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Infrastructure networks are essential to the socioeconomic development of any country. This article
applies clustering analysis to extract the inherent structural properties of realistic-size infrastructure
networks. Network components with high criticality are identified and a general hierarchical modelling
framework is developed for representing the networked system into a scalable hierarchical structure of
corresponding fictitious networks. This representation makes a multi-scale criticality analysis possible,
beyond the widely used component-level criticality analysis, whose results obtained from zoom-in
analysis can support confident decision making.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Engineered critical infrastructures are ‘a network of indepen-
dent, large-scale, man-made systems…that function collaboratively
and synergistically to produce a continuous flow of essential goods
(e.g. energy, data, water…) and services (e.g. banking, healthcare,
transportation)’ [1] vital to the economy, security and well-being of
any country. These systems are exposed to multiple hazards and
threats, some of which are even unexpected and emergent, so that a
complete analysis by exhaustive treatment cannot be guaranteed.
Furthermore, the infrastructure networks consist of a large number
of elements whose interactions are not easily modeled and quanti-
fied. In practice, then, the performance and reliability assessment of
such ‘complex’ systems has proved to be a non-trivial task.

The theory of complex networks has in recent years emerged as
a valid tool for describing, modelling and quantifying complex
systems in many branches of science [2–5]. Based on the network
topology and its treatment by tools of graph theory, various
statistical measures have been introduced to evaluate the global
structural properties of the network and quantify the importance
of the individual elements in the structure of the system [6–8].
While global performance indicators encompass the static char-
acteristics of the whole network, the importance of the different
ll rights reserved.
elements in the network can be seen from the point of view of
their individual connectivity efficiency and/or their contribution to
the propagation of failures through the system network of con-
nections [9–11]. Among these measures, classical and relevant
statistics are the network efficiency [12–14], which evaluates the
connectivity of the whole network, and the topological centrality
measures including degree centrality (CD) [16,17], closeness
centrality (CC) [15,17], betweenness centrality (CB) [17] and infor-
mation centrality (CI) [18,19], which rely on topological information
to qualify the importance of individual network elements.

On the other hand, recent studies suggest that many real
complex networks exhibit a modularized organization [20]. In
many cases, these modularized structures are found to correspond
to functional units within networks (ecological niches in food
webs, modules in biochemical networks) [21]. Broadly speaking,
clusters (also called communities or modules) are found in the
network, forming groups of elements that are densely intercon-
nected with each other but only sparsely connected with the rest
of the network. The study of the clustered structure of the network
of a critical infrastructure is of particular interest because such
structure can provide a protection for the system against attacks
from an intruder [22], reduce the effects of cascade failures [23]
and point at important heterogeneities within the network that
may not be registered via network level measures [21]. Finally,
hierarchically modularized organization, which is a central idea
about the life process in biology, is found to be also an internal
structure of many technological networks [24], and can be utilized
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Nomenclature

V set of network nodes
E set of network edges
G(V, E) a network with set of nodes V and edges E
A adjacency matrix of network
sij similarity measure between node i and j
S similarity matrix of network
Lsys normalized graph Laplacian matrix
Q network modularity index
SSE sum of square error
D network degree matrix
DB Davies–Bouldin index of clustering
Dunn Dunn index of clustering

Ck cluster k of network G(V, E)
Nk the central node of cluster k
n number of network nodes
m number of network edges
nk number of nodes in cluster k
ΛðkÞ set of fictitious nodes at level k
EðkÞ set of fictitious edges at level k
GðkÞðΛðkÞ,EðkÞÞ fictitious network at level k of the hierarchy
EðGÞ topology efficiency of network G
V ðkÞ
i node i of the fictitious network at level k of the

hierarchy
CI
V ðkÞ
i

information centrality of node V ðkÞ
i

dij shortest path between node i and j
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to model these complex systems for their understanding and
analysis [25].

The objective of the work presented in this paper is twofold.
First, to propose clustering analysis for extracting some inherent
structural properties of a network of a critical infrastructure and,
second to adopt a scheme of successive clustering to obtain a
hierarchical model made of different varied-size grained virtual
networks which can be exploited to perform zoom-in assess-
ments, focusing on the most relevant clusters in the virtual
networks at each level of the hierarchy.

