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SUMMARY

This paper presents a numerical strategy that allows to lower the costs associated to the prediction of the
value of homogenized tensors in elliptic problems. This is done by solving a coupled problem, in which the
complex microstructure is confined to a small region and surrounded by a tentative homogenized medium.
The characteristics of this homogenized medium are updated using a self-consistent approach and are shown
to converge to the actual solution. The main feature of the coupling strategy is that it really couples the
random microstructure with the deterministic homogenized model, and not one (deterministic) realization
of the random medium with a homogenized model. The advantages of doing so are twofold: (a) the influence
of the boundary conditions is significantly mitigated, and (b) the ergodicity of the random medium can be
used in full through appropriate definition of the coupling operator. Both of these advantages imply that the
resulting coupled problem is less expensive to solve, for a given bias, than the computation of homogenized
tensor using classical approaches. Examples of 1D and 2D problems with continuous properties, as well as
a 2D matrix-inclusion problem, illustrate the effectiveness and potential of the method. Copyright c© 2013
John Wiley & Sons, Ltd.
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1. INTRODUCTION

There exist to date fewer theoretical results on the homogenization of random media than of
periodic media. Nevertheless, some results, in the case of linear elliptic partial differential equations
for example, have shown that one can find a uniform deterministic tensor that produces an
accurate approximation of the original solution obtained with the fluctuating stochastic tensor.
Such convergence results have been made possible by using the energy method [1] of Tartar [2],
by considering the direct construction of the so-called correctors [3], by resorting to strong G-
convergence of operators in a general stochastic setting [4], or by using the Γ-convergence [5].
Convergence was obtained either in a mean-square sense (for example, in [6, 7] or [1]) or in an
almost-sure sense (for example in [3]). Later on, more complex equations were also treated, and
weaker hypotheses on the random fields introduced (see for instance [8, 9, 10, 11, 12]).

However, the actual computation of the value of this effective tensor is not always a simple
task, besides some particular cases for which analytical (1D problems in particular) or specific
numerical solutions are available (see for instance [13, 14] in a random quasi-periodic setting).
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2 R. COTTEREAU

Indeed, the prediction of the effective tensor involves the solution of a corrector problem which
is a priori posed on a domain of infinite size. In order to approximate the effective tensor through
numerical simulations, the domain therefore has to be truncated at some finite distance and boundary
conditions to be introduced. For these bounded domains, the estimated tensor is then a random
variable, the variance of which goes to zero when the size of the domain is increased. It has been
proved [8, 15] that, whatever the choice of boundary conditions, the limit of the estimated tensors
was indeed the effective tensor. However, convergence with respect to the size of the domain may be
very slow. Alternatively, it is also possible (see [8, 16]) to use a smaller domain and perform averages
over several realizations of the random medium. Several authors have followed this path (see for
instance [17, 18, 19, 20]), even putting up schemes to accelerate convergence (through angular
averaging in [21] among others, or through the use of antithetic variables in [22]). However, it has
been observed that, even though these schemes converge, they do so to biased values. Further, these
biases only cancel when the size of the domain becomes very large (with respect to the correlation
length).

This paper presents a numerical strategy to identify the homogenized tensor of a random medium.
It allows to extend the size of the domain in a cost-effective manner and to play simultaneously
with the size of the domain and the discretization along the random dimension (number of
Monte Carlo samples) to yield the effective tensor. This is achieved through the coupling of the
random microstructure with a homogenized macrostructure, the characteristics of which are updated
iteratively using a self-consistent approach. Using this coupled approach, the size of the complex
microstructure is limited, while the boundary conditions are pushed away and their influence limited
through the tentative homogenized medium. The main feature of the coupling strategy is that it
really couples the random microstructure with the deterministic homogenized model, and not each
(deterministic) realization of the random medium with a homogenized model, in a fully independent
manner. Hence, the ergodicity of the random medium can be used in full to accelerate convergence
and minimize the bias introduced by the finite size of the domain.

The idea of coupling the microstructure to a homogenized medium to limit the influence of the
boundary conditions was already developed in [23] and [24], but with three major differences:
(1) the microstructure is here random, while it was deterministic (and heterogeneous) in the previous
papers, (2) the coupling is here made over a volume rather than along a surface, and (3) the approach
is coupled to an iterative scheme in order to identify the value of the effective tensor, while it was
previously only used to perform direct computations, for a given value of the homogenized tensor.

In Section 2 of the paper, the random medium and model equation that we consider are described
in detail, and the classical Dirichlet and Neumann homogenization schemes are presented. In
Section 3, we briefly recall the main ingredient of our approach, which is the deterministic-stochastic
coupling scheme, previously described in [25, 26]. Section 4 concentrates on the main novelty of
this paper, which is the iterative technique to derive the homogenized tensor. Finally, the last section
presents a series of 1D and 2D experiments to demonstrate the effectiveness and potential of the
proposed approach. Concluding remarks are provided in Section 6.

Throughout the paper, we will use bold characters for random quantities, lowercase characters for
scalars and vectors, and uppercase characters for matrices and tensors.

2. HOMOGENIZATION OF A RANDOM MICROSTRUCTURE

In this section, we describe the random medium for which we intend to find the homogenized
effective properties. We also recall some definitions related to the homogenization of the heat
equation.

2.1. Definition of the model and hypotheses on the random field

Let us introduce a domain D ∈ Rd, with a typical length scale L, a (deterministic) loading field
f(x) and a field u(x) governed by the heat equation: find u(x) ∈ L2(Θ,H1(D)) such that, ∀x ∈ D,
almost surely:

−∇ · (k(x)∇u(x)) = f(x), (1)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 3

for a random field k(x) fluctuating over a length scale `c (usually defined through the correlation
length), and with appropriate boundary conditions. Here, (Θ,F , P ) is a complete probability space,
with Θ a set of outcomes, F a σ-algebra of events in Θ, and P : F → [0, 1] a probability measure.

In order to obtain a homogenized material, the random parameter field k(x) is required to verify
certain hypotheses. In particular, it is assumed to be bounded and uniformly coercive, that is to say
∃ κm, κM ∈ (0,+∞), such that

0 < κm ≤ k(x) ≤ κM <∞, ∀x ∈ D, almost surely. (2)

Also, it is required to be stationary and ergodic.

