sessions and ex-
ploiting a query similarity metric. To gain insight in the recommendation
precision and on what parameters it depends, we evaluate our approach
using different quality assessments.

Keywords: OLAP, Query recommendation, User modeling

1 Introduction

Online Analytical Processing (OLAP) systems allow users to explore and an-
alyze large volumes of data by formulating queries on multidimensional cubes.
Despite the flexibility, usability, and efficiency of modern OLAP systems, the
huge number of possible aggregations and selections that can be operated on
multidimensional data may make the user experience disorientating and frus-
trating, so that users may need a long time to achieve their analysis goals.

The approach we propose in this paper to tackle this problem is based on
a prediction of the most likely queries the user will submit next. We start by
observing that OLAP workloads tend to show different patterns depending on
the specific analytical tasks the user is performing. Our goal is to learn these
patterns and represent them in a probabilistic model of the user’s behavior; to
this end, we analyze the query logs of a user, we cluster queries using a similarity
metric, and we derive a Markov-based model of the user behavior. Using this
model, we are able to predict the most likely queries the user will formulate next
given the current query.

Our approach takes a step towards improving the quality of the user experi-
ence with OLAP systems in different ways:

– First, given the current query in the OLAP session, a set of most probable
next queries can be proactively recommended to the user to guide her in ana-
lyzing the data and prevent her from “getting lost” among multidimensional
data.

– Secondly, query recommendation could allow the average length of OLAP
sessions to be reduced because users are driven towards their analysis goal
and can reach them in less steps. Indeed, if a user is given a choice between
different future queries, she might be able to skip some steps and more
quickly arrive at the expected results.

– Thirdly, the OLAP cache manager can exploit the predicted queries for esti-
mating the benefits of a cached object for future queries. Using predictions,
the cache manager can also prefetch objects that are likely to be of interest
for future queries, which results in a reduction in latency time perceived by
the user.

The rest of the paper is organized as follows. Section 2 gives an overview
of related work in OLAP query prediction and recommendation. Section 3 de-
scribes formally the query model we incorporate in our approach. Then, Section 4
presents the different steps for recommendation, i.e., query clustering and query
prediction based on a user behavior model, together with the query similarity
metric we adopt. In Section 5 we experimentally evaluate our approach, while
in Section 6 we conclude and give directions for future research.

2 Related Work

Recommending items of interest and queries has been intensively researched in
the domains of Information Retrieval [1] and search engines [2]. Recently, in the
database community, there has been an increasing interest in leveraging past
queries or query answers to assist interactive relational database exploration [3–
10]. The approaches proposed include past query browsing and/or searching [7,
9], query completion [6] and query recommendation [5, 8, 10]. Noticeably, auto-
matic query recommendation approaches either rely on the query answer and
database instance, which may lead to efficiency problem, or treat sessions as sets
of queries, overlooking the intrinsic sequential nature of the exploratory process.
A framework for recommending OLAP queries has been presented in [11], whose
authors group queries according to a finer similarity measure and then recom-
mend queries by matching logged sessions to the current session. To the best
of our knowledge, Promise is the first system applying predictive caching to
multidimensional queries aimed at reducing the execution time of OLAP queries
within a session [12]. Promise integrates a Markov model [13] where each state
corresponds to a discrete point of the timescale (i.e., only one state is active at
time t); a transition between two states corresponds to the probability to reach
the next state given the previously visited states. While [11] bases its recommen-
dations on a similarity metric and does not use a probabilistic model, Promise
probabilistically represents next queries, mainly for query prefetching and not
for recommendation. Besides, Promise use a coarse approach to group queries

(grouping by similar group by set, measure set and slicer). Our system tries to
combine both approaches by providing a probabilistic approach using Markov
models where the states are clusters of queries, grouped according to a finer
similarity measure. Prediction models like the one used in Promise predict mul-
tidimensional queries based either on already visited queries (from query logs)
or on resources provided by experts during a conceptual modeling process [12].
Sarawagi’s work [14–16] is a different, somewhat orthogonal approach, in the
sense that the goal is not to model the user’s querying behavior. Instead, users
are led to the “most surprising” unvisited parts of the cube, whatever their past
behavior was.

