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Line sampling and Fuzzy Interval Analysis for the propagation of aleatory and epistemic uncertainties in risk models

In this paper, an advanced Monte Carlo (MC) simulation method, namely Line Sampling (LS), is considered in combination with Fuzzy Interval Analysis (FIA) for improving the sampling efficiency in the hierarchical propagation of hybrid (probabilistic and possibilistic) uncertainties through a model for the riskbased design of a flood protection dike. The proposed approach is compared to that of standard MC sampling showing superior accuracy and higher computational efficiency.

INTRODUCTION

In this paper, we consider a "level-2" framework of two hierarchical levels of uncertainty [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF] representing aleatory (i.e. random) events whose stochastic laws of occurrence are described by models containing parameters (e.g. probabilities, failure rates, …) that are epistemicallyuncertain, i.e. known with poor precision due to lack of knowledge and information.

We use probability distributions to describe aleatory uncertainty on the occurrence of the random events and possibility distributions to represent the epistemic uncertainty in the parameters of the (aleatory) probability distributions (Baudrit et al. 2006). The propagation of this hybrid (probabilistic and possibilistic) uncertainty representation can be performed by combining [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF]) the standard Monte Carlo (MC) technique (Kalos & Withlock 1986[START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF] with the extension principle of fuzzy set theory [START_REF] Zadeh | Fuzzy Sets[END_REF]: this is done by (i) Fuzzy Interval Analysis (FIA) to process the epistemic uncertainty described by possibility distributions and (ii) repeated MC sampling of the random variables to process the aleatory uncertainty [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF].

However, this approach can require considerable and often prohibitive computational efforts for two reasons: (i) a very large number of random realizations must be sampled by MC in order to perform an accurate uncertainty propagation, i.e. to perform a deep exploration of the (typically high-dimensional) space of the uncertain parameters of the model [START_REF] Schueller | Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis -recent advances[END_REF]); (ii) the intervals computations of FIA require multiple evaluations of the model for each simulated random sample (Baudrit et al. 2006).

Efficient sampling methods would, then, be useful for reducing the number of random samples drawn and the associated computational effort. In this respect, techniques like Importance Sampling (IS), Stratified Sampling, Latin Hypercube Sampling (LHS), Subset Simulation (SS) and the Cross-Entropy (CE) method have been widely used in risk assessment problems [START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF]).

In the present paper, Line Sampling (LS) is implemented for improving the sampling efficiency [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algorithms and application[END_REF][START_REF] Pedroni | Functional failure analysis of a thermal-hydraulic passive system by means of Line Sampling[END_REF], 2010). The basic idea of LS is to employ lines instead of random points in order to explore the (typically) high-dimensional space of the uncertain parameters of the model under analysis. An "important direction" is optimally determined in the multidimensional space of the uncertain parameters; then, the (multi-dimensional) uncertainty propagation problem is "decomposed" into a number of conditional, "one-dimensional" uncertainty propagation problems that are solved along such direction [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algorithms and application[END_REF][START_REF] Pedroni | Functional failure analysis of a thermal-hydraulic passive system by means of Line Sampling[END_REF], 2010[START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF].

The novel approach combining LS and FIA (called hereafter as "LS-FIA" approach for brevity) is here applied to hierarchically propagate hybrid uncertainties through a risk model for the design of a flood protection dike [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]. To the best of the author knowledge, it is the first time that the LS and FIA techniques are combined to hierarchically propagate hybrid uncertainties in risk assessment problems. The results are compared to those obtained by a "classical" approach combining FIA and standard MCS (called hereafter as "MC-FIA" approach for brevity).

The remainder of the paper is organized as follows. In Section 2, the representation of aleatory (probabilistic) and epistemic (possibilistic) uncertainties in a "level-2" framework is described in detail; in Section 3, the main concepts underlying the hybrid LS-FIA approach are briefly outlined; in Section 4, the case study concerning the risk-based design of a flood protection dike is presented; in Section 5, the results of the joint hierarchical propagation of hybrid uncertainties through the flood risk model of Section 4 are reported, commented and compared to those produced by the standard MC-FIA approach; in Section 6, some conclusions are drawn. Finally, in Appendices A and B, the operative steps of the MC-FIA and LS-FIA approaches, respectively, are described in details.

