N

N

Line sampling and Fuzzy Interval Analysis for the
propagation of aleatory and epistemic uncertainties in
risk models

Elisa Ferrario, Nicola Pedroni, Enrico Zio

» To cite this version:

Elisa Ferrario, Nicola Pedroni, Enrico Zio. Line sampling and Fuzzy Interval Analysis for the prop-
agation of aleatory and epistemic uncertainties in risk models. ESREL 2013, Sep 2013, Amsterdam,
Netherlands. pp.1-8. hal-00838667

HAL Id: hal-00838667
https://centralesupelec.hal.science/hal-00838667

Submitted on 26 Jun 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://centralesupelec.hal.science/hal-00838667
https://hal.archives-ouvertes.fr

Line samplincand Fuzzy Interval Analysis for the propagatiot
aleatory and epistemic uncertainties in risk models

E. Ferrario, N. Pedroni, E. Zio
Chair on Systems Science and the Energetic Cha|déhgropean Foundation for New Energy - Electriciéé
France, at Ecole Centrale Paris - Supelec, France

E. Zio
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ABSTRACT: In this paper, an advanced Monte Carlo (MC) simotetnethod, namely Line Sampling (L
is considered in combination with Fuzzy Intervaladysis (FIA) for improving the sampling efficienay the
hierarchical propagation of hybrid (probabilisticdapossibilistic) uncertainties through a model tfoe risk-
based design of a flood protection dike. The predagproach is compared to that of standard MC lsagnp
showing superior accuracy and higher computatiefiaiency.

1 INTRODUCTION FIA require multiple evaluations of the model for

each simulated random sample (Baudrit et al. 2006).
In this paper, we consider a “level-2” framework of  Efficient sampling methods would, then, be use-
two hierarchical levels of uncertainty (Limbourg & ful for reducing the number of random samples
de Rocquigny 2010) representing aleatory (i.e. randrawn and the associated computational effort. In
dom) events whose stochastic laws of occurrence athis respect, techniques like Importance Sampling
described by models containing parameters (e.qIS), Stratified Sampling, Latin Hypercube Sampling
probabilities, failure rates, ...) that are episteatiic (LHS), Subset Simulation (SS) and the Cross-
uncertain, i.e. known with poor precision due ttkla Entropy (CE) method have been widely used in risk
of knowledge and information. assessment problems (Zio 2012).

We use probability distributions to describe alea- |n the present paper, Line Sampling (LS) is im-
tory uncertainty on the occurrence of the randonplemented for improving the sampling efficiency
events and possibility distributions to represén t (Koutsourelakis et al. 2004, Zio & Pedroni 20009,
epistemic uncertainty in the parameters of theatale 2010). The basic idea of LS is to employ lines in-
tory) probability distributions (Baudrit et al. 2006 stead of random points in order to explore thei{typ
The propagation of this hybrid (probabilistic andcally) high-dimensional space of the uncertain pa-
possibilistic) uncertainty representation can be pe rameters of the model under analysis. An “important
formed by combining (Baudrit et al. 2008) thedirection” is optimally determined in the multi-
standard Monte Carlo (MC) technique (Kalos &dimensional space of the uncertain parameters; then,
Withlock 1986, Zio 2012) with the extension princi- the (multi-dimensional) uncertainty propagation
ple of fuzzy set theory (Zadeh 1965): this is dbge problem is “decomposed” into a number of condi-
(i) Fuzzy Interval Analysis (FIA) to process théep tional, “one-dimensional” uncertainty propagation
temic uncertainty described by possibility distribu problems that are solved along such direction (Kout
tions and (i) repeated MC sampling of the randonsourelakis et al. 2004, Zio & Pedroni 2009, 2010,
variables to process the aleatory uncertainty (Baud zio 2012).
et al. 2008). The novel approach combining LS and FIA

