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ABSTRACT: The uncertainties in the model of an en«distributior system made of a solar pi, a storage
energy system and loads (power demanded by theisard) are investigated, treating the epistemialvkes
as possibilistic and the aleatory ones as prolsaioiliin particular, time-varying probabilistic thbutions of
the solar irradiation and the power demanded betiteusers is inferred from historical data. Thexom@pu-
tational framework for the joint propagation of bdypes of uncertainty is applied through the maxfehe
energy distribution system to compute the ExpeEieergy Not Supplied.

1 INTRODUCTION (e.g. time). This constitutes an innovative apphoac
as, traditionally, a unique probability density ¢un
Renewable energy is getting more and more imton is inferred from the historical data of ongefi
portant as a solution for the climate change conperiod (e.g. a year), without considering thatdh&a
cerns. However, it is affected by large uncertaintydistribution evolves through time in a continuous
due to i) the intermittent nature of the energy seur way (Ramsay & Silverman 2005). Here, we wish to
(the amount of energy daily available can varyta loanalyze that time variation, in order to i) find @s-
from one season to another at the same site) and fimate of a time-varying probabilistic model any i
the possible unavailability of the unit when itres  obtain more accurate results in the uncertainty-ana
quired to generate (Borges 2012); these two issugsis. As a quantitative indicator of the analysie w
mine the reliability of the renewable energy. Insthi evaluate the Expected Energy Not Supplied, a relia-
work, we deal with the first one, considering twobility index commonly used in this field (Billinto&
types of uncertainty: randomness due to inhererllan 1996)
variability in the system behavior (aleatory uncer- The results of the uncertainty propagation are
tainty) and imprecision due to lack of knowledgecompared with i) the pure probabilistic uncertainty
and information on the system (epistemic uncertainpropagation approach (Marseguerra & Zio 2002)
ty) as typically distinguished in system risk asédy and ii) the Monte Carlo Simulation and Fuzzy Inter-
(Helton 2004). Recently, the co-existence of algato val Analysis approach considering the random vari-
and epistemic uncertainties has been addressed ables constant in time, i.e. described by a unique
the reliability assessment of distributed generatio probability density function.
systems, representing the aleatory variables ds pro The reminder of the paper is organized as fol-
abilistic and the epistemic ones as possibilisiied a lows. In Section 2, the case study is presented; in
hybrid propagation approach has been introduceBlection 3, the functional data analysis methods
(Li & Zio 2012). adopted for the modeling of time-varying data and
In the present paper, we analyse the aleatory artdle Monte Carlo and Fuzzy Interval Analysis ap-
epistemic uncertainties of a model of an energy disproach used for the joint uncertainty propagation a
tribution system made of a solar panel, a storage edetailed, in Section 4, the results are reported and
ergy system and loads (power demanded by the endemmented; finally, in Section 5, conclusions are
users). We embrace the Monte Carlo Simulation angdrovided.
Fuzzy Interval Analysis approach for the joint prop
agation of uncertainties (Li & Zio 2012, Baraldi &
Zio 2008) considering the variations in time of ran-2 CASE STUDY
dom variables like solar irradiation and loads wnthi
a Functional Data Analysis framework where datalhe case study concerns the design of a solar panel
are represented as functions of a continuous Mariabthat provides electrical energy to a house located



the south of Spain. The size of the panel is a tradesent the level of charge of the battery, calcutathre

off between its performance to satisfy the demand difference between stored energies of two consecu-
energy and the high costs of construction andive steps. The following equations describe the
maintenance. To perform this evaluation we considmodel of the battery when it is charging, i.e.
er the demand of power requested by the end-users(t) =-P,4 <0, (See eq. 2 and 3), when it is dis-
and the possibility of storing the generated exeeeccharging, i.e.P;(t) =-Py >0, (See eq. 4 and 5) and
ance power in a battery that is necessary when thehen itis idle, i.eP;(t) =Py =0, (See eq. 6).