3 Query Model

We consider in the following a multidimensional schema M =< L,H,M > as
defined in [17], where L is a finite set of levels, H a finite set of hierarchies
(each including a subset of levels), and M a finite set of measures. We work
with a basic form of OLAP query centered on a single multidimensional schema
and characterized by an aggregation and a selection expressed through a con-
junctive predicate. To be independent of the details related to logical design of
multidimensional schemata and to specific query plans, we express queries using
an abstract syntax. An OLAP query on schema M is thus defined as a triple
q =< g, P,Meas > where g is the query group-by set (including one level for
each hierarchy in H), P = {c1, . . . , cn} is a set of Boolean clauses, one for each
hierarchy, whose conjunction defines the selection predicate for the query, and
Meas ⊂ M is the measure set whose values are returned by the query. IPUMS
is a public database storing census microdata for social and economic research
(Minnesota Population Center, 2008). Its CENSUS multidimensional schema
has five hierarchies as shown in figure 1, namely RACE, TIME, SEX, OCCUPA-
TION, and RESIDENCE, and measures AvgIncome, AvgCostGas, AvgCostWtr,
and AvgCostElect.

Fig. 1: Roll-up orders for the hierarchies in the CENSUS schema

Then, a query expressed as “Income per occupations and state in 2013” would
have the following abstract representation:

q =

 < State,AllRaces,Year,Occ,AllSexes >
{TRUERESIDENCE,TRUERACE, (Year = 2013),TRUEOCCUPATION,TRUESEX}

{AvgIncome}

T

The MDX formulation of this query is reported below:

SELECT

NON EMPTY {[Measures].[AvgIncome]} ON COLUMNS,

NON EMPTY Hierarchize(Crossjoin({ [Residence].[State],

[Race].[AllRaces],

[Occupation].[Occ],

[Sex].[AllSexes] }))
DIMENSION PROPERTIES

PARENT UNIQUE NAME ON ROWS

FROM (SELECT {[Time].[Year].&[2013]}
ON COLUMNS FROM [CENSUS])

4 Query Prediction for Recommendation

This section presents our approach for query prediction for recommendation.
First we give an overview of the proposed architecture and we outline the query
similarity metric we adopt, then we explain the clustering and prediction steps
needed for recommendation.

4.1 Architecture

A sketch of the functional architecture we propose is shown in Figure 2. After

Query Processing

Prediction

Clustering
& Learning

Query Log
User Behavior

Model

Query Formulation

Data
Warehouse Recommendation

Fig. 2: Functional architecture for query recommendation

the user has formulated a query, the query processing component is in charge of
processing it and getting the results back from the data warehouse. Each query
issued by the user in a session will also be stored in the query log. Based on
the information available in the query log, the clustering & learning module is
responsible for dynamically determining the user behaviour model (learning step)
from the recognized clusters representing similar queries (clustering). The user’s
behaviour model, learned and updated by the clustering and learning module,
will then be used by the prediction module. Finally, the prediction module,

guided by the user’s current query, is based on the results from the discovery
process previously stored in the past history of user queries. From this data,
the prediction module is able to recommend the next query. From the user’s
behaviour model inferred by the learning module, the prediction module will
determine the user’s most likely future query. In order to recommend queries
to users, we build a behaviour model that predicts the most likely next queries.
The approach consists of 2 steps, the first being the clustering of similar queries
based on a query similarity metric. In the second step we treat these clusters as
states of a Markov chain model and compute the probability of the most likely
next state (i.e. cluster of queries). In the clustering process, similar queries are
grouped into clusters, as a way to reduce the size of the history log and to be
able to recommend similar queries. These clusters are interpreted as states of
a state machine, and the transition probabilities from one state to another are
calculated based on the history. The interpretation of the current OLAP session
as a trajectory of states allows to anticipate most probable future states. In our
approach, this process consists of estimating the probabilities of moving from
one state to other possible future states. The query finally recommended is then
the one that is most similar to the current query and that is a member of the
most likely next state, given the state the current query belongs to. The state
the current query belongs to is the cluster whose members are on average most
similar to the current query, again computed with the query similarity metric.
So the recommended query is the most similar query in the most likely next
state.

4.2 Query Similarity Metric

As shown in the previous section, our approach relies on a metric to compute
the similarity between OLAP queries both for clustering and predicting. To be
used in our context, a similarity metric must meet two requirements:

1. Computational feasibility. Efficiency is required because, during the predic-
tion step, the current query q has to be matched to the closest state in
the Markov model, so the similarity between the current query and all the
states in the model must be computed. On the other hand, multidimensional
databases store huge volumes of data, and as a consequence OLAP queries
can return large result sets. Extensional computation of query similarity
(i.e., made by comparing query results like in [18] and [19]) can thus pose
serious efficiency problems. For this reason we use a metric that computes
query similarity at the intensional level, i.e., by only looking at the query
expressions.

