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Abstract. Many current context-aware systems only react to the cur-
rent situation and context changes as the occur. In order to anticipate
to future situations and exhibit proactive behavior, these systems should
also be aware of their future context. Since predicted context is uncertain
and can be wrong, applications need to be able to assess the quality of the
predicted context information. This allows applications to make a well-
informed decision whether to act on the prediction or not. In this paper,
we present prediction quality metrics to evaluate the probability of future
situations. These metrics are integrated in a structured prediction com-
ponent development methodology, which is illustrated by a health care
application scenario. The metrics and the methodology address the needs
of the developer aiming to build context-aware applications that realize
proactive behavior with regard to past, present and future context.
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1 Introduction

In pervasive scenarios foreseen by ubiquitous computing, context awareness plays
a central role. Context-aware systems are able to adapt themselves to their
environment aiming at optimizing QoS for the user and resource consumption by
taking into account and reasoning with context information. Many systems have
been developed that are aware of the current context. However, these systems
only react to changes in context information as they occur. As such they only
take into account present (and possibly past) context information to act on. In
many situations this is not sufficient since by only looking at the momentarily
information it can already be too late to take appropriate actions and keep
QoS at an acceptable level. Therefore applications should also take into account
future context information. For example, instead of simply detecting a memory
shortage as it occurs, a system should be able to predict the memory shortage
in order to prevent it.

Instead of purely reactive context-aware systems, proactive context-aware
systems are required that use past, present and future context information.
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Future context information is predicted by learning of patterns and relations that
are detected by analyzing the context history. We will argue for the importance
of the integration of domain and prior knowledge to make the prediction process
more efficient and transparent.

Proactive context-aware systems take actions based on predicted context
information. The decision whether to act or not depends heavily on the quality
of the predicted information. Since predictions are naturally uncertain and can
be wrong, well-informed decision making taking into account the quality of the
information is needed. While the cost of acting based on a wrong prediction
can be limited to user annoyance or wasted system resources, more damage can
be caused in the area of safety-critical systems. Therefore we propose a set of
quality of future context (QoFC) metrics which allows the application to form a
view on whether the prediction can be trusted enough to effectively be useable.
As ubiquitous systems should be as unobtrusive for the user as possible, explicit
user feedback should be kept to a minimum in the decision making process.

To support the developer in realizing future context-aware applications, we
integrate the metrics in an overall structured methodology for developing con-
crete prediction components. All together, we aim to provide an efficient and
transparent approach to context prediction. Efficiency is achieved by supporting
the developer with a clear methodology. Transparency means that it is clear for
the application what the quality is of a particular predicted context.

This paper is organized as follows. Section 2 introduces the concept of qual-
ity of future context together with a taxonomy of concrete quality metrics. We
explain how these metrics can be concretely used by context-aware applications.
Section 3 presents a step-by-step prediction component development methodol-
ogy, illustrated by a case study from the health care domain. Section 4 gives
an overview of related work, after which we draw conclusions and discuss future
research directions.

2 Context prediction quality metrics

Practical applications should not rely on context prediction results per se. The
predicted value might be incorrect for several reasons. The given input might
be erroneous or there might be several alternatives for the chosen value. As a
consequence, the prediction results will not be accurate in all cases. Applications
relying on these results should be able to assess the trust they can have that the
prediction is correct. This allows the applications to decide whether they want
to use the result, even if the probability of being incorrect is high.

In the following we define a set of Quality of Future Context (QoFC) metrics
and explain how these metrics can assist an application in making decisions and
take appropriate actions based on the quality of the predicted context informa-
tion. We consider that QoFC is an objective notion when it is provided by a
prediction component to an application. However, when it is effectively used by
a specific application to determine its worth, it becomes subjective.
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Quality of Context (QoC) is any inherent information that describes con-
text information and can be used to determine the worth of the information for
a specific application. This includes information about the provisioning process
the information has undergone (history, age), but not estimations about future
provisioning steps it might run through. [6]

The above QoC definition can equally be applied to QoFC. As such, QoFC
metrics are objective metrics about the quality of the provided future context in-
formation. Applications can prioritize and weigh several QoFC metrics according
to their specific requirements, turning these metrics into subjective ones.

2.1 Quality of Future Context Metrics

We propose a taxonomy of QoFC metrics used to assess the confidence one
can have in the quality of both predictors in general and concrete predicted
context values. As can be seen in Figure 1, QoFC metrics are divided into three
categories.