The remainder of this paper is organized as follows: Section 2
presents the proposed spectral clustering analysis, taking the
structure of the Italian 380 kV power transmission network as
an example for illustration; in Section 3, hierarchical modelling of
a complex network is first introduced, and then multi-scaled
criticality analyses are performed on the hierarchical model;
conclusions are drawn in Section 4.
2. Clustering analysis

2.1. Network representation

Graph theory provides a natural framework for the mathema-
tical representation of complex networks. A graph is an ordered
pair GðV ,EÞcomprising a set of vertices (nodes)V ¼ v1,v2,…,vn
together with a set of edges (also called arcs or links)
E¼ e1,e2,…,em, which are two-element subsets of V. The network
structure is usually defined by the n�n adjacency matrix, which
defines which two nodes are connected by assigning a 1 to the
corresponding element of the matrix; otherwise, the value in the
matrix is 0 if there is no connection between the two nodes.
As described, this type of graph is unweighted and undirected.
A graph is weighted if a value (weight) is assigned to each edge
representing properties of the connection like costs, lengths,
capacities, etc. For example, the matrix of physical distances is
often used in conjunction with the adjacency matrix to describe a
network also with respect to its spatial dimension [12,26].

In this paper, we take an exemplification of the analyses
proposed on the 380 kV Italian power transmission network
(Fig. 1). This network is a branch of the high-voltage-level
transmission, which can be modeled as a graph of n¼127 nodes
connected by m¼171 links [7],[27], defined by its n�n adjacency
(connection) matrix A whose entries [aij] are 1 if there is an edge
joining node i to node j or 0 otherwise. It is important to underline
that only the topology of the physical system is taken as reference
and used in the analyses, so that the hierarchical model and
clustering relate only on the network structure with no specific
relation to the electrical properties of the system. The sub-network
for Sardinia is not considered to ensure that the network is
connected in the sense of a topological space.
2.2. Unsupervised spectral clustering algorithm

Cluster analysis aims at identifying patterns around which
communities of elements in the network can be grouped, emer-
ging implicit information in the network structure [28]. Framed as
an unsupervised multiple classification problem [29], clustering
has been an essential undertaking in the context of explorative
data mining and also a common technique for statistical data
analysis used in many fields such as machine learning, pattern
recognition, image analysis, information retrieval, and bioinfor-
matics [30]. Theoretically, based on a similarity (affinity) measure
sijbetween pairs of data points (i,j), which is usually a measure of
distance between i and j, most clustering approaches seek to
achieve a minimum or maximum similarity value through an
iterative process of vertex grouping [25,28]. Different similarity
definitions can lead to different cluster partitioning of the
network.

The detailed description of the different clustering methods is
beyond the scope of this article. For a systematic and synthetic
review, the reader is encouraged to look at [28,30,31]. For the
purpose of the analyses presented in this paper, we adopt the
unsupervised spectral clustering algorithm (USCA) [32], which is
invariant to cluster shapes and densities and simple to implement.
The USCA makes use of the spectrum (eigenvalues) of the
similarity matrix of the data to perform dimensionality reduction
before Fuzzy k-means (FKM)-clustering in fewer dimensions.
Schematically, it is performed by the following steps [32]:

Unsupervised spectral clustering algorithm
Input: Similarity matrix S∈ℝn�n

1. Compute the normalized graph Laplacian matrix Lsym
2. Compute the first k eigenvalues λ1,λ2,…,λk and corresponding

eigenvectors u1,u2,…,ukof matrix Lsym. The first k eigenvalues
are such that they are very small whereas λkþ1 is relatively
large. All eigenvalues are ordered increasingly.

3. The number of clusters is set equal to k, according to the
eigengap heuristic theory [32].

4. Let U∈ℝn�k be the matrix containing the vectors u1,u2,:::,uk as
columns. Form the matrix T∈ℝn�k from U by normalizing the
rows to norm 1, that is set tij ¼ uij=ð∑ku2

ikÞ1=2.
5. For i¼1, …, n, let yi∈ℝkbe the vector corresponding to the ith

row of T.