2. Scoring. Since the space of possible queries on a multidimensional schema is
large, there is little probability that two queries are really identical. So, the
metric we adopt should return a score and not a Boolean value like in [20].

In the light of this, we adopt as a metric for computing the similarity between
two queries q and q′ the one defined as σque in [17]:

σque(q, q
′) = α · σsel(q, q′) + β · σmeas(q, q

′) + γ · σgbs(q, q′) (1)

where σsel, σmeas, and σgbs represent respectively the selection, measure and
group-by set similarities as defined in [17], and α, β, γ ∈ [0, 1] are parameters to
be experimentally determined. A priori, the three terms in the equation are not
equally important. Based on a set of tests made with users, in [17] it is argued
that the selection predicate is the most important in determining similarity be-
tween OLAP queries, followed by the group-by set; the least significant term is
the set of measures to be returned.

As an example we take two queries on the CENSUS schema specified as
follows:

q1 =

 < State,RaceGroup,Year,Occ,AllSexes >
{TRUERESIDENCE,TRUERACE, (Year = 2005),TRUEOCCUPATION,TRUESEX}

{AvgCostWtr, AvgCostElect}

T

q2 =

 < State,RaceGroup,Year,Occ,AllSexes >
{TRUERESIDENCE,RaceGroup = Chinese, (Year = 2005),TRUEOCCUPATION,TRUESEX}

{AvgCostWtr, AvgCostElect}

T

For these queries, only differing in selection predicate, σque(q1, q2) = 0.95, taking
for simplicity equal weights for α, β and γ.

4.3 Clustering

The first step of our approach is the clustering of user’s queries. During different
analysis sessions, a user often expresses similar (but not identical) queries; for
instance, she may formulate queries with the same group-by set but on different
slices of data (which means, with different selection predicates). Indeed, as the
query log contains a trace of all queries formulated by each user, it is very
likely that some of them will be similar. The clustering algorithm is inspired by
standard density-based clustering methods, but we define the clustering space
as being build using the similarity metric introduced in the previous section.
The input to this step are the abstract representations of the queries previously
issued by the user, stored in the log. The goal is to determine query clusters
in such a way that the queries in the same cluster are similar (in the sense of
Section 4.2) to each other, and that queries in different clusters are not similar
to each other. We start with randomly selecting a number of queries from the
query logs, which will serve as the seeds for the clusters (Listing 1.1 line 3).
This random selection of queries ensures that the clustering mechanism takes
into account the density of queries over the query space introduced by the query
similarity metric. Then, we assign each query q in the log (Listing 1.1 line 4) to
the cluster whose queries on average have highest similarity with q (Listing 1.1
lines 6-8). To avoid that clusters grow unlimited in size, a cluster split rate is
defined; when a cluster reaches a given number of member queries, the cluster
is split in two (Listing 1.1 line 9).

1 . i n t c l u s t e r s p l i t r a t e = t ;
2 . L i s t<Query> q u e r i e s = r e a d i n (ipums log . txt) ;
3 . L i s t<Cluster> c l u s t e r s = se l e c t r andom seeds (nbOfSeeds) ;
4 . f o r each Query q in q u e r i e s {

5 . f o r each Clus te r c in c l u s t e r s {
6 . compute ave rage s im i l a r i t y (q , c) ; }
7 . C lus te r s e l e c t e d c =
8 . a s s i g n q u e r y t o c l o s e s t c l u s t e r (c l u s t e r s , q) ;
9 . i f (s e l e c t e d c . s i z e ()> t) s e l e c t e d c . s p l i t () ; }

Listing 1.1: Clustering similar queries

4.4 Learning the User Behavior Model

We model the querying behavior of each user in the form of a Markov chain,
where each query cluster (determined as explained in Section 4.3) is a state. The
series of states satisfies the Markov property, i.e., the probability of reaching a
state in the future, given the current and past states, is the same probability as
that given only the current state. This means that past states give no information
about future states. More precisely, if the system is in state x at time n, the
probability that it moves to state y at time n + 1 depends only on the current
state x and not on past states. The transition probability distribution can then
be represented as a matrix P , called a transition matrix, whose (i, j)-th element
is defined as follows:

Pij = Pr(Xn+1 = j|Xn = i)

The initial probability Pr(Xn+1 = j|Xn = i) is 1
m , where m is the number of

states that can follow the current state. In our case, each state corresponds to a
cluster of queries, giving as value for m the initial number of clusters that were
identified in the clustering step.