Quality of Future
Context Metrics

Overall Predictor
Quality Metrics

Individual Prediction
Quality Metrics

Input-dependent Predictor
Quality Metrics

Probability of
correctness

Certainty | |Distance ‘ y

‘ H ponse time

Weighted error

rate
Certainty-weighted
error rate

Error rate with
threshold

Standard error
rate

‘Action cost-weighted
error rate

Fig. 1. Quality of Future Context metrics taxonomy

Individual prediction quality metrics: Individual prediction quality met-
rics assess the confidence an application can have in individual, concrete context
predictions of a predictor. For example, the probability of a predicted location
tells something about the confidence one can have in that individual predic-
tion, but says nothing about the general accuracy of the predictor over a whole
dataset.

— Probability of correctness P: The probability of the most likely prediction,
i.e. the prediction with the highest probability. In statistics, this corresponds
to the confidence one has in a classification.

— Certainty C': This metric does not only take into account the probability of
correctness P, but also m, the number of possible outcomes, i.e. predictions
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_1
with a probability higher than zero. It is defined as follows: ¢ = i 2. For
an extensive evaluation of this metric, we refer to previous work [1].

— Distance metric D: Suppose P, is the probability of the most likely predicted
value, and P, is the probability of the second most likely predicted value.

Then D is the difference between P, and P,: P, — P,.

Overall predictor quality metrics: This second category of QoFC met-
rics, the overall predictor quality metrics, gives information about the overall
accuracy of a given predictor. Several variants of the error rate (i.e. the num-
ber of erroneous predictions relative to the total number of predictions over a
dataset) belong to this category.

Standard error rate E: the number of incorrect predictions relative to the
total number of predictions.

Error rate with threshold FEy;: the number of incorrect predictions relative
to the number of total predictions, taking into account only the predictions
with a probability of correctness above a threshold.

Certainty-weighted error rate E.: This error rate penalizes predictions with
a high associated certainty ¢ and which are wrong compared to those which
have a low certainty c and are wrong by using the certainty values as weights
in the error rate formula.

Action cost-weighted error rate E,.: This error rate penalizes predictions
which are wrong and for which the actions taken based on the prediction
are costly. A 3-dimensional cost matrix is associated with this error rate,
expressing the cost of performing action a instead of the correct action b,
given the future context.

Input-dependent predictor quality metrics: As a third category, we
group quality metrics that can depend on the input needed by the predictor
itself. For example, the freshness of the predicted context value can depend on
the freshness of the data that is provided to the predictor to make its prediction.
Also, the time needed for making a prediction can depend on the time that
sensors need to provide the required information to the predictor, in addition to
the time necessary to calculate the prediction itself.

— Granularity G: Granularity gives an indication on how fine-grained the pre-
dicted value is. E.g. an algorithm can be able to predict a user’s location onto
the street address level or the city level. The granularity of the predicted re-
sult can depend on the capabilities of the prediction algorithm itself, but also
on the granularity of the input value(s) given to the algorithm, and thus on
the kind of sensors that are available.

— Freshness F': Freshness gives an indication of the age of the predicted context
information. The freshness can depend on the properties of the prediction
algorithm, but more critical is the freshness of the context information on
the basis of which the prediction is made. E.g. if all required input to make
a prediction is only available once each hour, this will naturally influence the
freshness of the prediction itself.
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— Response time T,.: This is the time between the predictor receiving a pre-
diction request and the predictor having calculated the predicted context
information together with the relevant QoFC metrics. Response time does
not only depend on the computational complexity of the prediction algo-
rithm, but also on the time needed to get the required context information
to make the prediction.

It should be noted that the individual prediction quality metrics and the
overall predictor quality metrics are only applicable to prediction algorithms
that have a probabilistic outcome. Although a prediction is almost always prob-
abilistic, i.e. a prediction is not absolutely guaranteed to be correct, there exist
forecasting algorithms that do not give a probabilistic result. In that case, it is
not clear in current research what kind of quality metrics that are transparent
and understandable could be applied. However, probabilistic algorithms are the
majority of prediction algorithms that are effectively applied for context predic-
tion in current state-of-the-art, and thus this limitation is not an issue in most
practical applications.

2.2 Use of QoFC Metrics by Applications

The quality metrics can be used by an application needing future context infor-
mation at two points in time:

1. The quality metrics can assist an application in choosing the context pre-
dictor(s) most suited to the application requirements in case several predic-
tors are available that provide the same context information (with different
QoFC).