power from the solar is not sufficient (e.g. during -, [P (t) Bt < K Qmax (2)
cloudy days) or it is completely absent (e.g. dyrin Q(t+1) = Q(t) -7, TPy (t) Dt 3)
nights). This issue deals with a big amount of unce ¢ mn

tainty due to the stochasticity of the behaviouthaf P (1) [Btiin /779 < Ko Qmax (4)
end-users, the variability of the solar irradiafitine ~ Q(t +1) = Q(t) = Ps (t) Aty /74 (5)
lack of knowledge about some operation parameterg(t +1) = Q(t) —Wiouy (6)

of the solar panel. where Q(t) is the capacity of the battery at hour t

In Section 2.1, the description of the system modpawn), ;. "and 5, are the charging and discharging
el is provided and in Section 2.2, the uncertarety efficiency, respectivelyk, and K, are the maxi-

resentation of its input variables is presented. mum portion of rated capacity that can be added to
and withdraw from storage in an hour, respectively,
2.1 Description of the system model Qnax IS the rated maximum stored energy,,, is

the battery hourly discharged energy [kKWh{,,, IS

The system consists of three different parts: ti@rs e scheduling interval. The parameter values adopt
panel, the load and the battery, as illustrateBig? o4 in the model arep =n, = 085, K,=K4 =03
C 1 C ~

ure 1. Qnax =40, Whouny = 05KWh andat,,, =1 hour. In this
 Solar __{)) work, the initial level in the battery has been as-
lrmi!almn Solar panel ¥ Sumed to be equa| to zero.
— Ps i
o Q mny 2.2 Uncertainty representation
Toad, Prs In the model of the solar panel (eq. 1) the inwats
_ be classified in i) aleatory variable, i.e. theasal-
Figure 1. Scheme of theystem radiation, ii) epistemic variables, i.e. the opienat

parameters of the vecter, and iii) constant, i.e. the
The power generated by the solar pamellkW],  number of solar cellN that in the present simulation
is a function of the solar irradiatiors, the number has been taken equal to 30.
of solar cells,N, and a vector of operation parame- The solar irradiationS, [KW/m?] depends on the
ters, 0 (0=1ypp Vire Voo: | s Nog ke .k, T, ) (Li & Zio  Variability of the weather. It is typically desceith by
2012): a probabilistic distribution, e.g. a Beta distriont
b - NEFFN. O (1) Who_s_e parameters, e.g.and g, are mferred_from
S yoy sufficient historical data and are fixed for a givese-
where 1, =S0gc+k (T, -29), Vy =Voc kv O, riod (Li & Zio 2012). In the present paper, we Istil
_ Ny =20 _ Vwer Dype represent the solar irradiation with the Beta thetr
Te=Ta*S— g FF TV, O, tion but we consider its evolution in time estimati

IepiS the current at maximum power point [A], different values of the parametersandf for each
Ve is the voltage at maximum power point [V] day of the year according the method explained in
Vi 'is the open circuit voltage [VIL.. is the short  Section 3.1. The historical data used to inferpae
oc sc . . . . . .
circuit current [A], N,, is the nominal operating rameters are daily irradiation data in a geograghic

0 : lose area near Seville, Spain, (the square with la
temperature [°Clk, is the current temperature coef- £'95€ ; : .
ficient [A/°C], k, is the voltage temperature coeffi- tude in the interval [37,38] and longitude in [&);
cient [V/°C], T, is the ambient temperature [°C]. registered from July 1983 to June 2005 and stared i

; the database NASAEarth Surface Meteorology for
theTQr?dl-(L)gg’rz.LD [kW], s the power demanded by Solar Energy(NASA 2008). By way of example,

The output model of the battery is the powey, Figure 2 shows an histogram of the historical data

[kW], that can be storage in the battery when the s '6corded and the correspondent Beta distribution of
lar panel produces more power than the demand, i.?g solar wgadlatlo(tjr]] in four different days of yul
when p,-R_ =P, >0, and can be given to the end- (L - 10, 20" and 30" July, respectively).