2.2. Definition of homogenization

Homogenization deals with cases when the ratio ε = `c/L is small. We then scale the fluctuations
of the microstructure by 1/ε, and look at the fluctuations of the solution u(x) at the original scale.
The following sequence of problems is therefore considered: find uε(x) ∈ L2(Θ,L2(D)) such that,
∀x ∈ D, almost surely:

−∇ · (kε(x)∇uε(x)) = f(x), (3)

where kε(x) = k(x/ε), and with appropriate boundary conditions, for instance uε(x) = 0, ∀x ∈ ∂D
(see Subsection 2.3 for the definition of Dirichlet and Neumann approximations of the homogenized
coefficients). Under suitable hypotheses, in particular on the random field kε(x) (described in the
previous Subsection 2.1), each of these problems admits a unique solution.

f(x)

��D

L

lc
f(x)

�
�D

L

Figure 1. Description of one realization of the random medium (left), with fluctuating coefficient kε(x), and
corresponding effective medium (right), with constant deterministic effective tensor K∗.

Using different sets of hypotheses and with different methods, many authors (see the references
provided in the introduction) have shown that, independently of the load f(x), the sequence of
solutions uε(x) converges when ε→ 0 to the solution u∗(x) of the following deterministic problem:
find u∗(x) such that, ∀x ∈ D:

−∇ · (K∗∇u∗(x)) = f(x), (4)

with corresponding boundary conditions. A priori, the effective coefficientK∗ is a full second-order
tensor, meaning that the homogenized material potentially exhibits anisotropy.

The constructive definition of the effective tensor requires the solution of the so-called corrector
problem, which states: find wε(x) such that, ∀x ∈ D, almost surely:

−∇ · (kε(x) (I +∇wε(x))) = 0. (5)

As wε is a vector, ∇wε(x) is a tensor, and this equation is a d-dimensional equation. The tensor I
is the identity tensor in Rd ×Rd. The homogenized tensor is then defined as:

K∗ = lim
ε→0

E
[
(I +∇wε(x))

T
kε(x) (I +∇wε(x))

]
. (6)

Note that, in the limit when ε→ 0, the tensor K∗ does not depend on the position.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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4 R. COTTEREAU

2.3. Numerical estimation of homogenized tensor

For ε→ 0, the corrector equation (5) is either set in a domain of infinite size or with infinitely
small details. Also, the mathematical expectation E[·] in equation (6) is an integral operator over
an infinite-dimensional space. Approximations of K∗ are then constructed by performing at the
same time a truncation of D (hence bounding ε to a finite value), introducing particular boundary
conditions at the boundary ∂D of the domain, and replacing the mathematical expectation in the
evaluation of the homogenized tensor by a sum over a finite number of Monte Carlo samples.

The Kinematic Uniform Boundary Conditions (KUBC) approach consists in using homogeneous
Dirichlet boundary conditions at the boundary (wε = 0, ∀x ∈ ∂D, almost surely), and
approximating the homogenized tensor, hereafter denoted Ǩε

N , by

Ǩε
N =

1

N |D|

N∑
i=1

∫
D

(
I +∇wiε(x)

)T
kiε(x)

(
I +∇wiε(x)

)
dx, (7)

where |D| =
∫
D
dx, the kiε(x) are realizations of the stochastic field kε(x) and the wiε(x) are the

solution of the corresponding (deterministic) corrector problems, posed over the truncated domain
D with finite ε, and with the chosen set of boundary conditions. More details on the derivation of
this formula can be found in [16, Eq. (16)] or [27, Eq. (5.8)].

The Static Uniform Boundary Conditions (SUBC) approach consists in using Neumann
boundary conditions (kε(x)(I +∇wε) · n = I · n, ∀x ∈ ∂D, almost surely), and approximating the
homogenized tensor, hereafter denoted K̂ε

N , by

K̂ε
N =

[
1

N |D|

N∑
i=1

∫
D

(
I +∇wiε(x)

)T
kiε(x)

(
I +∇wiε(x)

)
dx

]−1

. (8)

More details on the derivation of this formula can be found in [16, Eq. (16)] or [27, Eq. (5.9)].
A very efficient alternative to these two techniques consists in using periodic boundary conditions

(see for instance [28] for mathematical details, or [29] for an efficient FFT implementation of this
technique). This method works very well, but it requires, on the other hand, that the microstructure
be itself periodic. Its application in the context of random media therefore requires some hypotheses
on the correlation structure, or a modification of the distribution for periodization. Comparison of
periodic, SUBC and KUBC estimates to the method that we propose in this paper will be made in
the applications (see in particular Section 5.3).

Note that the tensors Ǩε
N and K̂ε

N (as well as any other obtained through a similar approach with
other boundary conditions) depend obviously on both the number N of Monte Carlo samples that
are used to approximate the mathematical expectation and on the value of ε. They also depend on
the boundary conditions that were used to approximate the corrector problems and are therefore a
priori different one from the other. For elliptic equations, the influence of these boundary conditions
disappears for ε→ 0 (see the proof for the KUBC, SUBC, and periodic boundary conditions in [15]),
but may become extremely important for small domains (see the examples in Section 5).

2.4. Particular case in 1D

The 1D case is very particular, in the sense that the corrector problem can be solved analytically,
whatever the choice of probability law for kε. The homogenized tensor (in that case a scalar) is then:

K∗ = E[k−1
ε ]−1 = lim

ε→0

(∫
D

(kε(x))
−1
dx

)−1

. (9)

It is interesting to note that the KUBC and SUBC approximates can also be computed for any
ratio ε. Indeed, simple algebraic manipulation yields

Ǩε
∞ = E [KD] , (10)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 5

where KD = |D|/
∫
D
k−1
ε (x)dx and

K̂ε
∞ = E[K−1

D ]−1 = K∗. (11)

When ε→∞ the random field kε(x) becomes, at the scale of the domain D, a random variable
(with no fluctuation in space). Hence, we have KD = kε, and Ǩ∞∞ = E[kε], and this quantity does
not depend on the position x thanks to the hypothesis of stationarity of the field. When ε→ 0, the
ergodicity hypothesis on the random field and the definition of KD yield the expected result of
equation (9) Ǩ0

∞ = K∗. In general, when ε 6= 0, we have Ǩε
∞ 6= K∗. This means that the KUBC

estimate is different from the homogenized coefficient, even though an infinite number of Monte
Carlo trials is considered. In this paper, we will refer to this misfit by the word ”bias”.