Fig. 1. The 380 kV Italian power transmission network.
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6. Resort to the FKM algorithm [33,34] to partition the data
points ðyiÞi ¼ 1,:::,ninto k clustersA1,…,Ak.
Output: Clusters C1,…,Ckwith Ci ¼ jjyj∈Ai

In the first step, the Laplacian matrix Lsym is calculated from the
similarity (affinity) matrix as follows. The input similarity matrix S
is of size n�n and its generic element sij represents the similarity
between nodes i and j in the network. The diagonal components sii
are set to 1 and the matrix is symmetricðsij ¼ sjiÞ. The degree
matrix D is the diagonal matrix with diagonal entries d1, d2,…, dn
defined by

di ¼ ∑
N

j ¼ 1
sij i¼ 1,2,…,n: ð1Þ

Then, the normalized graph Laplacian matrix can be obtained:

Lsym ¼D−1=2LD−1=2 ¼ I−D−1=2SD−1=2 ð2Þ

where L¼D−S and I is the identity matrix of size n�n.
It should be noted that the eigengap heuristic theory at the

basis of the third step of the algorithm works well when the
modularized structure of the data are pronounced whereas the
more noisy or overlapping the clusters are, the less effective it is
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[32]. In those cases, other methods such as the Markov Clustering
Algorithm [35] can be used to find the optimal number of clusters.

2.3. Clustering results and analysis

2.3.1. Affinity construction
As mentioned in the previous section, the result of clustering is

sensitive to the similarity function which defines the proximity of
the nodes in the network. Since network clustering is to group the
vertices of the network into clusters taking into consideration the
edge structure of the graph in such a way that there should be
many links within each cluster and relatively few between the
clusters, using topological information itself is intuitionally appro-
priate to estimate the structure affinity of node pairs. In this view,
two node affinity definitions representative of the local and global
topological properties of the network structure are introduced in
this paper to support the successive cluster-level criticality
analysis.

Possibly, the most straightforward manner to quantify the
affinity between a pair of nodes in a network is to use only the
local adjacency information: nodes i and j are seen as similar if
they are linked directly, otherwise they are not. The consequent
adjacency affinity matrix S1 is identical to the adjacency matrix
A of the network.

The adjacency affinity uses only local direct connection infor-
mation and possibly fails to detect any other structure when a
network is not locally dense [24]. Since in this study, we use
clustering to decompose the network into topologically dense
community structures, for nodes to belong to the same cluster,
they should be highly connected to each other, i.e. not necessarily
by a direct link but by a short path [36]. For this reason, we
introduce the topological distance affinity to drive the clustering.
The topological distance (shortest path) dijbetween nodes i and j is
the minimum number of edges traversed to get from vertex i to
vertex j. The matrix D of the topological distances can be extracted
from the adjacency matrix A. Thereafter, the topological distance
affinity can then be defined based on the elements dij of D and the
Gaussian similarity function:

S2ði,jÞ ¼ expð−dij2=ð2s2ÞÞ i,j¼ 1,2,…,n ð3Þ

where s is a tuning parameter. This parameter can be tuned to
scale the Gaussian similarity function, similarly to the parameter ε
in the ε-neighborhood graph [32]. Unfortunately, there are no
theoretical results to guide the choice of the parameter, and only
some rules of thumb have been suggested in the literature [32]. In
our study, we choose a value of 0.8 for s, which is of the order of
the mean distance of a node to its kth nearest neighbor, where k is
chosen as k∼log(n)þ1.
Adjacency affinity
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Fig. 2. Adjacency affinity and topological distance affinity mat
Fig. 2 gives out the value landscape of both adjacency affinity
matrix S1 (left) and topological distance affinity matrix S2 (right)
for the 380 kV Italian power transmission network. One can notice
the difference in value scale: the adjacency affinity is a sparse
matrix with only values 0 and 1, whereas the topological distance
affinity measure shows that nodes in local neighborhoods have
relatively high similarity value while affinity values between far
away nodes are weak, although not necessarily negligible.

2.3.2. Cluster evaluation
The assessment of the quality of the clustering results is a non

trivial task because of the unsupervised nature of the analysis. The
clustering structure itself and the relational characteristics of the
dataset are often utilized as the measurement information for
clustering evaluation [25]. In our study, the evaluation of the
clustering is based on four representative indices capturing com-
plementary characteristics of the clusters found: the modularity
index (Q) as an indicator of the presence of a modularized
structure; the Sum of Squared Error (SSE) to quantify the cohesion
of clusters; the Davies–Bouldin index (DB) and Dunn index (Dunn)
to evaluate high intra-cluster similarity and low inter-cluster
similarity, with different metrics.

