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1 INTRODUCTION  

In this paper, we consider a “level-2” framework of 
two hierarchical levels of uncertainty (Limbourg & 
de Rocquigny 2010) representing aleatory (i.e. ran-
dom) events whose stochastic laws of occurrence are 
described by models containing parameters (e.g. 
probabilities, failure rates, …) that are epistemically-
uncertain, i.e. known with poor precision due to lack 
of knowledge and information.  

We use probability distributions to describe alea-
tory uncertainty on the occurrence of the random 
events and possibility distributions to represent the 
epistemic uncertainty in the parameters of the (alea-
tory) probability distributions (Baudrit et al. 2006). 
The propagation of this hybrid (probabilistic and 
possibilistic) uncertainty representation can be per-
formed by combining (Baudrit et al. 2008) the 
standard Monte Carlo (MC) technique (Kalos & 
Withlock 1986, Zio 2012) with the extension princi-
ple of fuzzy set theory (Zadeh 1965): this is done by 
(i) Fuzzy Interval Analysis (FIA) to process the epis-
temic uncertainty described by possibility distribu-
tions and (ii) repeated MC sampling of the random 
variables to process the aleatory uncertainty (Baudrit 
et al. 2008). 

However, this approach can require considerable 
and often prohibitive computational efforts for two 
reasons: (i) a very large number of random realiza-
tions must be sampled by MC in order to perform an 
accurate uncertainty propagation, i.e. to perform a 
deep exploration of the (typically high-dimensional) 
space of the uncertain parameters of the model 
(Schueller 2009); (ii) the intervals computations of 

FIA require multiple evaluations of the model for 
each simulated random sample (Baudrit et al. 2006). 

Efficient sampling methods would, then, be use-
ful for reducing the number of random samples 
drawn and the associated computational effort. In 
this respect, techniques like Importance Sampling 
(IS), Stratified Sampling, Latin Hypercube Sampling 
(LHS), Subset Simulation (SS) and the Cross-
Entropy (CE) method have been widely used in risk 
assessment problems (Zio 2012). 

In the present paper, Line Sampling (LS) is im-
plemented for improving the sampling efficiency 
(Koutsourelakis et al. 2004, Zio & Pedroni 2009, 
2010). The basic idea of LS is to employ lines in-
stead of random points in order to explore the (typi-
cally) high-dimensional space of the uncertain pa-
rameters of the model under analysis. An “important 
direction” is optimally determined in the multi-
dimensional space of the uncertain parameters; then, 
the (multi-dimensional) uncertainty propagation 
problem is “decomposed” into a number of condi-
tional, “one-dimensional” uncertainty propagation 
problems that are solved along such direction (Kout-
sourelakis et al. 2004, Zio & Pedroni 2009, 2010, 
Zio 2012). 

The novel approach combining LS and FIA 
(called hereafter as “LS-FIA” approach for brevity) 
is here applied to hierarchically propagate hybrid 
uncertainties through a risk model for the design of a 
flood protection dike (Limbourg & de Rocquigny 
2010). To the best of the author knowledge, it is the 
first time that the LS and FIA techniques are com-
bined to hierarchically propagate hybrid uncertain-
ties in risk assessment problems. The results are 
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compared to those obtained by a “classical” ap-
proach combining FIA and standard MCS (called 
hereafter as “MC-FIA” approach for brevity). 

The remainder of the paper is organized as fol-
lows. In Section 2, the representation of aleatory 
(probabilistic) and epistemic (possibilistic) uncer-
tainties in a “level-2” framework is described in de-
tail; in Section 3, the main concepts underlying the 
hybrid LS-FIA approach are briefly outlined; in Sec-
tion 4, the case study concerning the risk-based de-
sign of a flood protection dike is presented; in Sec-
tion 5, the results of the joint hierarchical 
propagation of hybrid uncertainties through the 
flood risk model of Section 4 are reported, com-
mented and compared to those produced by the 
standard MC-FIA approach; in Section 6, some con-
clusions are drawn. Finally, in Appendices A and B, 
the operative steps of the MC-FIA and LS-FIA ap-
proaches, respectively, are described in details. 

2 “LEVEL-2” REPRESENTATION 
FRAMEWORK OF ALEATORY AND 
EPISTEMIC UNCERTAINTIES 

We consider the (failure) behavior of a (possibly 
safety-critical) system described by a mathematical 
model ( )nYYYf  ..., , , 21 , whose output Z is a function 
of n  (input) parameters {jY : j = 1, 2, …, n}. In risk 

assessment problems (like the one considered in this 
paper), the output Z is a physical quantity critical for 
safety reasons (e.g. the water level of a river close to 
a residential area, the temperature of the fuel clad-
ding in a nuclear reactor, …). 