However, this approach can require considerablgcalled hereafter as “LS-FIA” approach for brevity)
and often prohibitive computational efforts for twois here applied to hierarchically propagate hybrid
reasons: (i) a very large number of random realizagncertainties through a risk model for the desifja o
tions must be sampled by MC in order to perform aflood protection dike (Limbourg & de Rocquigny
accurate uncertainty propagation, i.e. to perform 2010). To the best of the author knowledge, it t
deep exploration of the (typically high-dimensignal first time that the LS and FIA techniques are com-
space of the uncertain parameters of the modeined to hierarchically propagate hybrid uncertain-
(Schueller 2009); (ii) the intervals computations ofties in risk assessment problems. The results are



compared to those obtained by a “classical” apa Gumbel PDF with parameteps(location parame-
Eroacz combining FIA and str?rfmda{)d MC)S (calledker) and & (scale parameter), ey, -
ereafter as “MC-FIA” approach for brevity). B B

The remainder of the paper is organized as foI-Gun(”";)'Gu"wi)'GL"T(@J'JL’Qj 2) Parameter
lows. In Section 2, the representation of aleatoryd=6;, (i.e. the scale parameter) is a fixed point-
(probabilistic) and epistemic (possibilistic) uncer wise value ¢=6;, = 400), whereas parameter
tainties in a “level-2” framework is described ia-d '
tail; in Section 3, the main concepts underlying th
hybrid LS-FIA approach are briefly outlined; in Sec uncertain. The only information available gr 8, ;
tion 4, the case study concerning the risk-based d¢s that it is defined on intervah[b] = [900, 1300]
sign of a flood protection dike is presented; irt-Se and its most likely value is = 1100. This limited

tion 5, the results of the joint hierarchical state of knowledge about= 6j, can be represented
propagation of hybrid uncertainties through the ) e . )
flood risk model of Section 4 are reported, com.PY @ triangular possibility distributionz’(7) with
mented and compared to those produced by tHeorec = 1100 and suppora][b] = [900, 1300] (Fig-
standard MC-FIA approach; in Section 6, some conure 1, left) (Baudrit & Dubois 2006).

clusions are drawn. Finally, in Appendices A and B, Given the possibility function?’(7) of n =61,
the operative steps of the MC-FIA and LS-FIA ap-

proaches, respectively, are described in details.

n=6;, (i.e. the location parameter) is epistemically

we can define ita-cut setsA? = {n: 71(n) > a},
for 0< a < 1. For exampleAl; = [1000, 1200] is

the set of;y -values for which the possibility function
2 “LEVEL-2" REPRESENTATION

FRAMEWORK OE ALEATORY AND is_ greater than or _equal to 0.5 (dashed segment i
EPISTEMIC UNCERTAINTIES Figure 1, left). Notice that the-cut AZ of level a
for parameter; can be interpreted as the (109%
We consider the (failure) behavior of a (possiblyconfidence Interval (CI) for, i.e. the interval such
safety-critical) system described by a mathematica}lnat Pl A’ >1-a (Baudrit et al. 2006): for ex-

model f(Y, Y, ....Y,), whose outpuZ is a function _
of n (input) parametersY;:j = 1, 2, ...,n}. In risk ample, Ags = [1000, 1200] is the 50% ClI foy . In

assessment problems (like the one consideredsn tHihis view, the possibility distribution?” (7) can be

paper), the outpu is a physical quantitgritical for  interpreted as a set ofestedCls for parameter

safety reasons (e.g. the water level of a rivesel®  (Baudrit & Dubois 2006).

a residential area, the temperature of the fual-cla For each possibility (respectively, confidence)elev

ding in a nuclear reactor, ...). a (respectively, 1 ) in [0, 1], a bundle of Cumula-
Due to imprecise knowledge and limited infor-tive Distribution Functions (CDFs) fo¥; can be

mation on the system, uncertainty is always presemfonstructed by letting parameter range within the

in the values of the system model input parameéorrespondin@c-cut setA’. This family of CDFs (of
ters/variables: this results into variability ineth

model outpug. level o) is bounded above and below by the upper

In this paper, we consider the system failureand lower CDFS,I?;,(j (yj) and EZ," (yj), defined as
probability P(Q), expressed as the probability tZdat _ Y. Y, v
exceeds a safety threshatd i.e. P(Q) =P[z>2] Fo'= S”%{Fn' (yi)} and Fg ‘H'Dnig{'znj (yi)}' re-
(Limbour & de Rocquigny 2010). 15Aq
spectively. Sincer’(7) can be interpreted as a set
of nested Cls for parameter (see above), it can be