2. When an application is provided with a concrete predicted value, the associ-
ated QoFC metrics help in deciding whether to use the individual prediction
or not.

1) Choosing the Appropriate Context Predictor When an application
requests a prediction of context information, several predictors can be avail-
able for the application. These predictors can be different algorithms, variants
of the same algorithm (with different parameters) or being deployed on nodes
with different resource characteristics, influencing e.g. response time. The pre-
dictors are all able to predict the same context information, but with different
QoFC metrics. By taking into account the QoFC requirements requested by the
application, a well-informed decision can be made to select one or more partic-
ular predictors which are available and which conform to the application QoFC
requirements.

The QoFC metrics relevant to the decision process of choosing appropriate
predictors are the input-dependent predictor quality metrics and the overall
predictor quality metrics. Granularity, freshness and response time are quality
metrics that act as preconditions on deciding whether the predictor is useful for
the application or not. For example, a time-critical vehicle guidance application
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will need guarantees on a fast response time of a future location predictor. On the
other hand, for an interactive museum visit application, response time is not that
important, but granularity of the provided future location is of significance. Thus,
the input-dependent predictor quality metrics are a first filtering mechanism
for an application in selecting suitable predictors. In a second step the overall
predictor quality metrics are taken into consideration. Since these metrics assess
the overall quality of the predictor in terms of the number of correct predictions
relative to the total number of predictions, they allow to discriminate between
different predictors and to choose the best-performing one(s).

2) Assessing the quality of concrete prediction results The second use
of the proposed QoFC metrics is when the application has to decide whether to
effectively utilize and act on a concrete predicted context value or not. Both the
individual prediction quality metrics and overall predictor quality metrics play
a role in the decision making. The metrics that are considered important for the
application can be combined with developer-defined weights to obtain an overall
confidence value in the predicted result.

For example:

QoFC(pred) = w1.P 4+ we.C 4+ w3.E., wherew; =1, 0 < QoFC(pred) < 1

The choice of the particular QoFC metrics included in the overall QoFC
value and their associated weights depend on the application requirements. It
should be noted that the QoFC metrics on themselves are objective metrics, as
already mentioned. However, when they are effectively used by an application
and/or combined with weights as in the formula above, the metrics become
subjective. The decision whether to use the predicted context information does
not only depend on the QoFC metrics mentioned above, but also on the cost
of the actions performed as a result of the prediction. As such, both the QoFC
metrics and the cost of the actions have to be taken into account and balanced.

The following rule D (adapted from [11]) balances the quality of the predicted
context and the cost associated with deciding to act upon a wrong prediction:

D :IF QoFC(pred) > A AND Cost(actions) < B THEN takeactions

By balancing the quality of the predicted context and the possible cost of
an action, the application can decide whether to effectively use the predicted
context or not.

3 Methodological predictor component development

Reusable context and predictor plug-ins allow developers to separate the future
context-awareness of an application from its functional logic. This section gives
an overview of the steps a developer needs to take to create a predictor plug-
in for the MUSIC context middleware [12]. The methodology consists of the
following steps:

1. Identify the context type that will be predicted.
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2. Identify the (context and domain) information that is required to make the
prediction.

3. Identify context plug-ins for the different context types, take into account
dependencies, and associate relevant domain knowledge to the context plug-
ins.

4. Identify QoFC metrics applicable to the chosen prediction algorithm and

relevant for the domain.

. Implement the context model.

6. Define the XML descriptor of the plug-in and extend/implement the stan-
dard plug-in classes.

ot

In the following, we describe each step in the development methodology, and
apply it to a case study in the health care domain. A more detailed description
of this case can be found in [2]. In hospital environments, nurses are equipped
with a PDA on which they give in patient and other medical data. This data
has to be synchronized as much as possible with a central server. Since there
are only a few areas where (Bluetooth) network connectivity is available, and to
prevent continuous polling for the network in order to save battery power, we
predict the most likely time when the nurse will be at the location with network
availability.

Step 1: Identify the predicted context type

The primary goal of the health care case is to efficiently synchronize pa-
tient data residing on the nurse’s PDA with the central server. Since network
availability is localized, the future context that needs to be predicted and will
be provided by the predictor plug-in is the moment in time at which network
connectivity can be expected to be available.