2.3.2.1. Modularity index. The modularity index Q, introduced by
Newman and Girvan [37], attempts to measure how well a given
partition of a network compartmentalizes its communities and is
defined as [38]:

Q ¼ ∑
k

i ¼ 1

ei
m

−
φi

2m

� �2
� �

ð4Þ

where k is the number of clusters, ei defines the number of links in
cluster i, φi is the sum of the degrees of the nodes in cluster i, and
m represents the total number of links in the whole network. Note
that when Q¼0, all the nodes are in one single community while
Q40 indicates the existence of some kind of inherent cluster
structure. Modularity measures the difference between the total
fraction of edges that fall within clusters versus the fraction one
would expect if edges were placed at random. Thus, high values of
Q represent network partitions in which more of the edges fall
within clusters than expected by chance [39]. Moreover, Newman
and Girvan [37] suggest that values of Q in the range of 0.2–0.7
designate the presence of cluster structures.

2.3.2.2. Sum of squared error (SSE). Sum of squared error (SSE)
measures the cohesion of clusters without respect to external
information, i.e. quantifies how closely related are the elements in
a cluster. SSE is suitable for comparing two clustering partitions or
two clusters [40]. Given two different sets of clusters resulting
Topological Distance Affinity
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rices for the 380 kV Italian power transmission network.



Fig. 3. Clustering results for the adjacency affinity and the topological distance affinity on the 380 kV Italian power transmission network.

Table 1
Comparison of the clustering results for adjacency affinity and topological distance
affinity.

Comparison items Adjacency affinity Topological distance affinity

Q 0.664 0.640
Number of cluster 4 4
Cluster central nodes
(N1, N2, N3, N4)

23, 40, 86, 119 23, 40, 99, 121

Cluster size (n1, n2, n3, n4) 36, 38, 36, 17 36, 41, 43, 7
DB 0.883 0.987
Dunn 0.455 0.455
SSE 1585 1867
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from two different clustering procedures, the one with smaller SSE
is preferable since this means that the prototypes (centroids) of
this clustering are superior representations of the points in the
clusters. SSE is formally defined as follows:

SSE¼ ∑
k

i ¼ 1
∑
j∈Ai

distðci,jÞ2 ð5Þ

where dist represents the topological distance (shortest path)
between node j and the central node ci of the cluster Ai which
node j belongs to.

2.3.2.3. Davies–Bouldin (DB) index [41]. The Davies–Bouldin (DB)
index introduced in [41] is formulated as follows:

DB¼ ð1=kÞ ∑
k

i ¼ 1
maxi≠j

SiþSj
dðci,cjÞ

� �� �
ð6Þ

where Si is the scatter within the ith cluster, i.e. the average
distance of all elements in cluster i to its centroid ci, and dðci,cjÞ is
the distance between clusters i and j. A clustering algorithm that
produces a collection of clusters with the smallest Davies–Bouldin
index is considered the best algorithm based on this criterion.

2.3.2.4. Dunn index [42]. The Dunn index is the ratio of the smallest
distance between observations not in the same cluster to the
largest intra-cluster distance:

Dunn¼min1≤i≤k min1≤j≤k,j≠i
δðCi,CjÞ

max1≤p≤kΔðCpÞ

� �� �
ð7Þ

where k is the number of clusters, the function δ gives the distance
between two clusters Ci and Cj (the shortest path between two
centroids) and Δ represents the diameter of a cluster Cp (the
maximum shortest path between any node pairs within the
cluster). Since internal criterions seek clusters with high intra-
cluster similarity and low inter-cluster similarity, algorithms that
produce clusters with high Dunn index are more desirable.

2.3.3. Clustering analysis of the 380 kV Italian power transmission
network

We applied the USCA for performing the clustering analysis of
the 380 kV Italian power transmission network. Both adjacency
affinity and topological distance affinity were considered. The
resulting partitions are showed in Fig. 3(a) and (b), respectively.
Different shapes represent different clusters. The filled nodes
locate the clusters centers, which are the physical node nearest
to the centroids of the clusters based on the Euclidean distance
measure. The two different affinity definitions produce somewhat
similar partitions in four clusters, though some differences exist.
The clusters in both cases exhibit not only physical proximity but
also intensity of the relationship in terms of the network con-
nectivity, which results from the fact that generally only nodes
with geographical closeness are connected in the power transmis-
sion network.