=]

In all generality, we consider the uncertain (ifput
variables {¥;: j = 1, 2, ...,n}, described by the
Probability ~ Distribution ~ Functions ~ (PDFs) argued that the-cuts of 77(7) induce also @etof
{poYf(yj)ij=12,---'n} with epistemically-uncertain nested pairsof CDFS{(ED (yj),l?;(j (yj )j:0sasl}
parametersd; ={6,,,6,,.....0,,},] = 1, 2, ...,n,
represented by possibility distributions . I ) I 1)

0, _l. 8. g, Oim o, confidence larger than or equal to (1) i.e.
T (01)‘{” (‘91,1)’” (‘912)77 (Hj,m)’---’” (QP,)} P[ij( _)< ij( _)<EY]-( 'M>1‘a With 0< a <
For clarification by way of example, we may con- ¢ Yil= Yil=Fa Vil= ' -0

sider the generic uncertain variabfe described by 1 (Baudrit et al. 2008). For illustration purposes,
Figure 1, right shows the bounding upper and lower

which bound the “true” CDFF" (yj) of Y; with



0.5 (dashed lines) and 1 (dot-dashed line) of tee p

CDFs ofY, Fy (yj) and F)/ (yj), built in corre-
sibility distribution 777 (77) of parameter; .

spondence of the-cuts of levela = 0 (solid lines),
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Figure 1. Left: Triangular possibility distributiasf the parametey of the Gumbel probability distribution & ~ Gumg;, 400); in
evidence ther-cut of levela = 0, 0.5 and 1. Right: Upper and lower CDFs/dduilt in correspondence of thecut of levela = 0,
0.5 and 1 for the parameter

[P(@),,P(@),] corresponds to the cut of level of

3 LINE SAMPLING AND EUZZY INTERVAL the possibility distribution7”\?) of the exceedance

ANALYSIS JOINT HIERARCHICAL probability P(@). |
PROPAGATION OF ALEATORY AND In this paper, step ii. of the procedure above. (i.e
EPISTEMIC UNCERTAINTIES IN A “LEVEL- standardrandom sampling) is replaced by the adop-
2" FRAMEWORK tion of Line Sampling (LS). To the authors

knowledge, this is the first time that an accelslat
The propagation of the hybrid (probabilistic andsampling technique is introduced in the scheme of
possibilistic) level-2” hierarchical uncertaintypre-  hybrid uncertainty propagation, to improve sampling

sentation through the modgl= (Y, Y, ,....Y,) can efficiency.

n . . .
be performed by combining the standard Monte Car- /S mentioned in the Introduction, LS has been

lo (MC) technique (Kalos & Withlock 1986, Zio originally developed for complex structural reliabi
2013) with the extension principle of fuzzy setche 1ty Problems (Koutsourelakis et al. 2004) and is

ry (Zadeh 1965), by means of the following mainP@s€d on the sampling of directtes (instead of
steps (Baudrit et al. 2008): randompointg for exploring the multi-dimensional

i.  Fuzzy Interval Analysis (FIA) to process the SPac€ o_f the uncertair_l model parameters (Kout-
epistemic uncertainty in the parametets sourelakis et al. 2004, Zio & Pedroni 2009, ZQJJﬁ)).
_ o o] extreme synthesis, the problem of computing the
described Dby the possibility distributions gysiem failure probability is transformed from the
x 0,),j=1,2,...n original “physical” space into the so-called “stand
i. repeatedstandard MC sampling to process ard normal space”, where each random variable is

aleatory uncertainty described by the probal€presented by an independent, central-unit Gaussia
bility distributions{ p;: (v):]=12...r}. distribution. In the transformed spaceumit vector