It is interesting to note that in 1D, whatever the value of ε, the SUBC approach yields the exact
value of the homogenized tensor (when N →∞). In the words defined above, the SUBC estimate
in 1D is therefore unbiased. Note, however, that this property is very specific to the one-dimensional
case, and is not true in higher dimensions.

2.5. Particular case in 2D

We discuss in this section a very particular type of 2D medium that has a specific kind a duality
property: the random field kε(x) is statistically equivalent to the random field c/kε(x), where c is
a scalar constant. As noted in [30, chapter 3] (see a proof in the book in a more general setting,
and references therein for original contributions to that result), the homogenized coefficient of this
random medium is then necessarily equal to

K∗ =
√
cI2, (12)

where I2 is the two-dimensional identity tensor.
Note that, in the two-dimensional case, there is no analytic result for the value of the KUBC

and SUBC homogenized approximates at finite ε. However, the following bounds always hold true
(see [27] for example):

K̂ε
∞ ≤ K∗ ≤ Ǩε

∞. (13)

Further, as we will be illustrated in the examples at the end of this paper, both the KUBC and SUBC
are biased for finite ε (see Section 5).

3. COUPLING OF A RANDOM MICROSTRUCTURE WITH AN EFFECTIVE MODEL

In the previous section, we have introduced classical numerical techniques to obtain estimates of
the homogenized tensors. These estimates are widely developed and used in the literature, but are
unfortunately biased in the general case. In this paper, we propose a novel technique for obtaining
such estimates. This technique will be presented in Section 4 and relies heavily on a stochastic-
deterministic coupling approach originally introduced in [25, 26]. The objective of this section is to
recall the main features of this coupling method, without too much emphasis on technical details
(those can be found in particular in [26]).

It is important to stress from the start that this method is very different from an approach where
a sequence of realizations of the random medium would be coupled each to an exterior effective
model. In such an approach, the displacement fields in the effective model would be different for
each realization of the random medium. Contrarily, in our approach, the coupling is really posed
in a stochastic setting and couples the entire set of realizations of the random medium to a single
effective model.

This coupling strategy is based on the introduction and superposition of two models and three
domains (see figure 2): the (stochastic) microstructure is defined over a domain D with a stochastic
parameter field kε(x), and the (deterministic) effective model is defined over a domain D, with a
constant parameter Kε. The supports of the two models are such that D ⊂ D, and the two models
communicate through a coupling volume Dc, with Dc ⊂ D and Dc ⊂ D. These definitions mean

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme



6 R. COTTEREAU

that there is part of the domain where only the effective model is defined, part of the domain where
both models are defined and over which they are coupled, and part of the domain where both models
are defined but over which they do not communicate.

Figure 2. Section (left) and perspective view (right) of a 2D Arlequin problem where an effective model,
defined over domain D, and several realizations of a random model, defined over D, are coupled through
a coupling domain Dc. On the overlap outside of Dc: (D ∩D)\Dc, both models are defined but behave

independently.

The coupling problem is set in the general Arlequin framework (see in particular [31, 32, 33, 34]
for details on the Arlequin framework in a deterministic setting and [25, 26] for the stochastic case),
and reads: find (uε,uε,Φ) ∈ V ×W ×Wc such that

aε(uε, v) + C(Φ, v) = `(v), ∀v ∈ V
Aε(uε,v)− C(Φ,v) = L(v), ∀v ∈ W
C(Ψ, uε − uε) = 0, ∀Ψ ∈ Wc

, (14)

where the forms aε and `, on the one hand, and Aε and L, on the other hand, are the forms
appearing in the weak formulations corresponding to equations (4) and (1), respectively, weighted
by a function that enforces the conservation of the global energy, by appropriate partitioning among
the two available models. More specifically, these forms are:

aε(u, v) =

∫
D

α1(x)Kε∇u · ∇v dx, (15)

`(v) =

∫
D

α1(x)f(x)vdx, (16)

Aε(u,v) = E
[∫

D

α2(x)kε(x) ∇u · ∇v dx
]
, (17)

and
L(v) =

∫
D

α2(x)f(x) E[v] dx. (18)

These weight functions mainly mean to split appropriately the total energy among the two models.
Therefore, they verify the following constraints: α1(x) + α2(x) = 1 in D ∩D and α1(x) = 1 in
D\D. Further, they allow to put emphasis on one or the other of the two models. Hence, where the
stochastic (fine scale) model is defined (and outside of the coupling area), the weight function α2(x)
is given a value close to one (and α1(x) a value close to zero).

The coupling operator C enforces weakly the equality of the two fields u and u in the coupling
area Dc. It is defined by:

C(u,v) = E
[∫

Dc

(κ0uv + κ1∇u · ∇v) dx

]
. (19)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 7

In this definition, the constant parameters κ0 and κ1 are introduced to weight relatively the L2 and
H1 parts of the scalar product, and the solution of the Arlequin coupled problem is very robust
with respect to their choice (see [34]). Note that, in the last line of Equation (14), the second input
of the coupling operator is uε − uε, which is formally the subtraction between elements of two
different functional spaces V andW . We actually consider here that H1(Dc) is naturally embedded
in L2(Θ,H1(Dc), so that, over Dc this subtraction makes sense. For more complex cases where the
models are not related in such a simple manner, projection operators have to be introduced (see for
example [35]).

The functional spaces are V = H1
0(D) (with straightforward modifications for other boundary

conditions than homogeneous Dirichlet aroundD),W = L2(Θ,H1(D)) (assuming thatD is strictly
embedded in D), and

Wc = H1(Dc)⊕ L2(Θ,R) (20)
=

{
ψ(x) + θIc(x)|ψ ∈ H1(Dc),θ ∈ L2(Θ,R)

}
. (21)

The indicator function I(x) is such that Ic(x ∈ Dc) = 1 and Ic(x /∈ Dc) = 0. Hence the mediator
space Wc can be seen as composed of functions with a spatially-varying ensemble average and
perfectly spatially-correlated randomness. The random part is actually the generator of the kernel
of the acoustic operator we are considering here. If we were to consider a vector equation, the
definition of the mediator space would be the superposition of a space-fluctuating average (as here),
and six rigid-body movements with random coefficients.