users when the opposite occurs, i.e. when

Ps-Pp =Py <0. In the present study we have

adopted a dynamic model (Chen et al 2011) to repre-



117 10/7 3.1 Uncertainty modeling of climatic data

= £ @ We observan=22 realizations of irradiation data for
& < PN & 7 the chosen location through time, during the year:
= F FE B § T | [ R B N B for each time unit, (i.e., a day), we observedif-
08 G2 0 h 08 10 AR GA G a1 ferent samples of datg(t,), wherei =1...n denotes
Solar Irradiation Solar Irradiation the sample units, and=1...Q denotes the different
207 3077 time units. We suppose that, for a fixed time the
g e z o observed dat&(t,) is a random independent sample
2 = ] " jﬂﬂ\ from a beta distribution of parameterg,), 5(t,) :
O B B S E i S E B s B S (tq) ~ Betaa(ty), Alty)), Di =1...n, g=1..Q (7)
00 02 04 06 08 10 00 02 04 06 08 10 . . .
Finally, we assume that observations on different
_ Solar radiation Solar nadiation times are conditionally independent, given the val-
Flgure.2. .Hlst.ogram of the ricoro'led data and theespondent ues of alty), Blty) - In particular, this implies that the
Beta distribution for the} 10, 20" and 3" July. dependence structure of the solar irradiation én di

. e ferent days is entirely expressed by means of the

The operation parameters, are classified int0  ime.varying structure of the two parameters, which
parameters provided by the manufacturers, e.gue suppose can be modeled as smooth and regular
e Vinpe: Voo 5o Not ke, Ky, @nd by the end-users, fnctions of time, due to the intrinsic regulariy
e.g. T,. Both are associated with epistemic uncerysig.
tainty due to i) the lack of information provideg b To estimate the time-varying parameters we
the manufacturers for commercial reasons and ii) thﬁdopt the method of moment by expressing them in
limited quantity of data available for each house f orms of moments of data for each time unyit
private issues (Li & Zio 2012). We represent these;-; . We suppose that the moments of the dis-
parameters by trapezoidal p055|bT|I|st|c distribién  yipytion are regular one year-periodic functionsa
e, e g e me, e n% re) as proposed  gince ysing the sample daily moments as estimates
in (Li & Zio 2012). In Figure 3, the possibilistiis- g4 to extremely non-regular functions, we conside
tribution 7™ of the nominal operating temperature 3 method to regularize data, estimating a proper low
N, is reported. For the sake of brevity, we will notgimensional functional space in which the moments

present here the basics of possib_ility theory;ithe 5.0 defined, by exploiting the procedure proposed i
terested reader can refer to (Dubois 2006). (Pini & Vantini 2013).

1

Ny
T 3.1.1 Estimate of the mean function
05 In order to estimate the mean function, we apply the
Interval Testing Procedure (ITP) described in (Pini
& Vantini 2013). The method consists in choosing a
% w0 42 a4 functional basis, calculating the basis expansmn c
_ _ _ _N"t o efficients for each sample unit, and testing tlge si
Figure 3. Trapezoidal possibility distribution} , of the nom- nificance of each basis function. The final resilt
inal operating temperaturtlo the test is the selection of the basis componéats t
. are statistically significant to describe the mean
_The load,R,, [kW], is affected by aleatory uncer- f,nction of da>t/a. 25 data are supposed toTbe
tainty since its value depends on the behavioti@®! ,ariggic functions, withl equal to one year, a proper
end-users. Typically it is modelled by a normalchgice for the basis used to describe data isTthe

probabilistic distribution (Liu et al 2011), withap  periodic Fourier basis. Hence, we use an interpolat
rameters inferred from the large amount of histdric ing Fourier expansion:

data available. In this work, we use a normal distr Q-1/2
bution, estimating two different time-varying mean s (tq):@+ z ay, co{z—ﬂhtq]+bh sin(z—”htq], (8)
values for days and nightgigay, and pnign, respec- 2 = T T
tively, following the procedure explained in Sectionwhich associates at each data and for each freguenc
3.2, and maintaining a same standard deviation h a bivariate vector of coefficienta,b").
In order to test the significance of the basis func
tions, we perform the following bivariate test:

3 METHODS HE g6 ") |= 00

9)

In the following, the methods for the data analysisH " 'E[(a(h) b(h)Hi 00)"
(Section 3.1 and 3.2) and for the joumcertainty T ’ ’

propagation (Section 3.3), are explained with referThe test of equation 9 is performed by means of a
ence to the model of Section 2. permutation test (Pesarin & Salmaso 2010), based



on the Hotelling T-square test statistic and on thés about 24.54 kWh (Sech-Spahousec 2011) and in
joint permutations of the signs of the coefficientsthe night the demand of electricity is the halfrtha
vectors. during the day (Omnie 2012). Thus, it is possible t
Then, according to the ITP, we combine the reinfer that the means of the hourly load for dayd an
sults of the tests of eq. 9 by means of non pamdnet nights are 1.363 kW and 0.682 kW, respectively.
combination tests on all closed intervals, corregti Since these data are aggregated through the entire
the marginal p-values and providing an intervalewis year, it is not possible to infer a time varyingtd
control of the Family Wise Error Rate. Finally, we bution. Consequently, a different approach is here
select as significant all the frequencies with agoa necessary.
ciated corrected p-value greater than 5%. We assume that most of the usual household elec-
The estimate of the function will be th& trical devices (e.g. washing machine, refrigerator,
periodic function obtained by means of the FourieTV) are approximately used in the same way in
expansion of the sample mean coefficients resttictesummer and winter, and, thus, the electrical con-
to the selected frequencies. That isy i$ the vector sumption of these devices is constant throughout the
identifying the final selection of significant fregi-  year. The only devices that may have a time-varying

cies, (1, =0 if the result of theh-th test isH{”, load are the air conditioning systems (whose load
v, =1 if the result of then-the test isH{"), the final  varies in the warm months depending on the external
estimate of the mean function is given by: temperature) and the lighting (whose load changes

A ) B 27 (2 through the year depending on the variation of day-
As(tg) ==+ a® CO{? htqj*b(h) 5'”(? htqj (10) " light time). Since for the former, the load is high
o than for the latter, we consider only the air cendi

3.1.2 Estimate of the variance function lt:)o;dlng systems (AC) as a device with a time vagyin

The method used to find the estimate of the vaganc Starting from the daily minimum and maximum

function is formally the same as the method de.femperatures in the Seville area, stored in the NAS

scribed to estimate the mean. The only differesce iy 1, pase (NASA 2008), we calculate the time-
constituted by the starting point of the test. &tf |- .vina'mean of the load of an AC with some fixed
the application of the TP briefly described in thecharacteristics. We consider a class "A" devicéh wi

last paragraph epables to estimate the mean ﬁmCti%n Energy Efficiency Ratio (EER) equal to 3.5. The
of a set of functional data. Consequently, in ofer ., e 6t AC installed in the house is set equal to

. : the mean number of conditioners in Spanish homes
we can associate to each sample unit another funﬁ]- Andalusia, that is 1.623 (INE 2008). The nominal

tional data o;z(t_q), i=1..,n, corrgsponding to the power of the AC s calculated as

squared deviation from the mean: PAC = SurfxCeilingx25  (ENEA  2006), where

02 (tg) = 5 (tg) ~ s (ty) (11) SurE20nt is the surface of the room ar@eil-
Then, the variance of the original data, which igng=2.7m is the higher of the ceiling. All data are

defined as the expected value of the deviations exhosen to indicate a representative Spanish house.