_ _ _ y (hereafter also called “important direction”) is-de
Tgchnlcal details about the'oper.atlve stepg of th?ermined, pointing towards the failure domainof
hybrid MC-FIA approach are given in Appendix A. jnterest. The problem of computing the system fail-
The method produces a set of nested pairs Qfre probability in the original multi-dimensional
CDFs {(Ef,(z) FaZ(Z))IOSUS]} for Z, that are used space is then reduced to a number of conditional
to estimate the system failure probabif) =P[Z  one-dimensional problems, which are readily solved
>7]=1-P[Z<2]=1-F(z). Since the (hybrid) in the standard normal space along the “important
uncertainty inZ is represented by a set of nesteddirection” by using the standard normal cumulative
pairs of CDFs, theP(Q) is described by a possibil- distribution function (Koutsourelakis et al. 2040
ity distribution 7°?). Actually, for each possibility & Pedroni 2009, 2010). The operative steps of the
level a, two (upper and lower) estimates for the exJfrocedure are not given here for the sake of brevit

coedance probabiltP(2) 5(0) and P( Q) are the interested reader is referred to Appendix B for
’ a —\az technical details.

. = _ z . .
obtained as P(Q), =1-F. () and Several applications have shown that the method
P(@), =1-FZ(z*), respectively: then, the interval performs better than standard Monte Carlo Simula-



tion. Theoretically, if the boundaries of the fadu The final goal of the case study application isléa
domain of interest are not too rough (i.e. almost | termine the failure probabiliti?(2) of the dike. This
ear) and the “important direction” is almost perpenrequires that we evaluate the probabilR(2) that
dicular to them, the variance of the failure prabab the maximal water level of the rivez (the model
ity estimator could be reduced to zerooutput) exceeds a given threshad (the dike lev-
(Koutsourelakis et al. 2004). el), i.e. P(Q)=P(z > z*): in the present paper* =
55.5 m (Limbourg & de Rocquigny 2010). As high-
lighted before, since the maximal water level @ th
river Z (the model output) is described by a set of

nested pairs of CDFgEg,(Z), FZ (z)):Os asl}, then

We consider a protection dike in a residential are®(2) is represented by the possibility distribution

closely located to a river with potential risk of 7°(?) (see Section 3).

floods. Two issues are of concern for its design: (

high construction and annual maintenance costs of

the dike; (ii) uncertainty in the natural phenomeno 5 RESULTS

of flooding. Then, the different design options mus

be evaluated by flooding risk analysis frameworkFigure 2 shows the estimates of the possibility dis

accounting for uncertainty. tributions 77°(?) of the failure probability of the dike,
P(Q) =P(Z >z = 555m), produced by the hybrid

The model considered calculates the maximal watars — FIA approach (dashed lines) and by the stand-

level of the riverZ (i.e. the output variable of the ard MC — FIA approach (solid lines) witN; =

model) as a function of several parameters (i.e. th40000 random samples drawn. It can be seen that the

input variables of the model) (Limbourg & de two methods provideery similar results: actually,

4 A CASE STUDY OF FLOOD PROTECTION
RISK-BASED DESIGN

Rocquigny 2010): the two curves overlap almost completely.
9 3/5 In order to provide a (rough) quantitative indioati
Z= v‘{K BOZm-2 )/L] (1) of theprecisionof the estimates provided by the two
S m A

methods, the standard deviatiosis(P(@),) of the
charge (is): Y, =7 and Y, = Z, are the riverbed |PPE" boundsP (@), of thea-cuts of the possibility

levels (m asl) at the upstream and downstream partistributions 7z” 42 of P(Q) are computed; for illus-

of the river under investigation, respectively;fration purposes, the values of,(P(2),) are re-

Y, =K, is the Strickler friction coefficientB andL ~ Ported in Table 1 fox = 0.2, 0.4, 0.6 and 0.8. It is

are the width and length of the river part (m) pees ewdgnt that the precision of the LS-FIA method is

tively. consistently hlghetha_m _that of the M_C-FIA: ac_tua_l-
The input variables are classified as follows: Iy,t'thetstandacrld dedwk?mt)r?s I(_); tEﬁA\fa"utrr? 3r°ht’§b't|) t
. _ _ . estimates produced by the LS-FIA method are abou

constantsB =300m, L =5000m; 23-42 timeslower than those of the MC-FIA ap-

proach.

where: Y, =Q is the yearly maximal water dis-

* uncertain variablesQ, Z,,Z,,K,.