Table 1 represents the comparison results of the two partitions.
The Q values for adjacency affinity and topological distance affinity
are both within the range of [0.2, 0.7], which designates the
existence of a modularized structure within the 380 kV Italian
power transmission network. Partitioning into four clusters is
confirmed for both affinities. The size and central node for cluster
1 (whose elements are represented as squares in Fig. 3) are
identical and cluster 2 (circles) has same centroid but different
size, whereas cluster 3 (triangles) and 4 (diamonds) have neither
the same size nor identical central nodes. This discrepancy is
probably due to the fact that the nodes in the north part of the
Italian transmission network (composed by clusters 1 and 2) are
densely connected and their modularized structure is more
prominent compared with the south part (composed by clusters
3 and 4), thus both local and global topological affinities can
achieve the overall maximum of the modularity. Actually, the
Q values of the north part of the network (composed by cluster
1 and 2), i.e. 0.443 for adjacency affinity and 0.444 for topological
distance affinity, are both higher than those of the south part
(composed by clusters 3 and 4), i.e. 0.314 and 0.119 for adjacency
affinity and topological distance affinity, respectively.



Fig. 4. Inter-cluster links, cluster-border nodes, and central nodes for the 380 kV Italian power transmission network.

Table 2
Cluster membership value (MV), rank positions according to the information,
degree, closeness, and betweenness centrality measures for cluster-border and
central nodes (bold) of each cluster; only the 24 top-ranked are reported.

Cluster Critical node MV Rank CI Rank CD Rank CC Rank CB

1

23 0.9999
30 0.7296
59 0.7768 13 4 17 8
61 0.7606 20 9 11
76 0.5527 15 11 7

2

40 1.0000 24 18
31 0.7373
34 0.7948
60 0.8699 4 15 22
62 0.8114 8
64 0.8394 5 2 1 4
71 0.9054 22 14 15

3

86 0.9998 21
78 0.4772 10 6 21
79 0.9198 8 3 3 5
83 0.4775 22 16
107 0.7442 24
110 0.8203 10 10
112 0.5442

4

119 0.9993 4
109 0.9466
111 0.5724
114 0.7314
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In addition, the partitions obtained exhibit DB¼0.883, SSE¼1585
for adjacency affinity, and DB¼0.99, SSE¼1867 for topological
distance affinity. In both evaluation indexes DB and SSE, clustering
by adjacency affinity outperforms that by topological distance
affinity. Furthermore, the clusters from adjacency affinity are rela-
tively more balanced in size. For the above reasons, the adjacency
affinity is retained for the analyses of the following sections.

2.4. Component importance by clustering

A previous study [11] defined the community-level vulnerabil-
ity based on the reciprocal of the number of inter-cluster links,
thus showing that the modularized structure could be leveraged to
the criticality analysis of network elements. In this study, two
types of elements in the clustering are paid special attention to
(Fig. 4). First, the elements (links and vertices) which are in the
periphery and connect different clusters (hereafter called inter-
cluster links and cluster-border nodes, respectively) intuitively
play a critical role in the complex interaction and communication
occurring between different modules of the whole network. In this
sense, the so-called overlapping nodes [43,44] are similar to our
cluster-border nodes. Second, the central nodes within each
cluster, which own highest membership to the cluster, are
expected to have a dense pattern of local connections and their
failures could possibly propagate to a severe damage to the
network.

Fig. 4 represents the inter-cluster links (black lines), cluster-
border nodes (nodes with ‘þ ’ symbol inside) and the central
nodes (nodes filled with black color) obtained from the (adjacency
affinity) clustering of the 380 kV Italian power transmission
network. The inter-cluster links set E′is {(30–31), (30–34), (59–
60), (61–62), (64–78), (71–83), (76–79), (107–109), (110–111),
(112–114)}. Coincidently, the three lines identified as the most
critical triplet of lines in [45], because their removal would result
in a huge efficiency drop for the whole network, are among the
inter-cluster links set E′: {(64–78), (71–83), (76–79)}. This shows
the importance of these types of elements for the structured
robustness of a network, and the usefulness of clustering analysis
for their identification.