pressed in eq. 11, is estimated with the same methddnally, since the proportion of Spanish that leave

described above applied to the new data set contPe AC turned on at night is equal to 7.6% (INE
posed by the functiong®(t,) . 2008), we multiply the AC load at nights by this

proportion.
_ . In order to calculate the mean load of such AC
3.2 Uncertainty modeling of the load data system, first of all, we find functional estimaties

As well as the solar irradiation, also the loag, the mean tendency of the daily minimum and maxi-
[kW] has a time varying structure. In particularg w mum temperature for the given locatidim(ts) and
suppose that, for each day of the year the load Tmallg) [°C], respectively), by means of the HP-Test
has two normal distributions for days and nightson min and max temperatures, as shown in the pro-
with the same constant standard deviatior (0.25 cedure of Section 3.1.1. Then, for each tawe
[kW]) and two time-varying meansug_ 4, (t;) and perform.the following calculation:

U, ngn(ty) , respectively). The model assumed fors We fix a threshold temperatufines=26°C, and

the day and night load, for each timgis then the suppose that the AC is turned on when the
following: external temperatures exceed the threshold, as in

PLo gausniant (ta) ~ N i)y 02), 0g=1,...,Q .(12 (Izquierdo et al 2011).
Lo.dayinign: () = N(Ha cayrnign1q). o), DG =1 Q ( . ) + We estimate the daily lapse of time in which the
To estimate the day and night mean functions, it

. . , AC is turned onhyn(ty) [h], supposing for each
is not possible to proceed applying the ITP to the .y 5 |inear tempograqture profile betweBRi(ty)
daily load data, because in this case data aréinot 4T (o)’

rectly available. We know that the daily mean elec- MRt

trical consumption of a house in the south of Spain



Trnax(tq) =T
hon (tq) =24 max( q) thres
Tmax(tq) ~ T (tq)

This approximation is justified by the comparison

(13) values considered for those variables is
N/ At

steps' max *

The operative steps of the procedure to compute

] and night. Therefore, the total number of different

of our results with a daily temperature profile, ihe EENS index are the following:

that can be estimated from hourly data (Freg
Meteo 2012).

« The quantityhon(ty) is then divided into daily )
(10.00 a.m. - 10.00 p.m.) and nightly (10.00 p.m.™
- 10.00 a.m.) hours of switching ongf’(t,) and
ho™(t,), respectively), considering tha@axtg)
is attained at 4.00 p.m. afghin(t;) at 6.00 a.m.
(Free Meteo 2012).

* The mean power load on days of the AC is then
calculated as:

Hp,y day(ta) = PX“Nigomhion” g ) /A2EER) (14)
The mean load on nights, is:
Heo mighilta) = P Noorhion ™ ¢4 JO076/A2EER  (15)

Note that both quantities are divided by 12[h] in
order to found an estimate of the hourly power.

« The quantities ofup_ q4ay(tg) ANd 45 nigni(ty) are
finally added to the day and night fixed averages
(mean load without AC), calculated in order to
maintain the values of 1.363 kW and 0.682 kW ag'
yearly means. 4

3.3 Propagation of aleatory and epistemic 5.
uncertainty in the model of an energy system
made of a solar panel, a storage energy system
and the loads

The Monte Carlo Simulation and Fuzzy Interval®-
Analysis approach (Baraldi & Zio 2008) has been
adopted for the joint propagation of the aleatargl a
epistemic uncertainties of the model described in
Section 2 to compute the Expected Energy Not Sup-
plied (EENS) over a period of interest. The method
is based on the combination of the Monte Carlo
technique and the extension principle of fuzzy set
theory by means of the following two main steps
(Baudrit et al 2006):

i. repeated Monte Carlo sampling of the randony,
variables to process aleatory uncertainty;

ii. fuzzy interval analysis to process epistemic
uncertainty.