Note that, thanks to the specific structure of the space Wc, the last equality of the system (14)
can be written equivalently, ∀Ψ = ψ(x) + θIc(x) ∈ Wc, or otherwise said, ∀ψ ∈ H1(Dc) and
∀θ ∈ L2(Θ,R),

0 = C(Ψ, uε − uε) (22)

= E
[∫

Ωc

(κ0(ψ + θIc)(uε − uε) + κ1∇ψ · ∇(uε − uε)) dx
]

(23)

= C(E [Ψ] , uε − E [uε])− E
[
θ

∫
Ωc

(uε − E [uε]) dx

]
. (24)

Therefore, this condition imposes that, in each space point x ∈ Dc, the (ensemble) average of the
random field E[uε(x)] should be equal to the field uε(x), and that the variability of the space-
averaged random variable

∫
Ωc

(uε − E [uε])dx should cancel.
The stability of the coupled problem (14) was proved in [26], and its solution can be provided

either by Monte Carlo sampling of the random space, or by a spectral approach.

4. A NEW METHOD FOR THE DETERMINATION OF THE HOMOGENIZED TENSOR

In the previous two sections, we have described classical approaches to the numerical
homogenization of random structures (Section 2) and a new coupling method between stochastic
and deterministic models (Section 3). Although these two sections may have seemed very weakly
related, we will show here how the latter method can be used for the design of a novel numerical
homogenization technique for random media.

4.1. Principle of the method

The general motivation for the design of this technique lies in the observation that the biases
observed in the SUBC and KUBC estimates of the homogenized coefficients originate from the
boundary conditions chosen for each realization of the random corrector problems. Somehow, in
order to obtain good estimates of the homogenized coefficients, these boundary conditions have to
be taken away (by reducing ε), in order to minimize their influence.

Some authors (see [23, 24]) have intended to do so by intercalating between the heterogeneous
model of interest and the boundary conditions a homogeneous medium, with the appropriate

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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8 R. COTTEREAU

homogenized tensor. As the properties of the medium do not vary in space, the corresponding mesh
does not need to be heavily refined, and the boundary conditions can therefore be pushed away in a
cost-effective manner. If the tentative medium is indeed the homogenized medium corresponding to
the heterogeneous fine scale model, then it is expected that the influence of the boundary conditions
will be reduced. However, this is not so, because an impedance mismatch has been created at
the interface between the two models. Indeed, on this interface, the two models do not have the
same mechanical parameters, and this mismatch acts somehow as a new set of virtual boundary
conditions. In particular, on one side of the interface, the properties fluctuate, while they are constant
on the other side.

The approach that we propose here builds on this initial idea. However, it brings down the
above issue by considering a volume coupling, which is much smoother than an interface-based
one. Further, it allows to perform the coupling between the entire set of realizations of the
random medium and the tentative homogenized medium through the coupling operator described in
equation (19).

Apart from this idea of computing a coupled problem, we also introduce an optimization scheme
to gather the value of the homogenized tensor, because it is indeed the objective of our work. This
optimization scheme builds on the idea that, once the homogenized model has been identified, it
should behave exactly the same, whether it is solved alone or coupled to the micro-structure it
represents. In particular, the solution of a coupled Arlequin problem with that homogenized model
and the micro-structure under the homogenization experiments presented in Section 2.3 should yield
exactly the same result as if the homogenized model was solved alone. On the other hand, if the
tentative homogenized is not correct, there will be a mismatch of impedances that can be detected
through the distance between the response of the homogenized model in the coupled model and that
of the same homogenized model solved alone. Hence for an imposed unit strain at the boundary of
the macro-scale domain (Dirichlet approach, which we will consider in the following), the strain
tensor should be identity, whether the macro-model alone is solved for, or the coupled micro-macro
model.

4.2. Description of the algorithm

Algorithm 1: Algorithmic description of the proposed iterative technique for numerical
homogenization of random materials
Data: N realizations of random medium kε(x) of correlation length ε
Result: Arlequin estimate of homogenized tensor Kε

N

Initialization: K0 ←− E[kε]I;
while ‖Ki −Ki−1‖ > criterion do

set the mechanical parameter: Kε ←− Ki;
solve the Arlequin coupled system (14) and estimate (uε,uε,Φ) ;
update Ki+1 to minimize

∫
D
‖∇uε − I‖dx

end
Store estimate: Kε

N = Ki.

In this algorithm, note that the iterative loop can be efficiently implemented through classical
general-purpose optimization schemes. In particular, we have used the Nelder-Mead algorithm
(see [36] for details), but others could be considered. Similarly, we chose as initial value K0 =
E[kε]I , but other choices are equally reasonable. The influence of the choice of initial value will be
discussed through examples in Section 5.

We have chosen here to drive the iterative scheme with the minimization of the potential∫
D
‖∇uε − I‖dx, consistent with the intuitive idea developed above (Section 4.1). Other

possibilities exist. In particular, we have tested the examples in Section 5 with both this potential
and the energy norm

∫
D

(∇uε − I) ·Kε(∇uε − I)dx. The results obtained were exactly the same.
Here, we prefer to avoid using Kε in the definition of the potential, because it is the quantity we are
iterating on. However, for other problems, in particular when the homogenized tensor is not scalar
anymore, it might become interesting to consider the second type of operator.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 9

4.3. Evaluation of numerical costs

Let us finally discuss the comparative numerical costs between the standard numerical
homogenization schemes described in Section 2.3 and the proposal made here. From the point of
view of our method, the differences in cost can be listed as:

• degrees of freedom are introduced for the discretization of V∗ in (14);
• degrees of freedom are introduced for the discretization ofWc in (14);
• the iterative loop means that several Arlequin systems (14) are solved;
• the estimate of the homogenized tensor is less polluted by boundary conditions.