Table 2 reports the membership values of these cluster-border
nodes and cluster central nodes (bold), and their rank positions
according to the information, degree, closeness and betweenness



Fig. 5. Illustrative example of the construction of fictitious networks.
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centrality measures based on the results in [7]. Detailed definition
and explanation of these four centrality measures can be found in
the literature [7,15–19]. One can see that most of the nodes found
important by clustering, because cluster-border or central, are
ranked among the top 24 with highest centrality values, although
specific exceptions exist such as the nodes 23, 30, 31, 34, 112 in
clusters 1, 2, 3 and the nodes 109, 111 and 114 in cluster 4. This
difference is due to the fact that the “clustering-important” nodes
are identified based only on regional topological information and
not on any other consideration on the role in the whole network.
3. Hierarchical modelling and zoom-in assessment
of the network

3.1. Hierarchical model of the network

If one looks closely at the individual clusters in Fig. 3, it may
notice that some of them exhibit a modularized structure, and
hence can be decomposed further into sub-clusters. Indeed, many
real networks reveal a hierarchical organization, where vertices
divide into groups that further subdivide into groups of groups,
and so forth over multiple scales [4]. On this basis, a framework for
hierarchical system modelling has recently been proposed in [25]
aiming at reducing the computational burden of modelling the
entire system.

For illustration of the potential of the hierarchical modelling
framework for complex system analysis, by analogy one may think
of the electronic maps such as those provided by Google Maps; the
tools are powerful because they present information in a scalable
manner—despite the decrease in the amount of information as we
“zoom in”, the representation shows the information that is
relevant at the new scale.

In the same spirit, a hierarchical model representing the whole
system at the top and individual elements at the bottom could be
obtained via successively performing unsupervised spectral clus-
tering algorithm on the network. Then, based on the hierarchical
network representation, fictitious networks can be defined in each
level, from which the analyst can extract relevant information at
the suitable level of the hierarchy. Fictitious networks are cluster-
simplified representations of the real network and can facilitate
the understanding and analysis of the network properties by
focusing on the relevant information that emerges at the different
levels.

Following a similar formulation as in [46], the fictitious net-
work at level k is denoted by a graphGðkÞðΛðkÞ,EðkÞÞ. Let us denote as
V ðkÞ
i ði¼ 1,…,nðkÞÞ the node i of the fictitious network at level k of

the hierarchy and associate a weight to it which is equal to the
number of actual nodes which compose V ðkÞ

i . These fictitious nodes
are connected by mðkÞ fictitious edgesEðkÞ ¼ EðkÞ1 ,EðkÞ2 ,…,EðkÞmðkÞ . Con-
sidering parallel connections, EðkÞi is weighted by the reciprocal of
the number of actual edges it contains. Then, the fictitious net-
work is represented by a weighted adjacency matrix AðkÞwhose
element AðkÞ V ðkÞ

p ,V ðkÞ
q

� �
¼ 1=jEðkÞpq jif the fictitious nodes V ðkÞ

p and
V ðkÞ
q are connected by fictitious edge EðkÞpq and 0 otherwise. This

definition accounts for the fact that a fictitious edge embracing
several real links has that number of paths available between the
two communities it connects, thus holding more interaction
efficiency and smaller weight viewed as the physical distance
between the two communities connected by the virtual edge.
Fig. 5 gives an example of the construction of a fictitious network.

The 380 kV Italian power transmission network has been
modeled as a five levels hierarchy (to which correspond five
fictitious networks) by successively applying USCA. In Fig. 6, the
weighted fictitious networks and their corresponding weighted
adjacency matrices at the levels 2 and 3 of the hierarchy are
presented for illustration. The number beside the fictitious node
V ðkÞ
i represents its weight (number of actual nodes included in the

virtual node): for example, the weight of V ð2Þ
3 is 36. The fictitious

network at level 1 is a single fictitious node whose size is 127, the
total number of nodes in the network, whereas at the last level
5 the fictitious network corresponds to the actual physical
network.
3.2. Centrality analysis on fictitious networks

Based on the hierarchical representation of the network,
problems such as reliability assessment and damage propagation
[25] can be swiftly unraveled with low complexity at the expense
of low specificity. In this section, we carry out centrality analysis
on the fictitious networks, focusing step-wise on the most critical
clusters (fictitious nodes) at each scale of the hierarchy. This is
valuable for decision makers when they want to allot limited
investments to a regional part of the network, which is usually
operated by local organizations, to improve the vulnerability of the
overall network system.