Since the analysis is time-varying, these two steps
have to be repeated for all the period of interkst.
particular, the following time steps have been con-
sidered:

- At,, =1 hour is the smallest time step of the sys-
tem model. The total number of hours in the peri-
od of interest is defined by the varialgeps

- At =12 hours is the time interval in which the
power generated by the solar parej, and that
demanded by the end-user,, can be consid-
ered constant. This assumption has been intro-
duced to reduce the computational time of the
simulation and to distinguish only between day

Set k=1 (outer loop processing aleatory uncer-
tainty).

Sample the Vectog*, | = 1...,Ngepe/ Aty Of the
solar irradiation s from the Beta distribution
(eq. 7) wheni is an odd number (i.e. when it is
day), otherwise, se&* =0 (i.e. when it is night).
Then, sample the vectdlip,, | = L....Ngepd Mrax;

of the loadp,,, from eq. 12 taking into account

the different distributions associated with that
variable during the days and nights. The vectors

§ and Pp’, 1= 1., Ngeps/ Ay, are trans-
formed intos{ and p.p*, j=1...Nge., respec-

tively, repeating each valust,,, times, to ob-

tain values of solar irradiations and loads for
each hour in all the period of interest.
Set a=0 (middle loop processing epistemic un-

certainty).
Set j=1 (inner loop processing the time varia-
tion).

Select the correspondirggcuts of the possibility
distributions  @7'vee, e spVee r'se ot P

') as intervals of possible values of the possi-
bilistic variables! ypp,Vipp: Voe: Tser Nots Ko Ky T -
Calculate the smallest and largest values of the

solar power generate@sﬁa and 5s'lﬁa, respec-

tively, by eq. 1 considering the fixed vallé
sampled for the random variablesand all val-
ues of the possibilistic variables
I wpp »Vipp Voer s Nt 1Ke . Ky, T, IN the a-cuts  of
their possibility distributions #'vee, 7%ee | 77ec
s e e v ).

Compute the value EDiﬁ'J?a=ES';a
P i T,a )
step 7.b. else go to step 7.c.:

a. set the Energy Not Supplied index equal to

zero, ENS', =0, and increase the level of

>0, go to step 7.a.; iPpy

j.a

energy in the Dbattery by eq. 3,
Qo = f(Q Pay ) s where
Py, =Ppy I;.a if the constraint defined in

eq. 2 is verified, otherwis@y" , is comput-

ed by eq. 2. If the level of energy in the bat-
tery at the step +1 is higher than its maxi-



v ieoX > miens IS defined by all itsa-cut intervals [
mum capacity, |.e.9]m7 Qmax; then, set @%ﬁé]
9T+1,a =Qrax- On t_he basis of the rule of th'e'possib'ility theory
b. decrease the level of energy in the battery b Baudrit et al 2006), these possibilistic dlstrlb_ms _
: . . ) _ an be aggregated. As a result, two cumulative dis-
eq. 5,Q,,, = Q. Psjq74); if the con-  tribution functions (cdfs), called belief and pléails
; : : ; =+ ity (i.e. the lower and upper cdfs, respectivelyf,
striunt deflkned " _eq. 4 .IS ?(/erl.fled the Expected Energy Not Supplied are obtained.
Peja =Poir;,, (Case 1), otherwis@yj, IS They can be interpreted as bounding cumulative dis-
computed by eq. 4 (case ii.). If the level oftri_bution functions_ (Baudrit et a}l 200_6) r_:md_theme
energy in the battery at the stepr1 is tain all the possible cumulative distribution func-
. L tions that can be generated by a pure probabilistic
higher than zero, i.eQ;,, >0, compute the 55nr0ach that considers all the inputs variables as
probabilistic. For the sake of comparison, we have
embraced also this method with = 10000 sam-
for the case i. andgNS|y = -P “ -Pg',  plings of the probabilistic variables: in this catee
. ) . : ' possibilistic distributions of the input variablase
for the case ii.; otherwise, s&, , =0 and  transformed into probabilistic distributions by the
normalization method given in (Flage et al 2008).