The probability Pr(Xn+1 = j|Xn = i) could be updated by counting how
often query qj is preceded by query qi and dividing this number by the total
number of queries that were observed as following query qi. This means however
that the past is as important as the present. In the OLAP context, the series
of queries a user performs will typically evolve over time. So, if the log includes
for instance the queries performed by the user during the last six months, it
is reasonable to have more recent queries having relatively more influence on
the user behavior model than older ones. To this end, the transition probability
function should be updated in such a way that recent transitions have more
relevance than older ones, which we do using an exponential smoothing method:

Pij = ρ× xj + (1− ρ)P ′
ij

where P ′
ij represents the old probability and xj ∈ {0, 1} is the value for the choice

taken at query qi with respect to query qj . If xj = 1 then qj was executed after
qi, if xj = 0 it was not. Using this method, the sum of all outgoing probabilities
remains 1, as required for a transition probability matrix. The learning rate
ρ ∈ [0, 1] is a real number that controls how important recent observations
are compared to history. If ρ is high, the present is far more important than
history; in this setting, the system will adapt quickly to the behavior of the user,
which can be necessary in a rapidly changing environment or when the system is

deployed and starts to learn. In a rather static environment, ρ can be set low. In
conclusion, by incorporating the learning rate, we make sure the user behavior
model is dynamic and evolves together with changing habits or preferences of
users.

The algorithm for learning the user behavior model is shown below. Based
on the clusters of queries that were obtained in the clustering step (Listing 1.2
line 1) and on the query log (Listing 1.2 line 2), a transition probability matrix
(Listing 1.2 line 3) is constructed expressing the probability of going from each
cluster to each other cluster. For this, each query qi and qi+1 in the log is
considered (Listing 1.2 line 4). We check to which clusters qi and qi+1 belong to
(Listing 1.2 line 5-6) and update the probabilities in the transition probability
matrix accordingly (Listing 1.2 line 7).

Listing 1.2: Learning the user behavior model

1 . L i s t<Cluster> s t a t e s = g e t q u e r y c l u s t e r s () ;
2 . L i s t<Query> q u e r i e s = r e a d i n (ipums log . txt) ;
3 . f l o a t [] [] t r a n s i t i o n m a t r i x = new f l o a t [n b c l u s t e r s] [n b c l u s t e r s] ;
4 . f o r each Query q (i) and q (i +1) in q u e r i e s {
5 . C lus te r p = a s s i g n q u e r y t o c l u s t e r (q (i) , s t a t e s) ;
6 . C lus te r q = a s s i g n q u e r y t o c l u s t e r (q (i +1) , s t a t e s) ;
7 . update probs (t r a n s i t i o n m a t r i x , p , q) ; }

Once the user behavior model has been constructed, it can be exploited to
recommend a next query to the user. Given the current user query, we identify to
which state (i.e. cluster of queries) in the Markov model this query is closest to
by computing the average similarity between the current query and each state.
This similarity is equal to the average of the similarity between the current user
query and the queries contained in the state. Since the similarity metric we use
computes its value intensionally and not extensionally, this is computationally
feasible. Once we have identified the appropriate state, the Markov model gives
us the most probable next state by looking in the transition probability matrix
for the highest probability on the row corresponding to the matching state. In
this most probable next state, we retrieve the query that is most similar to the
current query, and propose this one as the query predicted for recommendation.
For example, given the current user query is query q2 introduced in section
4.2, we identify the most probable next cluster from the transition probability
matrix. This most likely next cluster turns out to have probability 0.36, which
value gives us good confidence in the correctness of the prediction (as will be
discussed in the next section). In this cluster, we select the query q3 most similar
to q2 for recommendation, which is shown below. Query q3 differs from q2 by
adding the SumCostWtr predicate.

q3 =

 < State,RaceGroup,Year,Occ,AllSexes >
{TRUERESIDENCE,RaceGroup = Chinese, (Year = 2005),TRUEOCCUPATION,TRUESEX}

{AvgCostWtr, AvgCostElect, SumCostWtr}

T

5 Experiments & Evaluation

We evaluated our approach using a synthetic dataset of log traces of MDX
queries, with the goal of answering the following questions: 1) How does the

error rate evolve and is influenced by the cluster split rate (i.e. the average size
of clusters). 2) How much does the error rate improve when using a threshold
for the prediction probability P in considering to recommend.