Due to imprecise knowledge and limited infor-
mation on the system, uncertainty is always present 
in the values of the system model input parame-
ters/variables: this results into variability in the 
model output Z.  

In this paper, we consider the system failure 
probability P(�), expressed as the probability that Z 
exceeds a safety threshold z*, i.e. P(�) = P[Z > z*] 
(Limbour & de Rocquigny 2010).  

In all generality, we consider the uncertain (input) 
variables { jY : j = 1, 2, …, n}, described by the 

Probability Distribution Functions (PDFs) 

}...,,2,1:)({ njyp j
jY

j
=

�
 with epistemically-uncertain 

parameters } ..., , ,{ ,2,1, jPjjjj θθθ=� , j = 1, 2, …, n, 

represented by possibility distributions 

( ) ( ) ( ) ( ){ } ...,,,...,, )( ,,2,1,
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For clarification by way of example, we may con-
sider the generic uncertain variable jY  described by 

a Gumbel PDF with parameters η  (location parame-
ter) and δ  (scale parameter), i.e. jY  ~ 

( ) ( ) ( )2,1,  , , jjj GumGumGum θθδη == � . Parameter 

2,jθδ =  (i.e. the scale parameter) is a fixed point-

wise value ( 2,jθδ =  = 400), whereas parameter 

1,jθη =  (i.e. the location parameter) is epistemically 

uncertain. The only information available on 1,jθη =  

is that it is defined on interval [a, b] = [900, 1300] 
and its most likely value is c = 1100. This limited 
state of knowledge about 1,jθη =  can be represented 

by a triangular possibility distribution )(ηπη  with 
core c = 1100 and support [a, b] = [900, 1300] (Fig-
ure 1, left) (Baudrit & Dubois 2006). 

Given the possibility function )(ηπη  of 1,jθη = , 

we can define its �-cut sets η
αA  = {η : )(ηπη  � α }, 

for 0 ≤ α  � 1. For example, η
5.0A  = [1000, 1200] is 

the set of η -values for which the possibility function 
is greater than or equal to 0.5 (dashed segment in 
Figure 1, left). Notice that the �-cut η

αA  of level α  

for parameter η  can be interpreted as the (1 – α )% 
Confidence Interval (CI) for η , i.e. the interval such 

that αη η
α −≥∈ 1][ AP  (Baudrit et al. 2006): for ex-

ample, η
5.0A  = [1000, 1200] is the 50% CI for η . In 

this view, the possibility distribution )(ηπη  can be 
interpreted as a set of nested CIs for parameter η  
(Baudrit & Dubois 2006). 
For each possibility (respectively, confidence) level 
� (respectively, 1 – �) in [0, 1], a bundle of Cumula-
tive Distribution Functions (CDFs) for Yj can be 
constructed by letting parameter η  range within the 

corresponding �-cut set η
αA . This family of CDFs (of 

level �) is bounded above and below by the upper 

and lower CDFs, ( )j
Y

yF j
α  and ( )j

Y
yF j

α , defined as 
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spectively. Since )(ηπη  can be interpreted as a set 
of nested CIs for parameter η  (see above), it can be 

argued that the �-cuts of )(ηπη  induce also a set of 

nested pairs of CDFs ( ) ( )
�
�
�

�
�
� ≤≤�
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which bound the “true” CDF ( )j
Y

yF j  of Yj with 

confidence larger than or equal to (1 – �), i.e. 

( ) ( ) ( ) ααα −≥≤≤ 1][ j
Y

j
Y

j
Y

yFyFyFP jjj , with 0 ≤ α  � 

1 (Baudrit et al. 2008). For illustration purposes, 
Figure 1, right shows the bounding upper and lower 



CDFs of Y, ( )j
Y

yF j
α  and ( )j

Y
yF j

α , built in corre-

spondence of the �-cuts of level � = 0 (solid lines), 

0.5 (dashed lines) and 1 (dot-dashed line) of the pos-

sibility distribution )(ηπη  of parameter η .

 
 
 
 
 
 
 
 
 

 
Figure 1. Left: Triangular possibility distribution of the parameter � of the Gumbel probability distribution of Yj ~ Gum(�, 400); in 
evidence the �-cut of level � = 0, 0.5 and 1. Right: Upper and lower CDFs of Yj built in correspondence of the �-cut of level � = 0, 
0.5 and 1 for the parameter �. 