Energy Not Supplied index agNS,q =0,

ENSja = Pog -
c. set ENSl;,a =0, and decrease the level of the
} ) 4 RESULTS
battery by eq. 6,9j+m = f(gj’aiwhourly)- If

i+1 is lower than its minimum zero, i.e. Scribed in Section 3 are illustrated with referetwe

) ) the case study of Section 2.
Qi1 <0, thensetQ =0. The top panel of Figure 4 shows the solar irradia-

8. Repeat steps 7. for the evaluation of the lowefO" data in southern Spain (gray lines) and the es

bounds ofENS . computing the uober values of mates of the mean (red line) and variance functions
ENS;,, computing PP (black lines), represented as the metavo standard

Poirt <, P, andQf.,, . deviations, carried out with the method of Section
ha o mh o 3.1. The Interval Testing Procedure (ITP) on Spain
9. If j<Ngeps then setj = j+1 and return to step S. jradiation data selects as significant the medneva
above; otherwise go to step 10 below. and the first three frequencies (the sinusoidscnd
10.Compute the total lower and upper bound of thesinusoids of period one year, six and three months)
ENS in the period under analysis asboth for the mean and the variance functions. The

K Nateps ok —k _New=—ck . final estimates are periodic functions fully debed
ENS; =3,;""ENSj, and ENSs =) “"ENSiq ; by the sample ~ means coefficients:
the lower and upper bound of the EENENS.  @©,2%9,8@,a9,00,6@ b ). _ _

-k . _ _ The panels in the lower part of Figure 4 illustrate
and EENS, is obtained by performing the meanthe comparison between the estimates of the mean
of ENS' and ENSy respectively. and variance functions carried out with the method

— x based on the ITP and with the one based on a daily

11.Take the extreme value€ENS, and EENS:,  egtimate of mean and variance, respectively. It can

found in 10. as the lower and upper limit of thebe seen that the first method gives smooth curve,
a-cut of the Expected Energy Not Supplied. which follows the yearly fluctuations of the quamti

12.1f a#1, then seta=a+Aa and return to step 4. of interest, whereas the second one gives extremely

above to compute the EENS for anotlecut;  irregular functions.

otherwise a fuzzy random realizationfeys, of | The [6S4FS OF 115 ARENSE OF e TMATAk o
the EENS has been identified.dft m, wherem b ' d

; ) . parameters are presented in Figure 5. On thehep, t
is the number of simulations, then setk+1  gajly minimum and maximum temperatures data in
and return to step 2. above; else stop the alggouthern Spain (light blue and red lines, respective
rithm. ly), are shown together with the ITP estimateshef t
At the end of the procedure the fuzzy random retwo means. In this case, the ITP selects as Sogunifi
alization (fuzzy interval)mgeys, k= 12...m of the the mean value and the first two frequencies both f
Expected Energy Not Supplied index is constructeghe min and the max temperatures. The horizontal
as the collection of the valuesENS| and EENS,, line indicates the threshold temperature at whigh t
k=12..m, found at step 10. above (in other words,AC is turned onTies26°C. On the bottom panel,



the estimates of the time-varying means of the,load Figure 6 reports the comparison of the cumulative
for days and nights (yellow and black lines, respecdistribution functions of the EENS index obtained
tively) are reported. Moreover, the Figure indisate by the probabilistic uncertainty propagation ap-
the densities of the simulated day and night loagroach (solid lines) with the belief (lower curves)
Po™(ty) and P,""(t,) for a summer and a winter and plausibility (upper curves) functions obtaitd
day. the Monte Carlo and Fuzzy Interval Analysis ap-
proach described in Section 3.3.
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Figure 4. Top: Solar Irradiation Data in Southepai® (gray),
mean function estimate (red), mean + 2*standardiatien
(black). Bottom left: Comparison Between the MeaatirBate
and the Daily Mean. Bottom right: Comparison Betwebe
Variance Estimate and the Daily Variance
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Figure 5. Top: daily min (light blue) and max (liglked) tem-
peratures data and ITP estimates for the meand (doé and
red lines); Bottom: estimates of the time-varyingams of the
load for days (yellow) and nights (black), and dees of sim-
ulated data in a summer and winter day.