"LEVEL-2" REPRESENTATION FRAMEWORK OF ALEATORY AND EPISTEMIC UNCERTAINTIES

We consider the (failure) behavior of a (possibly safety-critical) system described by a mathematical model ( )

n Y Y Y f ..., , , 2 1 , whose output Z is a function of n (input) parameters { j Y : j = 1, 2, …, n}.
In risk assessment problems (like the one considered in this paper), the output Z is a physical quantity critical for safety reasons (e.g. the water level of a river close to a residential area, the temperature of the fuel cladding in a nuclear reactor, …).

Due to imprecise knowledge and limited information on the system, uncertainty is always present in the values of the system model input parameters/variables: this results into variability in the model output Z.

In this paper, we consider the system failure probability P(1), expressed as the probability that Z exceeds a safety threshold z*, i.e. P( 1 (Baudrit & Dubois 2006).

Given the possibility function [1000,1200] is the set of η -values for which the possibility function is greater than or equal to 0.5 (dashed segment in Figure 1, left). Notice that the 2-cut η α A of level α for parameter η can be interpreted as the (1 -α )% Confidence Interval (CI) for η , i.e. the interval such that (Baudrit et al. 2006): for example, η can be interpreted as a set of nested CIs for parameter η (Baudrit & Dubois 2006). For each possibility (respectively, confidence) level 2 (respectively, 1 -2) in [0, 1], a bundle of Cumulative Distribution Functions (CDFs) for Y j can be constructed by letting parameter η range within the corresponding 2-cut set η α A . This family of CDFs (of level 2) is bounded above and below by the upper and lower CDFs, ( )
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can be interpreted as a set of nested CIs for parameter η (see above), it can be argued that the 2-cuts of
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induce also a set of nested pairs of CDFs ( ) ( )
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, with 0 ≤ α 2 1 [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF]. For illustration purposes, Figure 1 

LINE SAMPLING AND FUZZY INTERVAL ANALYSIS JOINT HIERARCHICAL PROPAGATION OF ALEATORY AND EPISTEMIC UNCERTAINTIES IN A "LEVEL-2" FRAMEWORK

The propagation of the hybrid (probabilistic and possibilistic) level-2" hierarchical uncertainty repre-

sentation through the model Z = ( ) n Y Y Y f ..., , , 2 
1 can be performed by combining the standard Monte Carlo (MC) technique (Kalos & Withlock 1986[START_REF] Pedroni | Hierarchical propagation of probabilistic and nonprobabilistic uncertainty in the parameters of a risk model[END_REF] with the extension principle of fuzzy set theory [START_REF] Zadeh | Fuzzy Sets[END_REF], by means of the following main steps [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF]):

i. Fuzzy Interval Analysis (FIA) to process the epistemic uncertainty in the parameters j 1 described by the possibility distributions )

( j j 1 2 1 , j = 1, 2, …, n; ii.
repeated standard MC sampling to process aleatory uncertainty described by the probability distributions

} ..., , 2 , 1 : ) ( { n j y p j Y j j = 1 .
Technical details about the operative steps of the hybrid MC-FIA approach are given in Appendix A.

The method produces a set of nested pairs of CDFs

( ) ( ) ( ) { } 1 0 : , ≤ ≤ α α α z F z F Z Z
for Z, that are used to estimate the system failure probability P(1

) = P[Z > z*] = 1 -P[Z < z*] = 1 -F(z*).
Since the (hybrid) uncertainty in Z is represented by a set of nested pairs of CDFs, then P( 1) is described by a possibility distribution 

( ) *) ( 1 z F P Z α α Ω - = and ( ) *) ( 1 z F P Z α α Ω - =
, respectively: then, the interval In this paper, step ii. of the procedure above (i.e. standard random sampling) is replaced by the adoption of Line Sampling (LS). To the authors knowledge, this is the first time that an accelerated sampling technique is introduced in the scheme of hybrid uncertainty propagation, to improve sampling efficiency.

As mentioned in the Introduction, LS has been originally developed for complex structural reliability problems [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algorithms and application[END_REF]) and is based on the sampling of directed lines (instead of random points) for exploring the multi-dimensional space of the uncertain model parameters [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algorithms and application[END_REF][START_REF] Pedroni | Functional failure analysis of a thermal-hydraulic passive system by means of Line Sampling[END_REF], 2010). In extreme synthesis, the problem of computing the system failure probability is transformed from the original "physical" space into the so-called "standard normal space", where each random variable is represented by an independent, central-unit Gaussian distribution. In the transformed space, a unit vector 3 (hereafter also called "important direction") is determined, pointing towards the failure domain 1 of interest. The problem of computing the system failure probability in the original multi-dimensional space is then reduced to a number of conditional one-dimensional problems, which are readily solved in the standard normal space along the "important direction" by using the standard normal cumulative distribution function [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algorithms and application[END_REF][START_REF] Pedroni | Functional failure analysis of a thermal-hydraulic passive system by means of Line Sampling[END_REF], 2010). The operative steps of the procedure are not given here for the sake of brevity; the interested reader is referred to Appendix B for technical details.