 

3 LINE SAMPLING AND FUZZY INTERVAL 
ANALYSIS JOINT HIERARCHICAL 
PROPAGATION OF ALEATORY AND 
EPISTEMIC UNCERTAINTIES IN A “LEVEL-
2” FRAMEWORK  

The propagation of the hybrid (probabilistic and 
possibilistic) level-2” hierarchical uncertainty repre-
sentation through the model Z = ( )nYYYf  ..., , , 21  can 

be performed by combining the standard Monte Car-
lo (MC) technique (Kalos & Withlock 1986, Zio 
2013) with the extension principle of fuzzy set theo-
ry (Zadeh 1965), by means of the following main 
steps (Baudrit et al. 2008): 

i. Fuzzy Interval Analysis (FIA) to process the 
epistemic uncertainty in the parameters j�  

described by the possibility distributions 

)( j
j ��
�

, j = 1, 2, …, n; 

ii.  repeated standard MC sampling to process 
aleatory uncertainty described by the proba-

bility distributions }...,,2,1:)({ njyp j
Yj

j
=� . 

Technical details about the operative steps of the 
hybrid MC-FIA approach are given in Appendix A. 

The method produces a set of nested pairs of 

CDFs ( ) ( )( ){ }10:, ≤≤ ααα zFzF ZZ  for Z, that are used 

to estimate the system failure probability P(�) = P[Z 
> z*] = 1 – P[Z < z*] = 1 – F(z*) . Since the (hybrid) 
uncertainty in Z is represented by a set of nested 
pairs of CDFs, then P(�) is described by a possibil-
ity distribution ( )ΩπP . Actually, for each possibility 
level α , two (upper and lower) estimates for the ex-
ceedance probability P(�), ( )αΩP  and ( )αΩP , are 

obtained as ( ) *)(1 zFP Z
ααΩ −=  and 

( ) *)(1 zFP Z
ααΩ −= , respectively: then, the interval 

( ) ( ) ],[ αα ΩΩ P P  corresponds to the cut of level α  of 

the possibility distribution ( )ΩπP  of the exceedance 
probability ( )ΩP . 
In this paper, step ii. of the procedure above (i.e. 
standard random sampling) is replaced by the adop-
tion of Line Sampling (LS). To the authors 
knowledge, this is the first time that an accelerated 
sampling technique is introduced in the scheme of 
hybrid uncertainty propagation, to improve sampling 
efficiency.  

As mentioned in the Introduction, LS has been 
originally developed for complex structural reliabil-
ity problems (Koutsourelakis et al. 2004) and is 
based on the sampling of directed lines (instead of 
random points) for exploring the multi-dimensional 
space of the uncertain model parameters (Kout-
sourelakis et al. 2004, Zio & Pedroni 2009, 2010). In 
extreme synthesis, the problem of computing the 
system failure probability is transformed from the 
original “physical” space into the so-called “stand-
ard normal space”, where each random variable is 
represented by an independent, central-unit Gaussian 
distribution. In the transformed space, a unit vector 
�  (hereafter also called “important direction”) is de-
termined, pointing towards the failure domain � of 
interest. The problem of computing the system fail-
ure probability in the original multi-dimensional 
space is then reduced to a number of conditional 
one-dimensional problems, which are readily solved 
in the standard normal space along the “important 
direction” by using the standard normal cumulative 
distribution function (Koutsourelakis et al. 2004, Zio 
& Pedroni 2009, 2010). The operative steps of the 
procedure are not given here for the sake of brevity; 
the interested reader is referred to Appendix B for 
technical details. 

Several applications have shown that the method 
performs better than standard Monte Carlo Simula-
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tion. Theoretically, if the boundaries of the failure 
domain of interest are not too rough (i.e. almost lin-
ear) and the “important direction” is almost perpen-
dicular to them, the variance of the failure probabil-
ity estimator could be reduced to zero 
(Koutsourelakis et al. 2004).  

4 A CASE STUDY OF FLOOD PROTECTION 
RISK-BASED DESIGN 

We consider a protection dike in a residential area 
closely located to a river with potential risk of 
floods. Two issues are of concern for its design: (i) 
high construction and annual maintenance costs of 
the dike; (ii) uncertainty in the natural phenomenon 
of flooding. Then, the different design options must 
be evaluated by flooding risk analysis framework 
accounting for uncertainty. 
 