Step 2: Identify the information that is required to make the pre-
diction

The predicted future context information is further analyzed to identify which
context information is needed to make the prediction. In the health care case, we
need to predict the expected time of network connectivity, which translates into
predicting when the nurse will be at the location where the network is available.
Firstly, the path the nurse follows through the hospital division depends on
what kind of activity she/he is performing (e.g. bringing around food, measuring
essential physical parameters, ...). Secondly, since the nurse follows a probable
path visiting patient after patient (and thus location after location), the current
location is of importance in predicting the series of future locations (including the
location with Bluetooth activity). Thirdly, the time needed to reach the location
with Bluetooth connectivity also depends on the activity, because for example
medical treatment of patients will take longer on average than handing out the
lunch. To summarize there are two relevant context types: current location and
current activity, while the average time needed to perform the activity on a
patient is domain-specific knowledge.

— Current location: the location of the nurse (i.e. the room she/he is in) can
be inferred by placing RFID tags near the patient’s bed or at the room
entrance, which can be detected by an RFID-reader in the nurse’s PDA.
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— Current activity: as mentioned, the activity being performed has an influ-
ence both on the path typically being followed and on the time needed. The
current activity is inferred by checking the kind of data the nurse is entering
in the PDA (e.g. long daily patient treatment or just taking basic physi-
cal parameters like temperature and blood pressure, or gathering lunch or
dinner).

— Time needed for the activity: The average time needed for an activity is
domain knowledge inferred by analyzing a dataset containing typical nurse’s
activities and the durations of these activities.

Additional domain knowledge includes the location of the Bluetooth access point.
The resulting hierarchy of context types is illustrated in Figure 2:

Expected time of
network connectivity

P redictor
A
///// - \\\

e~
Current location Current activity
Lsensor < ;domain

L/ knowledge

Fig. 2. Context type hierarchy for the nurse application scenario

The above Figure also gives information on the dependencies between the
different context plug-ins (sensors, reasoners and predictors) that correspond to
the context types, which is necessary information for step 3 below.

Step 3: Identify context plug-ins for the different context types,
take into account dependencies, and associate relevant domain knowl-
edge to the context plug-ins.

In this step, a context plug-in is defined for each context type identified in
the previous step. For each context plug-in that is identified, an existing imple-
mentation can be reused or a new one can be constructed. In most cases, context
plug-ins for basic context information will be available. On the other hand, since
predictor plug-ins use application-specific domain knowledge, they have to be
implemented for each application. However, a set of predictor skeletons can be
provided that implement popular context prediction algorithms. For example,
part of the prediction process in the health care case is predicting future loca-
tions based on the current location. Predictor skeletons implementing standard
location prediction algorithms like markov chains are provided as libraries to the
developer.

For our case we identified the following context plug-ins:
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— Current location plug-in: a sensor plug-in that reads RFID tags to provide
the current location of the nurse.

— Current activity plug-in: A reasoner plug-in that infers the current activity
based on the nurse’s input of information on the PDA or the time of day.

— Future locations plug-in: a predictor plug-in that, based on the current activ-
ity and the current location, predicts a series of future locations representing
the most likely path the nurse will follow throughout the hospital division
in performing the specific activity.

— FEaxpected time of network connectivity plug-in: a predictor plug-in that pre-
dicts the expected moment of network connectivity by computing the time
duration needed for the nurse to reach the location with Bluetooth activity.
This predictor takes into account the path the nurse follows in performing
her activities, and the average time duration needed to perform the activity
to the individual patients that will be visited before reaching the Bluetooth
range.

Figure 3 shows the dependencies between the different plug-ins which were

identified.
Expected time of
network connectivity
plug-in Pred

Future locations
plug-in Pred

"|Current location Current activity

plug-in  [Sens plug-in  [Reas

Fig. 3. Context plug-ins and dependencies for the nurse application scenario

Since the possibility must exist to check whether the predicted future context
matches with what actually occurs, a dependency must be added between the
predictor plug-in and the context plug-in that provides the current value of the
predicted context type. This is denoted in the figure above by the red dashed
line. For example, to check whether a predicted location is correct, the predictor
needs input from the location sensor plug-in concerning the actual location at the
predicted time. Also in this step, relevant static and dynamic domain knowledge
identified in step 2 needs to be associated with the context plug-ins where the
knowledge is effectively used.