Several applications have shown that the method performs better than standard Monte Carlo Simula- tion. Theoretically, if the boundaries of the failure domain of interest are not too rough (i.e. almost linear) and the "important direction" is almost perpendicular to them, the variance of the failure probability estimator could be reduced to zero [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algorithms and application[END_REF]).

A CASE STUDY OF FLOOD PROTECTION RISK-BASED DESIGN

We consider a protection dike in a residential area closely located to a river with potential risk of floods. Two issues are of concern for its design: (i) high construction and annual maintenance costs of the dike; (ii) uncertainty in the natural phenomenon of flooding. Then, the different design options must be evaluated by flooding risk analysis framework accounting for uncertainty. ( )
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where: The input variables are classified as follows:

Q Y =
• constants: 300 = B m, 5000 = L m; • uncertain variables: Q , m Z , v Z , s K .
The uncertain variables are affected by aleatory and epistemic uncertainties. The aleatory part of the uncertainty is described by probability distributions of defined shape (e.g. normal, Gumbel etc.). The parameters of the probability distributions describing the aleatory uncertainty are themselves affected by epistemic uncertainty, represented in terms of possibility distributions.

In this work, we adopt the hybrid probabilistic and possibilistic representations already proposed in [START_REF] Pedroni | Hierarchical propagation of probabilistic and nonprobabilistic uncertainty in the parameters of a risk model[END_REF]. For space limitations, we will not recall the representations considered that is not the objective of the present paper. The interested reader is referred to [START_REF] Pedroni | Hierarchical propagation of probabilistic and nonprobabilistic uncertainty in the parameters of a risk model[END_REF] for further details and explanation of the reasons underlying these choices.

The final goal of the case study application is to determine the failure probability P(1) of the dike. This requires that we evaluate the probability P(1) that the maximal water level of the river Z (the model output) exceeds a given threshold * z (the dike level), i.e. ( ) ( )

* z Z P 1 P > =
: in the present paper, * z = 55.5 m [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]. As highlighted before, since the maximal water level of the river Z (the model output) is described by a set of nested pairs of CDFs

( ) ( ) ( ) { } 1 0 : , ≤ ≤ α α α z F z F Z Z
, then P( 1) is represented by the possibility distribution ( ) Ω π P (see Section 3).

RESULTS

Figure 2 shows the estimates of the possibility distributions ( ) Ω π P of the failure probability of the dike,

m) 5 . 55 * ( ) ( = > = Ω z Z P P
, produced by the hybrid LS -FIA approach (dashed lines) and by the standard MC -FIA approach (solid lines) with N T = 40000 random samples drawn. It can be seen that the two methods provide very similar results: actually, the two curves overlap almost completely. In order to provide a (rough) quantitative indication of the precision of the estimates provided by the two methods, the standard deviations are reported in Table 1 for 2 = 0.2, 0.4, 0.6 and 0.8. It is evident that the precision of the LS-FIA method is consistently higher than that of the MC-FIA: actually, the standard deviations of the failure probability estimates produced by the LS-FIA method are about 23-42 times lower than those of the MC-FIA approach. of the failure probability P(1) of the dike, obtained by the MC -FIA (solid line) and LS -FIA (dashed line) approaches with N T = 40000 random samples. Figure 3 shows the estimates of the same quantities as before (see Figure 2), but obtained with N T = 50 random samples (instead of 40000). This analysis is carried out to assess the performance of the two methods with a very small number of samples (and, thus, of system model evaluations): this is of paramount importance in practical cases in which the model requires several hours to run a single simulation. For the sake of comparison, Figure 3 reports also the possibility distribution produced by the standard MC-FIA approach with N T = 40000 random samples (solid line): since this number of samples is large enough for precisely estimating the failure probability of the dike in the present case, this possibility distribution is ideally taken as the "real" one and it is considered a "reference" benchmark solution in the comparisons.