The synthetic dataset consists of query session logs that were generated con-
sidering a specific policy, using the IPUMS CENSUS multidimensional schema.
In a first step, random queries were generated and grouped together according to
their similarity. This allows for a broad coverage of the space of possibe queries
since there is a distance between the groups. Each group corresponds thus to
one type of session. In a second step, we generate a number of sessions for each
group, queries in the group acting as seeds. For this we select at random a query
A and a query B in a the group, A being the start query of the session and B
being the last query of the session. The shortest OLAP path (series of OLAP
operations) between A and B is calculated and each OLAP operation is trans-
lated into one OLAP query, as such generating the session. While the specific
queries contained in the path from A to B are fixed, variance was introduced in
the order of the queries to obtain more realistic sessions. We used 75% of this
dataset for training purposes to build the user behavior model, and 25% as a
testing set to perform the evaluation.

In order to gain insight in the performance of the query prediction in terms of
correctness, we propose in this section a set of metrics. The evaluation procedure
for our approach consists in requesting a prediction (based on the current query)
and comparing its correctness with the actual next query. By doing this for
a series of queries, we get an overall view of prediction correctness. First, we
compare the predicted and actual query incorporating the similarity measure
σque(q, q

′) defined in section 4, taking for q1 the predicted query qpred, and for
q2 the actual next query qact. Then, we define the probability of correctness P ,
which is the probability of the most likely prediction, i.e. the query which has the
highest probability of being executed next according to the prediction model. In
statistics, this corresponds to the confidence one has in a classification.

The performance of the prediction approach can then be assessed by using
the following metric:

S =
1

n

n∑
t=1

πt

where πt equals σque(q, q
′) at time t. Since the main goal of predicting the next

query is to be able to proactively execute it, we consider that even if the predicted
and actual next query are not exactly the same, largely similar operations will
be performed and facts prefetched. Therefore, we do not choose the give πt a
value of 0 or 1 exclusively, but to allow for an inexact match between queries by
using the value σque(q, q

′). A variant of this metric is the thresholded S, being St,
where only predictions are taken into account that have a probability P above a
threshold (which we fixed at 0.3). Figure 3 shows how S and St evolve according
to the cluster split rate.

In addition we evaluate the recommendation mechanism by using the follow-
ing metrics:

Fig. 3: S and St in function of cluster split rate

– Standard error rate Es: This corresponds to an unweighted error rate being
the proportion of incorrect predictions over all predictions performed.

– Error rate with threshold Et: The same as the standard error rate, taking
into account only the predictions which have a probability of correctness
above a threshold.

– Coverage C: This metric is defined as the proportion of items (i.e. queries)
for which it is possible to do a recommendation. In our case, we consider it
possible to perform a recommendation in case the probability of correctness
of the predicted query is above a threshold.

It should be noted that P , the probability of the prediction, can be used to
take a decision on whether to effectively execute the predicted query proactively
or not. By setting a threshold for P , only queries that are predicted with rather
high confidence can be executed, minimizing the risk of executing a wrong query
and thus wasting resources. The threshold for P is thus useful in deciding on
the quality of an individual concrete prediction. On the other hand, the metric
Et tells something on the general performance in terms of correctness of the
prediction approach.

Experiments (see figure 4) show that for a cluster split rate of 2.5 the error
rate Es is 0.44, which is too high for prefetching purposes but could be considered
for recommendation purposes. However, if we introduce a threshold T of 0.3
on the probability P of the predictions, the error rate drops to 0.12, which is
more acceptable. It should be noted that 26% of predictions were done with a
probability of 0.3 or higher. The value of the treshold T is of great importance
and influences the success of prediction. When setting it too low (e.g. T=0.2),
the error rate increases significantly by 10 to 20%, depending on the number of
clusters. When setting T too high (e.g. 0.4), the number of predictions satisfying
a P above the treshold decreases dramatically. Moreover, the figure shows that
at a cluster split rate of 2.5, Et stabilizes for lower values of the split rate. The
only difference is that when the split rate goes to 2, a more and more lower
proportion of predictions satisfies the threshold T, which means the coverage
goes down, as can be seen in figure 4. For example, at split rate 2.5, 24% of
predictions satisfies T, while at split rate 2.0, this is only 15%. This leads to a
choice of balance between Et and C because the lower Et, the lower also the

ability to do recommendations. Since minimizing Et is most important to avoid
giving erroneous recommendations to the user, and since Et stabilizes at a split
rate of 2.5 while having a coverage of 24%, we identify this point as optimal.