Step 4: Identify relevant QoFC metrics

The QoFC metrics that were proposed in the previous section can be divided
in two sets: those that are relevant for the predictor plug-ins general character-
istics, and those that are relevant for individual concrete context predictions.
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The overall predictor quality metrics and the input-dependent predictor quality
metrics give information on the overall quality of the predictor plug-in. As such,
they are properties of the predictor plug-in and instantiated in the QoFCMeta-
data field of the plug-in. On the other hand, the individual prediction quality
metrics give information on the quality of a concrete prediction. So these metrics
belong to the context object that represents an individual prediction and they
are instantiated in the metadata field of the ContextElement object.

For the expected time of network connectivity plug-in of the hospital use case
the following QoFC metrics are considered relevant:

— Probability of correctness: This metric corresponds with the probability given
by the markov chain of being at the location with Bluetooth connection
within n time steps.

— Standard error rate: This metric gives the frequency of the predictor plug-in
being correct in predicting the time of network connectivity availability.

— Granularity: This quality metric corresponds to the uncertainty of the exact
time of network availability due to the variance in the duration of the activity
currently performed by the nurse. This means the predictor can provide
context information with different granularities which depend on the specific
activity being carried out by the nurse.

Step 5: Implement the context model

Each provided and required context type needs to be modeled as an entity-
scope pair with associated representation and QoFC metadata according to the
MUSIC context model [13]. We illustrate this with the current location context

type:

— Entity: The current location belongs to the user entity: concepts.entities.user—self.

Representation: The location is represented as a String, e.g. room123.

— QoFCMetadata: The only individual prediction quality metric identified as
relevant in step 5 was the probability of correctness, which is represented as
a double in the metadata field ProbCorr.

Step 6: Define the XML descriptor of the plug-in and extend the
standard plug-in classes The provided and required context types must be
defined in the XML descriptor of the plug-in. Additionally, the symbolic name of
the component, the class implementing the component and the provided interface
must be specified to allow OSGi to dynamically activate and deactivate the
predictor plug-in. The activate and deactivate methods are needed to start and
stop the generation of context events and to initialize local variables and data
structures. The contextChanged method handles context events that are received
from other plug-ins. It analyzes the ContextElement encapsulated in the event
to infer higher-level context information. Finally, everything is put in a JAR file
for OSGi bundle packaging.

This section presented a step-by-step methodology that allows the devel-
oper to build context predictor plug-ins in a structured way. While parts of

Scope: The scope is the location of the user: concepts.scopes.environment.location.
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the methodology (e.g. step 6) are tailored to the MUSIC context middleware,
we believe the approach can be applied in general for developing context pre-
diction components in other systems or frameworks. Identification of the rele-
vant context types, quality metrics and the dependencies between the different
components, representing context information in an ontology and incorporating
domain knowledge are universal requirements in developing context prediction
components.

4 Related work

Intensive research has been carried out in the domain of modeling and using
quality of context information. Work by Buchholz et al. [3], Henricksen et al. [4]
and Manzoor et al. [5] defined several quality metrics for context information.
Buchholz et al. [3] argued on the importance of QoC for real-life applications
to make effective use of provided context information. They defined QoC as
any information that describes the quality of information that is used as context
information. Authors presented an initial set of QoC parameters, being precision,
trust-worthiness, probability of correctness, resolution and up-to-dateness. Other
authors like Krause et al. [6], Sheikh et al. [7] and Abid et al. [8] have further
added to these parameters. While the metrics proposed for QoC are also relevant
for predicted context information, they are not sufficient. Due to the prediction
step, additional uncertainty is added to the predicted context value. The metrics
we presented contribute to quantifying this additional uncertainty. Boytsov et
al. [9] mention as a major challenge concerning context prediction that there is
a need for automated decision making which should be based on the quality of
the predicted context. Also, Nurmi et al. [10] acknowledge the need for metrics
in order to evaluate the quality of a context prediction. Prediction algorithms
which have probabilistic outcomes, like the ones evaluated in our research, give
a natural way in assessing their quality.

5 Conclusions

This paper presented some key issues towards achieving future context aware
applications. Our main contribution is the introduction of a set of quality metrics
for predicted context information, integrated in a development methodology for
realizing in a structured and efficient way context predictor components. The
methodology identifies the different context types involved, and the associated
context plug-ins with their dependencies. Context information is modeled and
quality information is added as metadata, both to the plug-ins as to the concrete
context values. Future work includes the fusion of quality of context with QoFC
information metrics, and the aggregation of different QoFC metrics in order to
get a global view of the quality of the context. Also, instead of letting application
developers decide when to effectively use the predictions based on the quality
metric values, we have initial experiments on automatically learning when to
take action or not using reinforcement learning techniques.
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