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Tyre forces are generated by the wheel slip in the contact patch :

λ = Rω -v x v x .
They have a nonlinear characteristics with a coupling between longitudinal and lateral forces.

Controlling the wheel-slip improves safety : it reduces the braking distance and maintains steerability. 

Two main families of ABS algorithms

Algorithms based on wheel slip control :

• it is supposed (implicitly) that vehicle speed is measured (or estimated) ;

• the brake torque converges to a specific value (no oscillations) ;

• mainly present in an academic context...

• and in specific applications (ESP, motorcycles, tyre research).

Algorithms based on angular acceleration thresholds :

• do not need the vehicle speed, neither the value of optimal wheel slip ;

• quite robust with respect to road conditions and tyre parameters ;

• the brake torque oscillates around the optimal value (limit cycle) ;
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• mainly present in an industrial context ;

• widely diffused on actual vehicles, but completely heuristic.
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Why doing research on ABS today ?

Integrated chassis control :

• black box algorithms are difficult to integrate ;

• open algorithms might clarify the architecture of ICC ;

• decoupling the observation problem (for vehicle speed) from control.

Electric vehicles, In-wheel motors, EMB :

• standard ABS algorithms are not adapted to regenerative braking (Toyota Prius) ;

• these heuristic algorithms need the hydraulic lag in order to work properly...

• they loose performance or do not work at all with electric actuators.

Fault management :

• useful to have algorithms with a stability proof. • Other hybrid approaches that use only wheel acceleration information (Bosch) are based on heuristics, we propose a method based on the analysis of limit cycles.
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Wheel dynamics

The angular velocity ω of a given wheel of the vehicle has the following dynamics :

I ω = -RF x + T,
where I denotes the inertia of the wheel, R its radius, F x the longitudinal tyre force, and T the torque applied to the wheel.

The torque T = T e -T b is composed of the engine torque T e and the brake torque T b . 

Tyre force modelling

The longitudinal tyre force F x is often modeled as a function

F x = µ(λ)F z , of the wheel's slip λ = Rω -v x v x .
The curve µ(•) can be approximated by a second order rational function 

µ(λ) = a 1 λ -a 2 λ 2 1 -a 3 λ + a 4 λ 2 . µ(λ) λ λ 0 W. Pasillas-Lépine (CNRS, Gif-sur-Yvette,

Wheel slip and acceleration offsets

Define the variables x 1 and x 2 by

x 1 (t) = λ(t) x 2 (t) = R dω(t) dt -a x (t),
where a x (t) is the vehicle's acceleration. Derivating these variables we obtain :

dx 1 dt = 1 v x (t) (-a x (t)x 1 + x 2 ) dx 2 dt = - cµ ′ (x 1 ) v x (t) (-a x (t)x 1 + x 2 ) + u v x (t) - da x (t) dt , where c = R 2 I F z and u = v x (t) R I dT dt .
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Wheel-slip filtered setpoint

For a given wheel-slip reference λ * (t), we will define a filtered setpoint

dλ 1 dt = λ 2 v x (t) dλ 2 dt = -γ 1 (λ 1 -λ * ) -γ 2 λ 2 v x (t) ,
where γ 1 and γ 2 are two positive real numbers.

This setpoint filter gives :

• A smooth reference setpoint (that one can differentiate twice) even if the original setpoint is discontinuous (for exemple, piecewise constant). 

Changing the time-scale

In order to have dt = v x (t)ds, we will use a new time-scale

s(t) = t 0 dτ v x (τ )
.

We use a dot to denote the new time-derivative φ(s) = dϕ(s) ds .

When the acceleration a x is constant, in the new time-scale the system is simpler :

ẋ1 = -a x x 1 + x 2 ẋ2 = -cµ ′ (x 1 )(-a x x 1 + x 2 ) + u λ1 = λ 2 λ2 = -γ 1 (λ 1 -λ * ) -γ 2 λ 2 .
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Choice of the operating point

Let x * 1 = λ 1 be the desired operating point for x 1 . Define the error coordinates by

z 1 = x 1 -x * 1 z 2 = x 2 -x * 2 ,
where

x * 2 = λ 2 + a x x 1 -αz 1 and α > 0.

The closed-loop equation for z 1 reads

ż1 = -αz 1 + z 2 ,
which is exponentially stable if z 2 = 0. The objective is thus to design a control u such that x 2 converges towards x * 2 asymptotically.
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Our cascaded control law

Driving x 2 towards the dynamic setpoint

x * 2 = a x x 1 + λ 2 -αz 1 is achieved using the control law u = -γ 1 (λ 1 -λ * ) + (-γ 2 + a x + aµ ′ (x 1 )) λ 2 f eedf orward -k 1 z 1 -k 2 z 2 f eedback
.

The dynamic setpoint x * 2 is the core of the cascade :

• The steady state is a x x 1 .

• Other terms to reduce error z 1 using cascaded feedback (-αz 1 ) and cascaded feedforward (λ 2 ).
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Global exponential stability

Theorem 1 Consider an arbitrary piecewise-continuous wheel slip reference λ * (t).

If λ * (t) is injected into the filtered setpoint equations and the control law

u = -γ 1 (λ 1 -λ * ) + (-γ 2 + a x + cµ ′ (x 1 )) λ 2 -k 1 z 1 -k 2 z 2
is introduced into the system, then a time-varying closed-loop system 

ż =   -α 1 -k 1 + a x α -α 2 + αη(t) -k 2 + α -a x -η(t)   z,
u = -γ 1 (λ 1 -λ * ) + (-γ 2 + a x + cμ ′ (x 1 )) λ 2 -k 1 z 1 -k 2 z 2
is introduced into the system, then a time-varying closed-loop system ż = A(t)z + B(t)w ẇ = C(t)w is obtained, with the same matrix A(t) as in Theorem 1, and w = (λ 1 -λ * , λ 2 ).

If the control gains k 1 and k 2 satisfy the bounds x 2 < 0 and x 1 < 0 

k 1 > a x α -α 2 and k 2 > α -a x + η m of
x 2 ≤ -ǫ 5 x 2 ≥ ǫ 1 x 2 ≥ ǫ 2 x 2 ≤ ǫ 1 x 2 ≤ ǫ 3 x 2 ≤ -

Conclusion

• We proposed a new cascaded wheel slip controller.

• It uses a feedforward to speed up convergence, but a perfect knowledge of the tyre is not required (the feedback part does not use it).

• It leads to a proof of global exponential stability of the closed-loop system.

• Robust to practical phenomena (delays, relaxation length, tyre parameters).

• Validated experimentally with a tyre in-the-loop, by Mathieu Gerard (TU Delft).

Perspectives

• A controller that takes into account actuation delays is currently developed.

• The algorithms for computing angular wheel acceleration need to be improved.
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is obtained. If the control gains k 1 and k 2 satisfy k 1 RobustnessCorollary 1
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Comparison of our work with other approaches

  

	• We propose a global analysis, not based on linearization -Petersen et al. Nonlinear
	wheel slip control in ABS brakes using gain scheduled constrained LQR. In Proc. of the European
	Control Conference, 2001.
	• Exponential stability in both the stable and unstable tyre domains -Tanelli et al.
	Robust nonlinear output feedback control for brake by wire control systems. Automatica, 2008.
	• We take an optimal wheel acceleration setpoint and propose feedforward terms
	-Savaresi et al. Mixed slip-deceleration control in automotive braking systems. ASME J. of Dyn.
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Simulations -With both feedback and feedforward control