The model considered calculates the maximal water 
level of the river Z  (i.e. the output variable of the 
model) as a function of several parameters (i.e. the 
input variables of the model) (Limbourg & de 
Rocquigny 2010): 

( )

5/3
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�

�

	

A
A

B
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−∗∗
+=

LZZBK

Q
ZZ
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v         (1) 

where: QY =1  is the yearly maximal water dis-
charge (m3/s); mZY =2 and vZY =3  are the riverbed 
levels (m asl) at the upstream and downstream parts 
of the river under investigation, respectively; 

sKY =4  is the Strickler friction coefficient; B  and L  
are the width and length of the river part (m), respec-
tively.  

The input variables are classified as follows:  
•  constants: 300=B m, 5000=L m;  
•  uncertain variables: Q , mZ , vZ , sK . 

 
The uncertain variables are affected by aleatory and 
epistemic uncertainties. The aleatory part of the un-
certainty is described by probability distributions of 
defined shape (e.g. normal, Gumbel etc.). The pa-
rameters of the probability distributions describing 
the aleatory uncertainty are themselves affected by 
epistemic uncertainty, represented in terms of possi-
bility distributions. 

In this work, we adopt the hybrid probabilistic 
and possibilistic representations already proposed in 
(Pedroni et al. 2013). For space limitations, we will 
not recall the representations considered that is not 
the objective of the present paper. The interested 
reader is referred to (Pedroni et al. 2013) for further 
details and explanation of the reasons underlying 
these choices. 

The final goal of the case study application is to de-
termine the failure probability P(�) of the dike. This 
requires that we evaluate the probability P(�) that 
the maximal water level of the river Z  (the model 
output) exceeds a given threshold *z  (the dike lev-
el), i.e. ( ) ( )*zZP�P >= : in the present paper, *z  = 
55.5 m (Limbourg & de Rocquigny 2010). As high-
lighted before, since the maximal water level of the 
river Z  (the model output) is described by a set of 

nested pairs of CDFs ( ) ( )( ){ }10:, ≤≤ ααα zFzF ZZ , then 

P(�) is represented by the possibility distribution 
( )ΩπP  (see Section 3). 

5 RESULTS 

Figure 2 shows the estimates of the possibility dis-
tributions ( )ΩπP  of the failure probability of the dike, 

m) 5.55*()( =>=Ω zZPP , produced by the hybrid 
LS – FIA approach (dashed lines) and by the stand-
ard MC – FIA approach (solid lines) with NT = 
40000 random samples drawn. It can be seen that the 
two methods provide very similar results: actually, 
the two curves overlap almost completely. 
In order to provide a (rough) quantitative indication 
of the precision of the estimates provided by the two 
methods, the standard deviations ( ) )( αα Ωσ P  of the 

upper bounds ( )αΩP  of the �-cuts of the possibility 

distributions ( )ΩπP  of P(�) are computed; for illus-
tration purposes, the values of ( ) )( αα Ωσ P  are re-
ported in Table 1 for � = 0.2, 0.4, 0.6 and 0.8. It is 
evident that the precision of the LS-FIA method is 
consistently higher than that of the MC-FIA: actual-
ly, the standard deviations of the failure probability 
estimates produced by the LS-FIA method are about 
23-42 times lower than those of the MC-FIA ap-
proach.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Possibility distributions )(ΩπP  of the failure proba-
bility P(�) of the dike, obtained by the MC – FIA (solid line) 
and LS – FIA (dashed line) approaches with NT = 40000 ran-
dom samples. 
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Table 1: Standard deviations ( ) )( αα Ωσ P  of the upper bounds 
( )αΩP  of the �-cuts of the possibility distribution )(ΩπP  for � 

= 0.2, 0.4, 0.6 and 0.8 (see Figure 2). 

 ( ) )�P(� ��  

α 
MC-FIA 

(NT = 40000) 
LS-FIA 

(NT = 40000) 
0.2 1.01E-03 4.31E-05 
0.4 8.94E-04 3.04E-05 
0.6 7.93E-04 2.24E-05 
0.8 6.74E-04 1.61E-05 

Figure 3 shows the estimates of the same quanti-
ties as before (see Figure 2), but obtained with NT = 
50 random samples (instead of 40000). This analysis 
is carried out to assess the performance of the two 
methods with a very small number of samples (and, 
thus, of system model evaluations): this is of para-
mount importance in practical cases in which the 
model requires several hours to run a single simula-
tion. For the sake of comparison, Figure 3 reports al-
so the possibility distribution produced by the stand-
ard MC–FIA approach with NT = 40000 random 
samples (solid line): since this number of samples is 
large enough for precisely estimating the failure 
probability of the dike in the present case, this pos-
sibility distribution is ideally taken as the “real” one 
and it is considered a “reference” benchmark solu-
tion in the comparisons. 