3.2.1. Efficiency modelling
Network topological efficiency introduced in [46] allows a

quantitative analysis of the information flow, and works both in
the unweighted abstraction and in the more realistic assumption
of weighted networks. This measure is based on the assumption
that the information (communication) in a network travels along
the shortest routes, and that the efficiency in the communication
between two nodes i and j, εij, is inversely proportional to their
shortest path length dij which is defined as the smallest sum of the
physical distances throughout all the possible paths in the
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Fig. 6. Fictitious networks and their corresponding weighted adjacency matrices at levels 2 and 3 of the hierarchical model for the 380 kV Italian power transmission
network.
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weighted network. Then, the efficiency of the whole network is
given by:

EðGÞ ¼ ∑i≠j∈Gεij
nðn−1Þ ¼ 1

nðn−1Þ ∑
i≠j∈G

1
dij

: ð8Þ

This formula produces a value of E that can vary in the range of
½0,∞Þ.EðGÞ is defined as 1 in the case of n¼1, i.e., there is only one
single node in the network. It is more practical to have E normal-
ized to be in [0, 1]. For this reason, we consider the ideal case
Gidealin which the network has all the nðn−1Þ possible links among
its nodes. In such a case, the information is propagated in the most
efficient way since dij equals the physical distance between nodes
i and j and E assumes its maximum value. The efficiency EðGÞ
considered in the following of the paper is always divided by
EðGidealÞ and therefore0≤EðGÞ≤1.

Notice that, for our analysis of fictitious networks modelling of
the Italian power transmission network, the physical distance
exists even if there is no fictitious edge between two nodes
V ðkÞ
p andV ðkÞ

q : for generality, their physical distance is defined as
the reciprocal of the minimum size of the two fictitious nodes if
there is not fictitious edge connecting them. By this definition, the
physical distance of nodes in the bottom level fictitious network,
i.e. the actual network, coincides with that obtained by consider-
ing it as an unweighted network.

Fig. 7 plots the efficiency values of the fictitious networks at
each level of the hierarchy. It can be observed that as the
evaluation moves down in the hierarchy, the efficiency difference
between the fictitious network and the actual network decreases
as expected. Note that the minimum efficiency at level 3 stems
from the fact that the ideal fictitious networks Gideal have different
topologies and link weights at different levels of the hierarchy.
Thus, it is not necessary that the curve of network efficiency
decreases monotonically. Fig. 7 is used to qualitatively show that
as the evaluation moves down in the hierarchy, the efficiency
approximation gets closer to the efficiency of the actual network.
3.2.2. Zoom-in criticality analysis
The hierarchical model makes a multi-scale criticality analysis

possible, beyond the widely studied component-level criticality
analysis. This zoom-in criticality analysis is analogous to the
procedure of locating a specific site in a scalable electronic map
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manually: a large area is first fixed at the coarse granular scale of
the map based on the limited information at that level, and then
the user can zoom in on that area to get a relatively fine-grained
view which offers more local information, based on which a
narrower region can be identified, repeating this operation until
the desired scale of the map.

Information centrality is used as an illustration to quantify the
importance criticality of a cluster on the network. Parallel with the
component information centrality definition [18,19,47], we define
the information centrality for cluster V ðkÞ

i at level k of the hierarchy
as the information centrality of its corresponding fictitious node in
the fictitious networks, i.e. the relative drop in the fictitious
network topological efficiency caused by the removal of all the
fictitious edges incident in V ðkÞ

i :

CI
V ðkÞ
i
¼ ΔEðV ðkÞ

i Þ
E

¼ E½GðkÞ�−E½GðkÞ
r �

E½GðkÞ�
ð9Þ

where GðkÞ
r is the network obtained by removing from the original

fictitious network the fictitious edges incident in node V ðkÞ
i .