1
The uncertain variables are affected by aleatody an = |
epistemic uncertainties. The aleatory part of the u
certainty is described by probability distributioofs

MC - FIA (N, = 40000) | |
-~~~ LS- FIA (N, = 40000) | ]

defined shape (e.g. normal, Gumbel etc.). The pa- ool
rameters of the probability distributions descrgin 05l
the aleatory uncertainty are themselves affected by oa
epistemic uncertainty, represented in terms ofiposs 03

bility distributions.
In this work, we adopt the hybrid probabilistic o
and possibilistic representations already propased Y R DU
(Pedroni et al. 2013). For space limitations, wé wi ob e poooo o om 0w 0;(79) .
not rec_a” _the representations considered t_habis nFigure 2: Possibility distributiong?™“? of the failure proba-
the objective of the present paper. The interestesliity P(Q) of the dike, obtained by the MC — FIA (solid [jne
reader is referred to (Pedroni et al. 2013) fothfer  and LS — FIA (dashed line) approaches with=N40000 ran-
details and explanation of the reasons underlyingo™m samples.
these choices.




Table 1: Standard deviatioris, (P(2),) of the unp;Ber bounds Figure 3: Possibility distributionst™?) of the failure proba-
(), of thea-cuts of the possibility distributionz? fora  bility P(€2) of the dike, obtained by the MC — FIA (dot-dashed

=0.2, 0.4, 0.6 and 0.8 (see Figure 2). line) and LS — FIA (dashed line) approaches witteN\60 ran-
—— dom samples; the result produced by the MC — Flgragch
7,(P (Q)a ) with Nt = 40000 samples (solid line) is also reported.
a MC-FIA LS-FIA
(Nr = 40000  (Nr= 40000 Table 2: Standard deviatiors, (P(2),) of the upper bounds
0.z  1.01E-03 4.31E-05 P(0), of thea-cuts of the possibility distributiomr ) for «
0.4  8.94E-04 3.04E-0t =0.2,0.4, 0.6 and 0.8 (see Figure 3).
0.€ 7.93E-04 2.24E-0% — (5(9) )
0.8 6.74E-04 1.61E-05 %a a
) ; . MC-FIA LS-FIA
Figure 3 shows the estimates of the same quanti- a (N = 50 (Ny = 50
ties as before (see Figure 2), but obtained Withr 0.2  3.80E-02 1.15E-03
50 random samples (instead of 40000). This analysis 04 3.33k-02 8.23E-04

0.€ 3.33E-02 6.14E-04

is carried out to assess the performance of the two 0f  275(-02 4.43E-04

methods with avery smallnumber of samples (and,

thus, of system model evaluations): this is of para |y addition to the precision of the failure proba-
mount importance in practical cases in which thejjity estimate, also theomputational timessociat-
model requires several hours to run a single simulayq to the simulation method has to be taken into ac
tion. For the sake of comparison, Figure 3 repalts count. Table 3 reports the computational titag,
so the possibility distribution produced by thenska  associated to the simulations performed: it can be
ard MC-FIA approach witfNr = 40000 random seen that the computational cost of the LS — FIA ap
samples (solid line): since this number of sampes proach is about three timésgher than that of the
large enough for precisely estimating the failureyjc_FiA approach. Thus, in order to compare the
probability of the dike in the present case, this-p gverall computational efficiencyf the two simula-
sibility distribution is ideally taken as the “ré@ne  tion methods (i.e. in order to take into accobath
and it is considered a “reference” benchmark solughe precision of the estimates producadd the
tion in the comparisons. computational time required), a synthetic indicator
Notice that the result from LS-FIA (dashed line)namely Figure Of Merit (FOM), is considered. It is

is very closeto this reference solution (solid line): defi 2 .
o S efined asFomM=1/0°(P(Q)) , Where t is
actually, the two possibility distributions overlap 7* (P(@)) Heomp comp

almost completely; however, this result is obtainedh® computational time required by the simulation
by LS-FIA at amuch lowercomputational effort (i.e. method ando?(P(«2)) is the variance of the failure
using Nr = 50 samples instead of 40000). On theprobability estimate. Notice that tHegher is the
contrary, MC-FIA withNr = 50 samples isot able value of theindex thehigheris theefficiencyof the