Notice that the result from LS-FIA (dashed line) 
is very close to this reference solution (solid line): 
actually, the two possibility distributions overlap 
almost completely; however, this result is obtained 
by LS-FIA at a much lower computational effort (i.e. 
using NT = 50 samples instead of 40000). On the 
contrary, MC-FIA with NT = 50 samples is not able 
to produce accurate results: this is pictorially 
demonstrated by the fact that the corresponding pos-
sibility distribution (dot-dashed line) lies very far 
from the reference solution (solid line). In addition, 
note that as before the precision of the LS-FIA 
method with NT = 50 samples is consistently higher 
than that of the MC-FIA with the same number of 
samples: actually, the standard deviations of the 
failure probability estimates produced by LS-FIA 
are about 33-62 times lower than those of MC-FIA 
(Table 2). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Possibility distributions )(ΩπP  of the failure proba-
bility P(�) of the dike, obtained by the MC – FIA (dot-dashed 
line) and LS – FIA (dashed line) approaches with NT = 50 ran-
dom samples; the result produced by the MC – FIA approach 
with NT = 40000 samples (solid line) is also reported. 
 
Table 2: Standard deviations ( ) )( αα Ωσ P  of the upper bounds 

( )αΩP  of the �-cuts of the possibility distribution )(ΩπP  for � 
= 0.2, 0.4, 0.6 and 0.8 (see Figure 3). 

 ( ) )�P(� ��  

α 
MC-FIA 
(NT = 50) 

LS-FIA 
(NT = 50) 

0.2 3.80E-02 1.15E-03 
0.4 3.33E-02 8.23E-04 
0.6 3.33E-02 6.14E-04 
0.8 2.75E-02 4.43E-04 

 
In addition to the precision of the failure proba-

bility estimate, also the computational time associat-
ed to the simulation method has to be taken into ac-
count. Table 3 reports the computational time tcomp 
associated to the simulations performed: it can be 
seen that the computational cost of the LS – FIA ap-
proach is about three times higher than that of the 
MC–FIA approach. Thus, in order to compare the 
overall computational efficiency of the two simula-
tion methods (i.e. in order to take into account both 
the precision of the estimates produced and the 
computational time required), a synthetic indicator, 
namely Figure Of Merit (FOM), is considered. It is 

defined as ( )( ) comptP ⋅Ω= 2/1FOM σ , where compt  is 

the computational time required by the simulation 
method and ( )( )Ωσ P2  is the variance of the failure 
probability estimate. Notice that the higher is the 
value of the index, the higher is the efficiency of the 
method. Table 4 summarizes the values of the FOM 
for the MC-FIA and LS-FIA approaches computed 
using the values of the standard deviations 

( ) )( αασ ΩP  given in Figures 2 and 3, right, and the 

values of the computational time tcomp reported in 
Table 3. It is evident that although the computational 
time of LS-FIA is higher than that of MC-FIA, its 
overall computational efficiency is still consistently 
higher: actually, the FOM of LS-FIA is 117-565 
times larger than that of MC-FIA in the case of NT = 
40000, whereas it is 370-1305 times larger in the 
case of NT = 50. 
 
Table 3: Computational time tcomp [s] of the MC – FIA and LS 
– FIA approaches carried out with NT = 40000 and NT = 50 
random samples. 

 
MC - FIA LS - FIA 

Number of simulations, NT 40000 50 40000 50 
Computational time tcomp [s] on 
a Intel® Core™2 Duo CPU 
E7600 @ 3.06 and 3.07 GHz  

31998 42 99181 124 
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Table 4: Values of the FOM characterizing the MC-FIA and 
LS-FIA approaches employing NT = 40000 and 50 random 
samples 

 FOM 

α 
MC-FIA 

(NT = 40000) 
LS-FIA 

(NT = 40000) 
0.2 30.63 5427.71 
0.4 39.10 10909.98 
0.6 49.69 20094.42 
0.8 68.79 38897.32 

α 
MC-FIA 
(NT = 50) 

LS-FIA 
(NT = 50) 

0.2 16.48 6097.93 
0.4 21.47 11906.34 
0.6 21.47 21391.51 
0.8 31.48 41093.28 

6 CONCLUSIONS 

A combined Line Sampling (LS) and Fuzzy In-
terval Analysis (FIA) approach for the joint hierar-
chical propagation of hybrid aleatory (probabilistic) 
and epistemic (possibilistic) uncertainties has been 
proposed and exemplified with reference to a model 
for the design of a flood protection dike. In the ex-
emplification, the uncertainty propagation task has 
been finalized to the estimation of the failure proba-
bility of the dike. The results obtained have been 
compared with those produced by a standard Monte 
Carlo (MC) and Fuzzy Interval Analysis (FIA) ap-
proach. 