An illustration of the process of zoom-in criticality analysis on the
5-levels hierarchical model of the 380 kV Italian power transmission
network built by clustering in Section 3.1 is presented in Fig. 8. By
first ‘opening’ the single unit at level 1, a weighted fictitious network
with 4 nodes at level 2 is achieved, in which the information
Cluster ( 2 )
i

I
V
C

(2)
4V 0.8887 
(2)

1V 0.8475 
(2)

3V 0.8027 
(2)

2V 0.5534 

V1
(1)

V1
(2)

 38

V2
(2)

 17

V3
(2)

 36

V4
(2)

 36

V
1
(4) 4

V
2
(4) 3

V
3
(4) 2

V
4
(4) 2

Cluster ( 4)
i

I
V
C

(4)
1V 0.8667 
(4)

2V 0.6364 
(4)

4V 0.6000 
(4)

3V 0.4667 

Fig. 8. The process of zooming-in analysis of
centrality of each fictitious node is calculated according to Eq. (9)
and is presented in the corresponding Table. It shows that node V ð2Þ

4
owns the highest CI value; then, the internal topology of V ð2Þ

4 at level
3 of the hierarchy is unraveled by zooming into V ð2Þ

4 . Similarly, the
most critical clusters at levels 3 and 4 can be determined as V ð3Þ

4 and
V ð4Þ
1 , which include 11 and 4 actual nodes, respectively. In level 5,

which represents the real network, however, the four nodes have the
same values of information centrality since they are completely
connected and the removal of all the edges incident in any one of
the four nodes would result in the equal relative drop in the network
topological efficiency.

Note that the difference of cluster-level information centrality
is quite pronounced for the 380 kV Italian power transmission
network, compared to the node-level information centrality
reported in [7] where the difference between the biggest and
smallest CI values is only 0.0194; then, the analyst may have more
confidence to make clear-cut, relevant decisions based on the
cluster-level criticality results of the 380 kV Italian power trans-
mission network.
4. Conclusions

In this article, the feasibility of extracting cluster-level struc-
tural properties for a realistic-size network by clustering analysis
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has been first investigated, taking as reference example the 380 kV
Italian power transmission network structure. Then, the hierarch-
ical modelling framework has been utilized to represent the
networked system, forming a scalable hierarchical structure of
corresponding fictitious networks. In the context of the hierarch-
ical representation of the network, zoom-in criticality analysis has
been proposed to identify the most relevant clusters at the desired
level of the hierarchy.

For clustering analysis, both adjacency affinity and topological
affinity have been considered when applying USCA on the 380 kV
Italian power transmission network structure, and their results have
been compared to those of four classic centrality measures. For the
considered network, the adjacency affinity has turned out to give
superior partition. Also, the inter-cluster links, cluster-border nodes
and central nodes of each cluster, have been identified as critical:
most of the nodes found important by clustering, because cluster-
border or central, have turned out to be ranked among the top 24
with highest centrality values (CI, CD, CC and CB) and the most
critical triplet of lines identified in [45] is contained within the
inter-cluster links set. This confirms the importance of these types
of elements for the structural robustness of a network and the
usefulness of clustering analysis for their identification.

Then, the systemic hierarchical representation has been intro-
duced for modelling and analysis of complex network systems,
with the objective of rendering more manageable the treatment of
real-world critical infrastructures. A five-level hierarchical model
of the 380 kV Italian power transmission network structure has
been obtained by successively applying USCA. The cluster-level
information centrality has been proposed and used as an illustra-
tion to quantify the importance criticality of a cluster in the
network. The most critical clusters at each level of the hierarchy
have been identified with high confidence for decision making.

Finally, a comment is in order with respect to the computa-
tional complexity of the approach proposed. The complexity
depends primarily on the computational cost of spectral cluster-
ing, where a large number of eigenvectors have to be computed for
large graph Laplace matrices (step 2 of the algorithm), whose time
complexity of computing eigenvectors is Oðn3Þ[48]. Thus, the
computation cost of constructing the hierarchical model isOðn3lÞ,
where l is the number of hierarchical levels. In general, the high-
quality clustering of the spectral method is at the expense of its
comparatively demanding computation cost. In this study, the
spectral clustering is adopted as one possible way to extract some
inherent cluster-level structural properties and derive the hier-
archical modelling which sets the base for a multi-scale criticality
analysis, which is our main objective. Furthermore, as many real
adjacency matrices are sparse in nature, efficient existing methods
to compute the eigenvectors of sparse matrices need to be adopted
[49]. Finally, some improvements of spectral clustering have been
proposed in Statistics and Data Mining such as parallel spectral
clustering [50], distributed method [51] and fast approximation
[52] to make it scalable to large network problems.
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