Basically, our approach becomes interesting when the gain from the last item overcomes the costs
induced by the first three. In that respect, it should be noted that the discretization of the functional
space V ⊂ H1(D) is very coarse compared to the discretization of H1(D) because the mechanical
properties are constant in the homogenized model while they are heterogeneous over the stochastic
model. Likewise, the discretization in space of Wc = H1(Dc)⊕ L2(Θ,R) can be made to follow
that ofH1(D), and therefore introduce very few additional degrees of freedom. Finally, concerning
the iterative scheme, it should be noted that as the realizations of the random model do not change
between two iterations (only the homogenized model evolves), the assembly of the Monte Carlo
samples of stiffness matrices does not have to be repeated.

5. APPLICATIONS

In this section, we consider the implementation of our homogenization approach on two problems
for which analytical solutions are available and one classical problem in periodic homogenization.
The software used for the solution of the coupled Arlequin systems is freely available at
https://github.com/cottereau/CArl.

In all the simulations presented in this section, we have used κ0 = 1 and κ1 = 10−3 for the
definition of the coupling operator (see Eq. (19)). Also, we have used α2(x ∈ (D ∩D)\Dc) =
1− η and α1(x ∈ (D ∩D)\Dc) = η, with η = 10−3, for the weighting of the energies of the two
models. The realizations of the continuous random fields kε(x) have been generated using the
spectral representation method [37], and its Fast Fourier Transform implementation. Finally, in the
implementation of the loop in algorithm 1, a relative tolerance of criterion = 10−2 was selected for
both the value and the argument of the potential function.

5.1. 2D isotropic medium with random continuous properties

In this first example, we show the effectiveness of the method and discuss numerical implementation
details.

5.1.1. Description of the model. We consider a two-dimensional problem, within a domain D =
[0, 1]× [0, 1], of typical size L = 1. The operator to be homogenized is ∇ · kε(x)∇uε, with kε(x)
a random heterogeneous modulus. We consider for kε(x) a homogeneous random field with log-
normal first-order marginal distribution, and average and standard deviation E[kε] = σ =

√
2. The

power spectrum is considered triangular (which corresponds to a square cardinal sine correlation),
with correlation length `c. We will consider the homogenization problem for three different relative
correlation lengths: ε = `c/L = 10, ε = 1 and ε = 0.1. These correlation lengths span several orders
of magnitude (see Figure 3 for examples of realizations of the random media considered) in order
to show a wide range of behaviors for our method. Note that considering a domain of fixed size and
variable correlation lengths, as is done here, is strictly equivalent to considering a constant random
field homogenized over cells of variable sizes, as is more often done in the micro-mechanical
community.

As discussed in Section 2.5, the homogenized tensor is

K∗ =

[
1 0
0 1

]
. (25)
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(a) ε = 10, Sample 1 (b) ε = 1, Sample 1 (c) ε = 0.1, Sample 1

(d) ε = 10, Sample 2 (e) ε = 1, Sample 2 (f) ε = 0.1, Sample 2

Figure 3. Map of parameter kε(x) (in logarithmic scale) for two realizations of each of the cases considered
here (left: ε = `c/L = 10, center: ε = 1, and right: ε = 0.1).

Indeed, the inverse of a log-normal random variable follows exactly the same law as the variable
itself in the case when the mean and the standard deviation are equal. Note that, because we know
beforehand that the homogenized tensor is isotropic, we will only discuss here the convergence
toward the scalar value K∗xx = 1. This means that the KUBC, SUBC, and Arlequin estimates
will really be based only on numerical experiments in one direction (using only the imposed
gradient ∇uε = [1 0]T for the KUBC estimate for instance). More complex cases, with anisotropic
homogenized behavior in particular, will be considered in the future.

5.1.2. Computation of KUBC and SUBC estimates. First, we consider the KUBC and SUBC
estimates of the homogenized coefficient, as described in Section 2.3. To observe the convergence
with respect to the number N of realizations of the random medium over which averages are taken
(equations (7) and (8)), we compute KUBC and SUBC estimates for different values of this number
N . Note that, for a given correlation length, the values of the KUBC and SUBC estimates depend
not only on the number N , but also on the realizations themselves. We therefore compute, for each
value of N , n = 10 different estimates for different ensembles of N realizations of the random
medium. These results are plotted in Figure 4. The linear Finite Element method was used to
compute the corrector problems, with 800, 1600, and 10000 triangular elements, respectively for
the cases ε = `c/L = 10, ε = 1 and ε = 0.1.

On these plots, we retrieve the expected asymptotic behavior of the homogenized coefficients.
Both the KUBC Ǩε

N and SUBC K̂ε
N estimates converge to the exact value K∗ for small ε and

large N (although the KUBC is not fully converged at ε = 0.1). Also, at large ε and large N , the
KUBC estimate tends towards the arithmetic average E[kε] and the SUBC estimate tends towards the
harmonic average E[k−1

ε ]−1. Finally, for a fixed ε and increasingN , the variances of both the KUBC
and SUBC estimates decrease, canceling for N →∞. Likewise, the variances of these estimates
decrease for fixed N and decreasing ε, canceling again for ε→ 0.

5.1.3. Computation of the Arlequin estimate. We now turn to the estimation of the Arlequin
estimate Kε

N of the homogenized coefficient over domains D = [−1; 2]× [−1; 2] and D = [0; 1]×

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme



NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 11

(a) ε = 10 (b) ε = 1

(c) ε = 0.1

Figure 4. Convergence of the homogenized coefficients Ǩε
N (dark grey crosses) and K̂ε

N (light grey circles)
for different correlation lengths ((a) ε = `c/L = 10, (b) ε = 1, and (c) ε = 0.1) as a function of the numbers
of Monte Carlo trials N . The dashed lines indicate the values of the arithmetic average E[kε] and of the

harmonic average E[k−1
ε ]−1. The solid lines indicate the value of K∗ = 1.

[0; 1]. The coupling zone Dc is a band of width 0.2 circling at the boundary of D, and we consider
a unit strain boundary condition at the boundary of D.

In the Arlequin coupled problem, there exist the same typical lengths as before (`c and L), plus
an additional one, corresponding to the size L = 3 of the tentative homogeneous medium D. In
order to simplify the comparisons between the Arlequin estimate and the KUBC/SUBC estimates,
we continue to define ε as the ratio of the correlation length `c to the size L of the random cell D,
that actually indicates the amount of statistical information available about the random medium.