It has been shown that LS-FIA outperforms MC-
FIA in terms of both accuracy and precision of the 
failure probability estimates. In addition, although 
the computational time associated to the LS-FIA ap-
proach is generally higher than that of MC-FIA, the 
overall computational efficiency (quantified by the 
FOM) is still consistently superior. 

The outstanding performance of the LS method in 
combination with the FIA approach makes it a rather 
attractive tool for the propagation of “level-2” hy-
brid probabilistic-possibilistic uncertainties in risk 
assessment problems. 
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APPENDIX A: MONTE CARLO AND FUZZY 
INTERVAL ANALYSIS APPROACH 

The main steps of the hybrid MC-FIA approach are 
the following (Baudrit et al. 2008): 
1. set � = 0 (outer loop processing epistemic uncer-

tainty by fuzzy interval analysis); 

2. select the �-cuts jPjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α , j = 1, 2, …, 

n, of the possibility distributions )( j
j ��
�  = 

( ) ( ) ( ){ } ,...,, ,2,1,

,2,1,

j

jPjjj

Pjjj θπθπθπ
θθθ  of the pa-

rameters j� , j = 1, 2, …, n; 

3. sample NT random intervals ],[ ,,
aa i
j

i

j
yy αα

, 

Ta Ni  ..., ,2 ,1= , j = 1, 2, …, n, of the “probabil-

istic” variables jY , j = 1, 2, …, n, letting param-

eters j�  range within the corresponding �-cuts 

jPjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α , j = 1, 2, …, n (found at step 

2. above) (inner loop processing aleatory uncer-
tainty by standard MC simulation); 

4. find the smallest and largest values of 

( )nYYYfZ  ..., , , 21= , denoted by aizα  and aizα , re-

spectively, letting variables jY  range within the 

intervals ],[ ,,
aa i
j

i

j
yy αα

, Ta Ni  ..., ,2 ,1= , 

nj  ..., ,2 ,1=  (found at step 3. above); 



5. take the values aizα  and aizα  found in 4. above as 

the lower and upper limits of the NT �-cuts aiZA ,
α  

of Z, Ta Ni  ..., ,2 ,1= . A probability mass 

( ) T
iZ NAm a 1, =α  is associated at each �-cut 

aiZA ,
α , Ta Ni  ..., ,2 ,1= ; 

6. calculate the upper and lower CDFs ( )zF Z
α  and 

( )zF Z
α  of level � as 

{ }
D

≤
=

zA

iZZ

aiZ

aAmzF
 ,inf

, )()(

α

αα  

and 
{ }
D

≤
=

zA

iZY

aiZ

aAmAF
,sup

, )()(

α

αα , respectively. 

if 1<α , then set ααα ∆+=  (e.g. 05.0=∆α  in this 
paper) and return to step 2. above; otherwise, stop 
the algorithm. 

APPENDIX B: LINE SAMPLING AND FUZZY 
INTERVAL ANALYSIS APPROACH 

The operative steps for the propagation of hybrid 
probabilistic and possibilistic uncertainty in a “level-
2” framework by LS – FIA approach are the follow-
ing (Koutsourelakis et al. 2004, Zio & Pedroni 2009, 
2010):  

1. Determine the unit important direction 
{ }nγγγ  ..., , , 21=�  that points towards the failure 

domain, �, of interest. The important direction is 
computed as the normalized “center of mass” of 
the failure domain of interest applying Markov 
chain to generate failure samples. 

2. Sample in the normal space a matrix }{ q
j� , 

with q lines, TNq  , ,2 ,1 �= , and j columns, 
nj  , ,2 ,1 �= , of random values of the variables 
njYj ,,1, �= ; TN  is the number of simulations. 

Each component of the matrix }{ q
j�  is associated 

with an independent central unit Gaussian distri-
bution. 

3. Project each line of the random sample matrix 

}{ q
j� , TNq  , ,2 ,1 �= , nj  , ,2 ,1 �= , onto the 

straight line passing through the origin O of the 
standard normal space and perpendicular to �  in 

order to obtain the matrix }{ ,⊥q
j� : 

�����
q
j

q
j

q
j ,, −=⊥ ,          (A.1) 

where TNq  , ,2 ,1 �= , nj  , ,2 ,1 �=   

In (A.1) q
j� , TNq  , ,2 ,1 �= , nj  , ,2 ,1 �= , de-

notes a random realization of the input variables 
in the standard normal space of dimension n  and 

q
j��,  is the scalar product between �  and q

j� , 

TNq  , ,2 ,1 �= , nj  , ,2 ,1 �= . It is worth noting 
that since the standard Gaussian space is isotropic, 
the matrix ⊥,q

j�  is also standard normally distrib-

uted. 