Figure 6. Comparison of the cumulative distributfonctions
of the EENS [kWh], obtained by the pure probabdigropa-
gation approach (solid line) with the belief (dotténe) and
plausibility (dashed line) functions obtained bg tWonte Car-
lo and Fuzzy Interval Analysis approach

The Monte Carlo and Fuzzy Interval Analysis
method explicitly propagates the aleatory and epis-
temic uncertainty: the separation between the belie
and plausibility functions reflects the imprecision
the knowledge of the possibilistic variables (
Iwpp»Viupe » Voo » | ser Not 5Ke 5Ky, T, ) @nd the slope pictures
the variability of the probabilistic variables(and
P ). Instead, the uncertainty in the output distribu-
tion of the pure probabilistic approach is giveryon
by the slope of the cumulative distribution. As ex-
pected, the cumulative distribution of the EENS ob-
tained by the pure probabilistic method is withe t
belief and plausibility functions obtained by the
Monte Carlo and Fuzzy Interval Analysis approach.

Figure 7 compare the previous results, carried out
with the Monte Carlo and Fuzzy Interval Analysis
approach, with those obtained by the same method
but by considering constant the parameters of the
probabilistic distributions of the solar irradiatios,
and the loadsp,, . For the comparison, the values
of the 99" percentile are also indicated in the Figure.

It can be seen that:

The computation of the EENS index has been- The lower and upper cumulative distributions

performed by applying the method of Section 3.3 functions obtained by considering time-varying
considering the time-varying parameters of the paramet.ers are always lower than those'resulted
probabilistic distribution of the solar irradiati@mnd by keeping constant those parameters. This means
of the loads determined above. The analysis has that a time-varying analysis allows designing the
been carried out with respect to the month of July solar panel with smaller dimension.

that is a critical period for the high demand ofyeo - The gap between the cumulative distributions
by the end-users. In fact, the hot temperature functions obtained by considering time-varying

reached in the south of Spain gives rise to a lasge parameters 5 hig_her than that between the curves
of air conditioners. obtained by keeping constant those parameters. In

particular, by considering time-varying parame-
ters, we introduce a higher variability on the



EENS estimation, due to the fact that the distribuBaudrit, C. Dubois, D. Guyonnet, D., 2006. Joinbgigation

tion of data change daily. The higher variabilitya”d Exploitation of Probabilistic and Possibilistidormation
in Risk Assessment, IEEE Trans. on Fuzzy System&))1

allows considering within our model the situation

. . 593-608.

in which Fhe Sqlar panel fully Support the loadgjjinton, R. & Allan, RN., 1996.Reliability evaluation of
demand, including the zero value in the EENS power systemg@™ Ed). New York: Plenum.

distribution. Borges, C.L.T., 2012. An overview of reliability mels and
methods for distribution systems with renewable rgyne
0.99' ~ ‘ = distributed generationRenewable and sustainable energy
oof K 1 reviews 16: 4008-4015.
o8l ) ! | Chen. C. Duan. S. Cai, T. Liu, B. Hu, G., 200ptimal Allo-
g I ) | cation and Economic Analysis of Energy Storagee®ysh
e ! Microgrids, IEEE 26(10): 2762 - 2773
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5%2Fp500&file=inebase&L=0

) Hernando N., 2011Air conditioning in the region of Ma-
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the loads, the Monte Carlo Simulation and Fuzzy In-  omics and C@emissionsEnergy 36(3): 1630—1639.
terval Analysis approach for the joint propagatedn Li, v. & Zio, E., 2012. Uncertainty analysis of tlelequacy
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to identify the proper size of the solar panel; di Milano
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