In Figure 5, we plot the values of the Arlequin estimatesKε
N for three different correlation lengths

(ε = `c/L = 10, ε = 1, and ε = 0.1) as a function of the numbers of Monte Carlo trials N . As in the
previous case, the Arlequin estimate depends on both the number of Monte Carlo trials, but also on
those realizations themselves, so each value of Kε

N is computed for n = 10 different ensembles of
realizations of the random medium. In the same Figure 5, we compare the Arlequin estimates with
the KUBC and SUBC estimates already presented in Figure 4 and discussed in Section 5.1.2.

The results are extremely convincing in the case presented here. Even when the correlation length
is much smaller than the computational cell (ε = 10), the iterative Arlequin method predicts the
correct homogenized coefficient, in the limit of large number of Monte Carlo realizations. The bias
that is observed in the KUBC and SUBC estimates for large ε cancels completely for our estimate.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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(a) ε = 10 (b) ε = 1

(c) ε = 0.1

Figure 5. Convergence of the Arlequin estimate Kε
N (black pluses) for different correlation lengths ((a)

ε = `c/L = 10, (b) ε = 1, and (c) ε = 0.1) as a function of the numbers of Monte Carlo trials N , and
comparison with the coefficients Ǩε

N (light grey crosses) and K̂ε
N (light grey circles). The dashed lines

indicate the values of the arithmetic average E[kε] and of the harmonic average E[k−1
ε ]−1. The solid lines

indicate the value of K∗ = 1.

However, it should be reminded that we have considered here the homogenization of a particular
random medium. The random field kε is indeed locally invariant by inversion, and the homogenized
tensor does not depend on the correlation structure. At this point, it therefore cannot be stated
unambiguously whether the excellent behavior of our method is a coincidence or a general behavior.
In any case, it should be stressed that the KUBC and SUBC approaches behave much worse than
our Arlequin estimate.

In the next section, we present a 1D example, for which we still know analytically the
homogenized tensor, but for which the random medium is not locally invariant by inversion. As will
be seen, and although the behavior is still much better than for the KUBC, the Arlequin estimate
appears slightly biased for that example.

5.1.4. Numerical considerations. Before going over to this 1D example, we now consider in more
detail four numerical issues: (1) the behavior of the potential function over which the minimization
problem is solved for the identification of the Arlequin estimate Kε

N (see algorithm 1), (2) the
dependence of the method on the choice of the initial value for the Arlequin estimate, (3) the
corresponding number of iterations for convergence, and (4) the cost of the Arlequin method.
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We first compute and plot the value of the potential
∫
D
|1− ∂xuε|dx (which is minimized through

the iterative loop of algorithm 1), as a function of the tentative homogenized coefficient Kε for the
effective model, for a correlation length ε = `c/L = 10, and n = 10 different ensembles ofN = 103

realizations of the random medium. As can be observed in Figure 6, this potential seems well
adapted for the purpose of pinpointing the right value of the homogenized tensor. It is well behaved,
with no local minima and one global minimum. Also, the n = 10 ensembles of realizations yield
similar curves.

Figure 6. Value of the potential
∫
D
|1− ∂xuε|dx as a function of the coefficient of the tentative homogenized

medium, for ε = 10, and for n = 10 different ensembles of 104 realizations of the random medium.

We then consider the dependence of the method on the choice of the homogenized tensor used to
initialize the iterative process of algorithm 1. We therefore compute estimates of the homogenized
tensor for n = 3 different ensembles of N = 103 realizations of a random medium with ε = 1,
for different values of the initial value K0. These estimates are grouped in table I, along with the
numbers of iterations required for convergence. It is observed that the estimate is independent (to the
order of criterion) of the initial value. The only difference lies in the number of iterations required
to attain that convergence. Unless one chooses values that are one order of magnitude away from
the exact value, the convergence is obtained (for criterion = 10−2) in around 7 iterations.

Table I. Arlequin estimate Kε
N obtained for different values of the initial coefficient K0 initializing the

optimization in algorithm 1, and corresponding number of iterations for convergence. The computations
are performed for three different ensembles of N = 103 Monte Carlo realizations, a correlation length
ε = `c/L = 1, and a relative tolerance on both the value and the argument of the potential function of

criterion = 10−2.

Initial values 0.1 0.8 1.0 1.2 5.0 10.0
Final value 0.985 0.985 0.982 0.981 0.985 0.985
Nb iterations 11 6 6 8 11 11
Final value 0.994 0.994 0.991 0.990 0.994 0.994
Nb iterations 11 6 6 8 11 11
Final value 1.022 1.020 1.028 1.024 1.022 1.022
Nb iterations 11 6 6 8 11 11

We now consider the issue of cost, following on with the discussion at the end of Section 4. Each
Arlequin estimate will require the solution of a coupled problem with more degrees of freedom
that those involved in the computation of the KUBC and SUBC estimates. Note, however, that we
will consider a uniform mesh with intervals of size 0.1 for the entire domain D, whatever the value
of ε, and the same meshes as for the KUBC and SUBC computations for the random domain D.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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The space dimension of the functional spaceWc will be also discretized with elements of size 0.1.
Hence, for ε = 10, the number of additional degrees of freedom is important compared to the number
of degrees of freedom related to D, but quickly drops to relatively small numbers for small ε. For
ε = 0.1, the number of additional degrees of freedom (in space) is around 1800 for the discretization
of D and around 200 for the discretization ofWc, to be compared to the 10000 degrees of freedom
(in space) defined over the random domain D. Smaller ε would yield even smaller relative numbers.

5.2. 1D bar with random properties

This second example is very similar to the previous one, except that it is one-dimensional.

5.2.1. Description of the model. We now consider a 1D bar, defined over domain D = [0; 1],
of length L = 1, and the homogenization of the operator −∂xkε(x)∂xuε, where kε(x) is a
one-dimensional random heterogeneous modulus. More particularly, we consider a statistically
homogeneous random field with uniform first-order marginal density, average E[kε] = 1, standard
deviation σ = 1/2 (hence the realizations of kε are in the interval [1−

√
3/2, 1 +

√
3/2]), triangular

spectrum, and correlation length `c. Note that this random medium is not invariant by inversion. We
will consider the homogenization problem for three different relative correlation lengths: ε = `c/L,
ε = 1 and ε = 0.01 (see Figure 7 for examples of realizations of the random media considered).