4. Define the sample matrix q
j�

~ , TNq  , ,2 ,1 �= , 

nj  , ,2 ,1 �= , as a sum of a deterministic multiple 

of �  and the matrix ⊥,q
j�  in (A.1), i.e.  

⊥+= ,~ q
j

qq
j c ��� ,            (A.2) 

where TNq  , ,2 ,1 �= , nj  , ,2 ,1 �=  and qc  is a re-
al number in [-�, +�]. Again, it is worth noting 
that since the standard Gaussian space is isotropic, 

the matrix q
j�

~  is also standard normally distribut-

ed. 
5. Moving along the straight line passing through 

}{ q
j� , TNq  , ,2 ,1 �= , nj  , ,2 ,1 �= , and parallel to 

� , select three different values qic , 3 2, ,1=i , for 
qc  and calculate the corresponding sample points 
q

ij ,
~
� , TNq  , ,2 ,1 �= , nj  , ,2 ,1 �= , 3 2, ,1=i , ac-

cording to (A.2). 
6. Compute the standard normal cumulative values 

qCum
ij

,
,� , TNq  , ,2 ,1 �=  , nj  , ,2 ,1 �= , 3 2, ,1=i , 

in correspondence of the sample points q ij ,
~
�  

TNq  , ,2 ,1 �= , nj  , ,2 ,1 �= , 3 2, ,1=i . 
7. Set 0=α  (outer loop processing epistemic uncer-

tainty). 
8. Estimate TN  lower and upper conditional “one-

dimensional” failure probability estimates 

αΩ )(,1 qDP  and αΩ )(,1 qDP , TNq  , ,2 ,1 �= , by the 
following steps: 

a. Select the �-cuts jPjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α  of the 

possibility distributions 

( ) ( ) ( )
E�

E
�
�

E�

E
�
�

=   ..., , , )( ,2,1,
,2,1,

j
jPjjjj

Pjjjj θπθπθπ
θθθ

��
�  of the pa-

rameters } ..., , ,{ ,2,1, jPjjjj θθθ=� , of the 

“probabilistic” variables nYYY ,...,, 21 , as inter-
vals of possible values 

[ ] [ ] [ ]
�
�
�

�
�
�

F�

�
��

�= αααααααα ,,,,,2,,2,,1,,1,,,  , ..., ,  , ,  , , jj
PjPjjjjjjj �������� , 

nj  , ,2 ,1 �= ;  
b. Set 1=q  (inner loop processing aleatory un-

certainty); 
c. Compute the thq−  random intervals 

F�

�
��

� q
ij

q
ij

yy αα ,,,,
, , nj  , ,2 ,1 �= , 3 2, ,1=i , in the phys-



ical space, of the “probabilistic” variables 

jY , nj  , ,2 ,1 �= , corresponding to the �-cuts 

[ ]=αα ,, , jj �� [ ] [ ] [ ]{ }αααααα ,,,,,2,,2,,1,,1,  ,  ,..,  ,  ,  , jj
PjPjjjjj ������  

(found at step 8.a. above) and to the thq −  

random matrix } ..., , ,{ ,
,

,
,2

,
,1

qCum
in

qCum
i

qCum
i ���  

3 2, ,1=i , (generated at step 6. above). In par-
ticular, the thq −  random interval 

F�

�
��

� q
ij

q
ij

yy αα ,,,,
,  for jY , nj  , ,2 ,1 �= , is calcu-

lated by �
�
	A

B
C

F�

�
��

�=
−

∈

qCum
ij

Yq
ij

j

jjjj

Fy ,
,

1

],[,,
,,

inf �
�

��� αα
α  

and �
�
	A

B
C

F�

�
��

�=
−

∈

qCum
ij

Yq
ij

j

j
jjj

Fy ,
,

1

],[
,,

,,

sup �
�

��� αα
α , 

3 2, ,1=i , where [ ] 1−
j

j

YF�  is the inverse of the 

Cumulative Distribution Function (CDF) 
j

j

YF�  of j

j

Yp� ; 

d. Calculate the smallest and largest values of 
( )nj YYYYfZ  ..., , ..., , , 21= , 3 2, ,1=i , denoted by 

q
iz α,  and q

iz α,  respectively, letting variables 

jY  range within the intervals 
F�
�

��
� q

ij
q

ij
yy αα ,,,,

, , 

nj  ..., ,2 ,1= , 3 2, ,1=i ; in particular, 

( )nj
yyYj

q
i YYYYfz

q
ij

q
ijj

 ..., , ..., , ,inf 21
],[,

,
,,,, αα

α
∈

=  and 

( )nj
yyYj

q
i YYYYfz

q
ij

q
ijj

 ..., , ..., , ,sup 21
],[,

,

,,,, αα

α
∈

= , 

3 2, ,1=i . 