Notice that the result from LS-FIA (dashed line) is very close to this reference solution (solid line): actually, the two possibility distributions overlap almost completely; however, this result is obtained by LS-FIA at a much lower computational effort (i.e. using N T = 50 samples instead of 40000). On the contrary, MC-FIA with N T = 50 samples is not able to produce accurate results: this is pictorially demonstrated by the fact that the corresponding possibility distribution (dot-dashed line) lies very far from the reference solution (solid line). In addition, note that as before the precision of the LS-FIA method with N T = 50 samples is consistently higher than that of the MC-FIA with the same number of samples: actually, the standard deviations of the failure probability estimates produced by LS-FIA are about 33-62 times lower than those of MC-FIA (Table 2). of the failure probability P(1) of the dike, obtained by the MC -FIA (dot-dashed line) and LS -FIA (dashed line) approaches with N T = 50 random samples; the result produced by the MC -FIA approach with N T = 40000 samples (solid line) is also reported. In addition to the precision of the failure probability estimate, also the computational time associated to the simulation method has to be taken into account. Table 3 reports the computational time t comp associated to the simulations performed: it can be seen that the computational cost of the LS -FIA approach is about three times higher than that of the MC-FIA approach. Thus, in order to compare the overall computational efficiency of the two simulation methods (i.e. in order to take into account both the precision of the estimates produced and the computational time required), a synthetic indicator, namely Figure Of Merit (FOM), is considered. It is defined as

( ) ( ) comp t P ⋅ Ω = 2 / 1 FOM σ
, where comp t is the computational time required by the simulation method and ( ) ( ) Ω σ P 2 is the variance of the failure probability estimate. Notice that the higher is the value of the index, the higher is the efficiency of the method. Table 4 summarizes the values of the FOM for the MC-FIA and LS-FIA approaches computed using the values of the standard deviations

( ) ) ( α α σ Ω P
given in Figures 2 and3, right, and the values of the computational time t comp reported in Table 3. It is evident that although the computational time of LS-FIA is higher than that of MC-FIA, its overall computational efficiency is still consistently higher: actually, the FOM of LS-FIA is 117-565 times larger than that of MC-FIA in the case of N T = 40000, whereas it is 370-1305 times larger in the case of N T = 50. 

CONCLUSIONS

A combined Line Sampling (LS) and Fuzzy Interval Analysis (FIA) approach for the joint hierarchical propagation of hybrid aleatory (probabilistic) and epistemic (possibilistic) uncertainties has been proposed and exemplified with reference to a model for the design of a flood protection dike. In the exemplification, the uncertainty propagation task has been finalized to the estimation of the failure probability of the dike. The results obtained have been compared with those produced by a standard Monte Carlo (MC) and Fuzzy Interval Analysis (FIA) approach.

It has been shown that LS-FIA outperforms MC-FIA in terms of both accuracy and precision of the failure probability estimates. In addition, although the computational time associated to the LS-FIA approach is generally higher than that of MC-FIA, the overall computational efficiency (quantified by the FOM) is still consistently superior.

The outstanding performance of the LS method in combination with the FIA approach makes it a rather attractive tool for the propagation of "level-2" hybrid probabilistic-possibilistic uncertainties in risk assessment problems. of the pa- (inner loop processing aleatory uncertainty); c. Compute the th q-random intervals 
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  is defined on interval [a, b] = [900, 1300] and its most likely value is c = 1100. This limited state 1100 and support [a, b] = [900, 1300] (Figure 1, left)

  , right shows the bounding upper and lower CDFs of Y, correspondence of the 2-cuts of level 2 = 0 (solid lines), 0.5 (dashed lines) and 1 (dot-dashed line) of the pos-

Figure 1 .

 1 Figure 1. Left: Triangular possibility distribution of the parameter 3 of the Gumbel probability distribution of Y j ~ Gum(3, 400); in evidence the 2-cut of level 2 = 0, 0.5 and 1. Right: Upper and lower CDFs of Y j built in correspondence of the 3-cut of level 3 = 0, 0.5 and 1 for the parameter 3.