(a) ε = 10 (b) ε = 1 (c) ε = 0.01

Figure 7. Three realizations of the random field kε(x) for three correlation lengths ((a) ε = `c/L = 0.01, (b)
ε = 1, and (c) ε = 10). For ε = 0.01, only one realization is plotted for clarity.

For that simple 1D operator, the exact value of the homogenized coefficient can be computed
analytically (see Section 2.4):

K∗ = E
[
k−1
ε

]−1
=

√
3

ln
(

1 +
√

3
2

)
− ln

(
1−

√
3

2

) ≈ 0.6576. (26)

5.2.2. Computation of KUBC and SUBC estimates. As in the 2D case (Section 5.1.2), we first
consider the KUBC and SUBC estimates of the homogenized coefficient. We compute these
estimates for different values of this number N of realizations of the random medium over
which averages are taken (equations (7) and (8)), and for different ensembles of N realizations.
The results are plotted in Figure 9. The linear Finite Element method was used to compute the
corrector problems, with 4, 10, and 1000 elements, respectively for the cases ε = `c/L = 10, ε = 1
and ε = 0.01. On these plots, we retrieve the expected asymptotic behavior of the homogenized
coefficients.

5.2.3. Computation of the Arlequin estimate. We now turn to the estimation of the Arlequin
estimate Kε

N of the homogenized coefficient over domains D = [−1, 2] and D = [0, 1]. The
coupling area, over which both models exchange information, is Dc = [0, 0.2] ∪ [0.8, 1]. The
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boundary conditions that we consider are uε(x = −1) = −1 and uε(x = 2) = 2, which correspond
to a unit strain boundary condition (Dirichlet approach). As in the 2D case, we continue to define
ε as the ratio of the correlation length `c to the size L of the random cell D (rather than to the size
L = 3 of D), because it is L that actually indicates the amount of statistical information available
on the random medium.

In Figure 8, we plot the values of the Arlequin estimate Kε
N as a function of the numbers of

Monte Carlo trials N . Each value of Kε
N is computed for n = 10 different ensembles of realizations

of the random medium. In the same Figure 8, we compare the Arlequin estimates with the KUBC
and SUBC estimates and with the theoretical value of the homogenized coefficient K∗ ≈ 0.6576.

(a) ε = 10 (b) ε = 1

(c) ε = 0.01

Figure 8. Convergence of the Arlequin estimate Kε
N (black pluses) for different correlation lengths ((a)

ε = `c/L = 10, (b) ε = 1, and (c) ε = 0.01) as a function of the numbers of Monte Carlo trials N , and
comparison with the coefficients Ǩε

N (light grey crosses) and K̂ε
N (light grey circles). The dashed lines

indicate the values of the arithmetic average E[kε] and the solid lines indicate the value of the harmonic
average E[k−1

ε ]−1 = K∗.

As can be observed, and as already announced at the end of Section 5.1, our approach provides
better estimates than the classical KUBC (the SUBC is exact in 1D). However, the results are not
perfectly unbiased. Note also that, if we had used Neumann boundary conditions for our Arlequin
estimate (results not shown), we would have obtained the same results as the SUBC.

To refine these observations, we present in Figure 9 the Arlequin estimates obtained for N = 103

Monte Carlo trials as a function of the correlation length ε = `c/L. Again, each experiment is
repeated for n = 10 different ensembles of realizations of the random medium. It seems that the
bias of the Arlequin estimate drops down to close to zero for ε of the order of 0.1. Finally, several
numerical tests were considered, as in Section 5.1.4, and similar results were obtained (not shown):
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Figure 9. Convergence of the Arlequin estimate Kε
N as a function of the correlation length ε = `c/L, for

different ensembles of N = 103 realizations of the random medium. The dashed line indicates the value of
the arithmetic average E[kε] and the solid line indicates the value of the harmonic average E[k−1

ε ]−1 = K∗.

the shape of the potential function is adequate and the number of iterations ranges from 6 to 11,
depending on the initial value chosen for the homogenized coefficient (from 0.1 to 10).

5.3. 2D periodized bi-phasic material with spherical inclusions

This last example aims, on the first hand, to present an example with discontinuous properties, and,
on the other hand, to compare the behavior of the method proposed here to the classical method of
periodic homogenization.

5.3.1. Description of the model. We consider, as in the first example, a domain D = [0, 1]× [0, 1],
of typical size L = 1. This domain is separated into a matrix and overlapping (almost) spherical
inclusions, with diameter `c. The operator to be homogenized is∇ · kε(x)∇uε, where kε(x) is equal
to 1 in the matrix and 10 in the inclusions. The centers of the spheres are uniformly distributed in a
larger domain ([−10, 10]× [−10, 10]), with an average concentration of c = 0.3. The computational
domain is then periodized, that is to say the centers inside the computational cell D are repeated
outside of it before the spheres are constructed. We will consider the homogenization problem for
four different relative correlation lengths: ε = `c/L = 8/3 >

√
2 (for which periodization implies

that all the realizations are homogeneous, 30% of them with value 10 and 70% of them with value
1), ε = 2/3, ε = 1/3, and ε = 1/6 (which correspond, on average, to 1, 4 and 16 spheres in each
computational cell, respectively). Examples of realizations of the random media considered can be
observed on Figure 10. Note that the discretization of the spheres is exaggerated in the smaller cells
in order not to keep the shape of the inclusions exactly the same (up to homothety) in all the cases
considered. This is to avoid the introduction of a bias due to a modification of the shape of the
inclusions with size.

5.3.2. Computation of KUBC, SUBC and periodic estimates. The KUBC, SUBC and periodic
estimates are computed for different values of the number N of realizations of the random medium
over which averages are taken and, each time, for n = 5 different ensembles of N realizations.
The results are plotted in Figure 11. The linear Finite Element method was used to compute the
corrector problems, with 288, 576, 1152, and 2304 triangular elements, respectively for the cases
ε = `c/L = 8/3, ε = 2/3, ε = 1/3, and ε = 1/6.