e. Normalize the values qiz α,  and q
iz α, , 3 2, ,1=i , 

found in step 8.d. above with respect to the 
threshold of interest, *z , computing the per-

formance functionsq
i

g α,  and q
ig α, , respective-

ly, as 1
*
,

,
−=

z

z
g

q
iq

i

α
α

 and 1
*
,

, −=
z

z
g

q
iq

i
α

α . Posi-

tive values of q
i

g α,  and q
ig α,  indicate that the 

lower and upper values q
iz α,  and q

iz α, , 

3 2, ,1=i , respectively, exceed the threshold 
*z . 

f. Fit the points [ q
ic , q

i
g α, ] and [ q

ic ,
q
ig α, ], 

3 2, ,1=i , by means of first- or second-order 
polynomials and determine its roots 

[ qcα , qcα ]. The values [qcα , qcα ] represent the 

intersection between the limit state function 
0*) ,( , =zzg q

i
q

αα  or 0*) ,( , =zzg q
i

q
αα , 3 2, ,1=i , and 

the straight line passing through qj�  and par-

allel to � . 
g. Calculate the lower and upper conditional 

“one-dimensional” failure probabilities esti-
mate, αΩ )(,1 qDP  and αΩ )(,1 qDP , associated 

to each random samples q ij ,�  TNq  , ,2 ,1 �= , 

nj  ..., ,2 ,1= , 3 2, ,1=i  for the �-cut under 
evaluation, as: 

])1,0([1])1,0([)(,1 qqqD cNPcNPP ααα ≤−=>=Ω

)()(1 qq cc αα −Φ=Φ−=         (A.3) 

])1,0([1])1,0([)(,1 qqqD cNPcNPP ααα ≤−=>=Ω

)()(1 qq cc αα −Φ=Φ−=         (A.4) 

where )(⋅Φ  denotes the standard normal cu-
mulative distribution function. 

h. If TNq ≠ , then set 1+= qq  and return to step 
8.c. above; otherwise go to step 9. below. 

9. Compute the lower and upper unbiased estimators 

αΩ )(P  and αΩ )(P  for the failure probability, 
( ) ( )*zZPP >=Ω , as the sample average of the 

lower and upper independent conditional “one-
dimensional” failure probability estimates 

αΩ )(,1 qDP  and αΩ )(,1 qDP , TNq  , ,2 ,1 �= , in 
(A.3) and (A.4), respectively: 

D = Ω=Ω TN
q

qD
T PNP

1
,1 )()/1()( αα       (A.5) 

D = Ω=Ω TN
q

qD
T PNP

1
,1 )()/1()( αα       (A.6) 

The variance of the estimators (A.5) and (A.6) can 
then be written, respectively, as: 

( ) ( )αα αα σσ )(*)/1()( ,122 Ω=Ω qD
T PNP  and 

( ) ( )αα αα σσ )(*)/1()( ,122 Ω=Ω qD
T PNP , where 

( ) ( )D = Ω−Ω−=Ω TN
q

qD
T

qD PPNP
1

2,1,12 )()()1/(1)( αααασ

 and 

( ) ( )D = Ω−Ω−=Ω TN
q

qD
T

qD PPNP
1

2,1,12 )()()1/(1)( αααασ

 represent the sample variance of the independent 
conditional “one-dimensional” failure probability 
estimates. 

10. if 1≠α , then set ααα ∆+=  (e.g. 05.0=∆α ) 
and return to step 8. above; otherwise, stop the 
algorithm.  

The possibility distribution )(Ωπ P  of the probabil-
ity that the output ( )nYYYfZ  ..., , , 21=  exceeds a giv-
en threshold *z  is constructed as the collection of 
the values ( )αΩP  and ( )αΩP , 10.95, ...,,05.0,0=α , 

found at step 8.g. above (in other words, ( )ΩπP  is de-
fined by all its �-cut intervals ( ) ( ) ],[ αα ΩΩ P P ). 