  . Actually, for each possibility level α , two (upper and lower) estimates for the exceedance probability P(1),

  levels (m asl) at the upstream and downstream parts of the river under investigation, respectively; friction coefficient; B and L are the width and length of the river part (m), respectively.
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  Figure 2: Possibility distributions
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  Figure 3: Possibility distributions

  the estimators (A.5) and (A.6) can then be written, respectively, as: step 8.g. above (in other words, ( ) Ω π P is defined by all its 2-cut intervals ( ) ( )

  ) = P[Z > z*] (Limbour & de Rocquigny 2010).
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  The model considered calculates the maximal water level of the river Z (i.e. the output variable of the model) as a function of several parameters (i.e. the input variables of the model) (Limbourg & de Rocquigny 2010):

Table 1 :

 1 Standard deviations

	P	( ) α Ω	( ) ) α Ω of the 3-cuts of the possibility distribution ( α σ P of the upper bounds ) (Ω π P for 3
	= 0.2, 0.4, 0.6 and 0.8 (see Figure 2). ( ) ) 1 P ( 5 2 2
			α	MC-FIA (N T = 40000)	LS-FIA (N T = 40000)
			0.2	1.01E-03	4.31E-05
			0.4	8.94E-04	3.04E-05
			0.6	7.93E-04	2.24E-05
			0.8	6.74E-04	1.61E-05

Table 2 :

 2 Standard deviations

	( ) ) α Ω of the 3-cuts of the possibility distribution ( α σ P of the upper bounds ) (Ω π P for 3 = 0.2, 0.4, 0.6 and 0.8 (see Figure 3). Ω P ( ) α ( ) ) 1 P ( 5 2 2
	α	MC-FIA (N T = 50)	LS-FIA (N T = 50)
	0.2	3.80E-02	1.15E-03
	0.4	3.33E-02	8.23E-04
	0.6	3.33E-02	6.14E-04
	0.8	2.75E-02	4.43E-04

Table 3 :

 3 Computational time t comp [s] of the MC -FIA and LS -FIA approaches carried out with N T = 40000 and N T = 50

	random samples.	
		MC -FIA	LS -FIA
	Number of simulations, N T	40000 50 40000 50
	Computational time t comp [s] on	
	a Intel® Core™2 Duo CPU	31998 42 99181 124
	E7600 @ 3.06 and 3.07 GHz	

Table 4 :

 4 Values of the FOM characterizing the MC-FIA and LS-FIA approaches employing N T = 40000 and 50 random

	samples		
		FOM	
	α	MC-FIA (N T = 40000)	LS-FIA (N T = 40000)
	0.2	30.63	5427.71
	0.4	39.10	10909.98
	0.6	49.69	20094.42
	0.8	68.79	38897.32
	α	MC-FIA (N T = 50)	LS-FIA (N T = 50)
	0.2	16.48	6097.93
	0.4	21.47	11906.34
	0.6	21.47	21391.51
	0.8	31.48	41093.28

APPENDIX A: MONTE CARLO AND FUZZY INTERVAL ANALYSIS APPROACH

The main steps of the hybrid MC-FIA approach are the following [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF]): 1. set 2 = 0 (outer loop processing epistemic uncertainty by fuzzy interval analysis);

2. select the 2-cuts

APPENDIX B: LINE SAMPLING AND FUZZY INTERVAL ANALYSIS APPROACH

The operative steps for the propagation of hybrid probabilistic and possibilistic uncertainty in a "level-2" framework by LS -FIA approach are the following [START_REF] Koutsourelakis | Reliability of structures in high dimensions, Part I: algorithms and application[END_REF][START_REF] Pedroni | Functional failure analysis of a thermal-hydraulic passive system by means of Line Sampling[END_REF], 2010):

1. Determine the unit important direction

that points towards the failure domain, 1, of interest. The important direction is computed as the normalized "center of mass" of the failure domain of interest applying Markov chain to generate failure samples. 2. Sample in the normal space a matrix

N is the number of simulations.

Each component of the matrix } { q j 4 is associated with an independent central unit Gaussian distribution.

Project each line of the random sample matrix

, onto the straight line passing through the origin O of the standard normal space and perpendicular to 3 in order to obtain the matrix } { ,⊥ q j 4 :

where

notes a random realization of the input variables in the standard normal space of dimension n and q j 4 3, is the scalar product between 3 and q j 4 ,

It is worth noting that since the standard Gaussian space is isotropic, the matrix ⊥ , q j 4 is also standard normally distributed. 4. Define the sample matrix

, as a sum of a deterministic multiple of 3 and the matrix

where

and q c is a real number in [-4, +4]. Again, it is worth noting that since the standard Gaussian space is isotropic, the matrix q j 4 ~ is also standard normally distributed. 5. Moving along the straight line passing through

, and parallel to

, for q c and calculate the corresponding sample points

(outer loop processing epistemic uncertainty). 8. Estimate T N lower and upper conditional "onedimensional" failure probability estimates