5.3.3. Computation of the Arlequin estimate and discussion. The Arlequin estimate Kε
N of the

homogenized coefficient is computed over domains D = [−1, 2]× [−1, 2] and D = [0, 1]× [0, 1].
The coupling zone Dc is a band of width 0.4 circling at the boundary of D, and we consider a unit
strain boundary condition at the boundary of D. For each number N of Monte Carlo realizations,

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme



NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 17

(a) ε = 8/3, Sample 1 (b) ε = 2/3, Sample 1 (c) ε = 1/3, Sample 1 (d) ε = 1/6, Sample 1

(e) ε = 8/3, Sample 2 (f) ε = 2/3, Sample 2 (g) ε = 1/3, Sample 2 (h) ε = 1/6, Sample 2

Figure 10. Map of parameter kε(x) for two realizations of each of the cases considered here (from left to
right: ε = `c/L = 8/3, ε = 2/3, ε = 1/3, and ε = 1/6).

Arlequin estimates are computed for 5 different ensembles of N realizations. The number of
triangular finite elements for the micro-structure is the same as for the KUBC, SUBC and periodic
estimates (see above), and the macro-structure is discretized with 81 elements. In Figure 11, the
value of the Arlequin estimate can be observed and compared to those obtained with the KUBC,
SUBC, and periodic estimates.

The first observation that should made on these results is that, except for the smallest cell
(Figure 11(a)), the estimates obtained with our method and with the periodic boundary conditions
are very similar. The KUBC and SUBC estimates provide bounds for both these estimates (at
convergence for a given cell size). The second observation concerns the first case. Remember
that periodization of the medium implies that the realizations for ε = 8/3 are all homogeneous.
In that case, all knowledge of correlation is lost, and only the first-order marginal law remains. As
the realizations are all homogeneous, the periodic boundary conditions therefore provide exactly
the same estimates as the KUBC, which are very bad. On the other hand, the Arlequin estimate
provides a reasonable value of the homogenized coefficient. Note however that, as all statistical
information has disappeared, except that related to the first-order marginal law, we do not expect
that the Arlequin method will in general provide perfect estimates of the homogenized coefficient.
As before, this example should be seen as a promising feature of our method.

6. CONCLUSIONS AND PROSPECTS

In this paper, we have introduced a new computational method for the homogenization of random
media. It is based on two major ingredients: (1) a stochastic-deterministic coupling method that
limits the influence of the boundary conditions in the homogenization experiments, and (2) an
iterative technique for updating the value of the tentative deterministic model. At convergence, the
material parameter of the deterministic model is expected to provide the value of the homogenized
tensor. The results obtained for the chosen 2D example are spectacular. In that case, the bias
observed in the KUBC and SUBC estimates totally disappears, even for very large correlation length
ε = `c/L. On the other hand, the biases obtained in the 1D example are non-zero but smaller than for
the corresponding KUBC estimates. With respect to the classical periodic homogenization method,
our estimates seem to compare well at all sizes, except for small cells, for which our estimates are
much more accurate.

This promising behavior of the proposed method should obviously be confirmed on other
examples, starting with a 3D problem. However, this method will show its true interest not on
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(a) ε = 8/3 (b) ε = 2/3

(c) ε = 1/3 (d) ε = 1/6

Figure 11. Convergence of the Arlequin estimate Kε
N (black pluses) for different correlation lengths ((a):

ε = `c/L = 8/3, (b): ε = 2/3, (c): ε = 1/3, and (d): ε = 1/6) as a function of the numbers of Monte Carlo
trials N , and comparison with the coefficients Ǩε

N (light grey crosses) and K̂ε
N (light grey pluses) and the

periodc estimate (black circles). The dashed lines indicate the values of E[kε] and E[k−1
ε ]−1.

examples (as those that were considered in this paper) for which current techniques already work
(in particular the periodic boundary conditions approach), but really on examples where the full
potential of the Arlequin method as a multi-model coupling technique can be used. In particular, the
approach can be used in cases when the equation driving the behavior of the micro-structure is not
the same as the equation driving the homogenized equation. As an example, one could consider the
homogenization of an elastic random media by a beam model. Other promising examples include
the coupling of wave propagation models with kinetic models (where the variable of interest is not
a displacement field but a phase-space energy density) [38, 39].

ACKNOWLEDGEMENTS

This work was partially supported by the ANR project TYCHE (Advanced methods using stochastic
modeling in high dimension for uncertainty modeling, quantification and propagation in computational
mechanics of solids and fluids), with project number ANR-2010-BLAN-0904, and by grants from DIGITEO
and Région Ile-de-France, with project number 2009-26D. The author would also like to thank Prof. Didier
Clouteau for fruitful discussions on the content of this paper.

REFERENCES

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme



NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 19

1. Papanicolaou GC, Varadhan SR. Boundary value problems with rapidly oscillating random coefficients.
Proceedings of the Conference on Random Fields, Seria Colloquia Mathematica Societatis Janos Bolyai, vol. 2,
Fritz J, Lebowitz JL (eds.), North Holland, 1981; 835–873.

2. Tartar L. The general theory of homogenization: a personalized introduction, Lecture notes of the Unione
Matematica Italiana, vol. 7. Springer, 2009.

3. Kozlov SM. Averaging of random operators. Math. USSR Sbornik 1980; 37(2):167–180, doi:10.1070/
SM1980v037n02ABEH001948.

4. Zhikov VV, Kozlov SM, Oleinik OA, Ngoan KT. Averaging and G-convergence of differential operators. Russian
Math. Surv. 1979; 34:69, doi:10.1070/RM1979v034n05ABEH003898.

5. Dal Maso G, Modica L. Nonlinear stochastic homogenization. Annali di Matematica Pura ed Applicata 1986;
144(1):347–389, doi:10.1007/BF01760826.

6. Yurinskii VV. Averaging elliptic equations with random coefficients. Siberian Math. J. 1979; 20(4):611–623, doi:
10.1007/BF00970374.

7. Yurinskii VV. Averaging an elliptic boundary-value problem with random coefficients. Siberian Math. J. 1980;
21(3):470–482, doi:10.1007/BF00968192.

8. Sab K. On the homogenization and the simulation of random materials. Europ. J. Mech. A/Solids 1992; 11(5):585–
607.
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