Fig. 4: Es, Et and C in function of cluster split rate

6 Conclusion & future work

In this paper, we proposed an approach to query recommendation that combines
a probabilistic user behavior model with a query similarity metric. Instead of only
relying on the similarity of queries to do a recommendation, the incorporation of
the probability of a predicted query allows to define a threshold to decide on the
trust one can have in the prediction. Introducing the threshold allows to avoid
faulty predictions, improving the quality of experience for the user and avoiding
waste of computational resources, while keeping the coverage at an acceptable
level. Preliminary evaluation of the approach on a synthetic dataset makes us
confident that the recommendation mechanism can provide added value to users
in guiding them through their OLAP sessions. As for future work, our goal is to
perform an evaluation involving real OLAP users, introducing subjective metrics
to gain insight in how appropriate the recommendation is perceived by users.
Also, the Markov-based user behavior model will be extended to include in the
prediction process not only the current user query, but also characteristics of
the whole current OLAP session. For this we intend to explore different kinds of
query similarity metrics for clustering and building the behavior model, as well
as metrics for expressing the similarity of OLAP sessions.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on
Knowl. and Data Eng. 17(6) (2005) 734–749

2. Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query recommendation using query
logs in search engines. In: Proc. EDBT, Heraklion, Greece (2004) 588–596

3. Khoussainova, N., Balazinska, M., Gatterbauer, W., Kwon, Y., Suciu, D.: A Case
for A Collaborative Query Management System. In: CIDR 2009, Fourth Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January
4-7, 2009, Online Proceedings. (2009)

4. Stefanidis, K., Drosou, M., Pitoura, E.: ”You May Also Like” results in relational
databases. In: Proceedings International Workshop on Personalized Access, Profile
Management and Context Awareness: Databases, Lyon, France (2009)

5. Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query recommendations for inter-
active database exploration. In Winslett, M., ed.: SSDBM. Volume 5566 of Lecture
Notes in Computer Science., Springer (2009) 3–18

6. Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: SnipSuggest: Context-
Aware Autocompletion for SQL. PVLDB 4(1) (2010) 22–33

7. Khoussainova, N., Kwon, Y., Liao, W.T., Balazinska, M., Gatterbauer, W., Suciu,
D.: Session-Based Browsing for More Effective Query Reuse. In: Scientific and
Statistical Database Management - 23rd International Conference, SSDBM 2011,
Portland, OR, USA, July 20-22, 2011. Proceedings. (2011) 583–585

8. Drosou, M., Pitoura, E.: Redrive: result-driven database exploration through rec-
ommendations. In Macdonald, C., Ounis, I., Ruthven, I., eds.: CIKM, ACM (2011)
1547–1552

9. Georgia Koutrika, A.S.: Mirror mirror on the wall, which query’s fairest of them all?
In: CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 6-9, 2013, Online Proceedings. (2013)

10. Sellam, T., Kersten, M.: Meet Charles, big data query advisor. In: CIDR 2013,
Sixth Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 6-9, 2013, Online Proceedings. (2013)

11. Giacometti, A., Marcel, P., Negre, E.: A framework for recommending OLAP
queries. In: Proc. DOLAP, Napa Valley, CA (2008) 73–80

12. Sapia, C.: PROMISE: Predicting query behavior to enable predictive caching
strategies for OLAP systems. In: Proc. DaWaK, London, UK (2000) 224–233

13. Howard, R.: Dynamic programming and Markov processes. Technology Press of
Massachusetts Institute of Technology (1960)

14. Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-driven exploration of OLAP
data cubes. In: Proc. EDBT, Valencia, Spain (1998) 168–182

15. Sarawagi, S.: Explaining differences in multidimensional aggregates. In: Proc.
VLDB, Edinburgh, UK (1999) 42–53

16. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proc. VLDB,
Cairo, Egypt (2000) 307–316

17. Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S.: Similarity measures for OLAP
sessions. International Journal of Knowledge and Information Systems (2013) To
appear.

18. Giacometti, A., Marcel, P., Negre, E.: Recommending multidimensional queries.
In: Proc. DaWaK, Linz, Austria (2009) 453–466

19. Drosou, M., Pitoura, E.: ReDRIVE: result-driven database exploration through
recommendations. In: Proc. CIKM, Glasgow, UK (2011) 1547–1552

20. Yang, X., Procopiuc, C., Srivastava, D.: Recommending join queries via query log
analysis. In: Proc. ICDE, Shanghai, China (2009) 964–975