to produce accurate results: this is pictorially method. Table 4 summarizes the values of the FOM
demonstrated by the fact that the corresponding pofor the MC-FIA and LS-FIA approaches computed
sibility distribution (dot-dashed line) lies verarf using the values of the standard deviations
from the reference solution (solid line). In adaitj 7, (P(Q),) given in Figures 2 and 3, right, and the

note that as before the precision of the LS-FIA5jyes of the computational timtg,mp reported in
method withNr = 50 samples isonsistently higher Tapje 3. It is evident that although the computalo
than that of the MC-FIA with the same number ofime of LS-FIA is higher than that of MC-FIA, its
samples: actually, the standard deviations of thgyerall computational efficiency is stifonsistently

failure probability estimates produced by LS-FIApigher actually, the FOM of LS-FIA is 117-565
are about 33-62 timeswer than those of MC-FIA  {imes |arger than that of MC-FIA in the caseNaf=

(Table 2). 40000, whereas it is 370-1305 times larger in the
T T case ofNr = 50.

MC - FIA (N, = 40000) |

1
)
T 0.9

| —— - LS-FIA(N;=50)
i ' — -Mc-FAN,=50)
|

Table 3: Computational timgot, [s] of the MC — FIA and LS
— FIA approaches carried out withy & 40000 and N= 50
random samples.

| ) MC - FIA LS-FIA

0.81

0.5 ‘ 7 Number of simulationd\; 40000 50 40000 50
04 . Computational timetgemp[S] on
0.3 o aIntel® Core™2 Duo CPU 31998 42 99181 124

I E7600 @ 3.06 and 3.07 Gl

I I
0.06 0.07 0.08

PQ)

I
0 0.01



Table 4: Values of the FOM characterizing the M@-Rind and application. Probabilistic Engineering Mechahf
LS-FIA approaches employing {N= 40000 and 50 random 409-17.

samples Limbourg, P. & de Rocquigny, E. 2010. Uncertainhalysis
FOM using evidence theory — confronting level-1 ancele ap-
B MC-FIA LS-FIA proaches with data availability and computationah-c
(N; = 40000 (N; = 40000 straints. Reliability Engineering and System Saf&y550-
0. 30.6: 5427.7. o64. _ _ .
0.4 39.1( 10909.9: Pedroni, N. Zio, E. Ferrario, E. Pasanisi, A. Cetil. 2013.
0.€ 49 .6¢ 20094.4: Hlerarc_hlcgl propagation of probabilistic and non-
0.€ 68.7¢ 38897.3" probabilistic uncertainty in the parameters ofsk nnodel.
MC-FIA LS-FIA Comput Struct, 10.1016/j.compstruc.2013.02.003.
a (N = 50 (N; = 50) Schueller, G.I. 2009. Efficient Monte Carlo simidat proce-
= - : . 2 dures in structural uncertainty and reliability bsés - re-
0.2 16.4¢ 6097.9: X :
- cent advances. Journal of Structural Engineerind) e-
0.4 21.47 11906.3 :
0.€ 21.47 213915 chanics 32(1): 1-20. .
0.€ 31.4¢ 41093.2! Zadeh, L.A. 1965. Fuzzy Sets. Information and Guir8r 338-

353.
Zio, E. 2012. The Monte Carlo Simulation Method 8ystem

Reliability and Risk Analysis. London: Springer @srin
6 CONCLUSIONS Reliability Engineering.

Pedroni, N. & Zio, E. 2009. Functional failure ays$ of a

A combined Line Sampling (LS) and Fuzzy In- thermal-hydraulic passive system by means of LiamS
terval Analysis (FIA) apprr())acgh (for)the joint hise/’(ar pling. Reliability Engineering and System Safety 9464-
chical propagation of hybrid aleatory (probabitilti zio, E. Pedroni, N. 2010. An optimized Line Samplimethod
and epistemic (possibilistic) uncertainties hasnbee for the estimation of the failure probability of clear pas-
proposed and exemplified with reference to a model gg’elstsltg&s- 1§f§ab"'ty Engineering and Systerfetya
for the design of a flood protection dike. In the e (12): - '
emplification, the uncertainty propagation task has

been finalized to the estimation of the failure@o AppENDIX A: MONTE CARLO AND FUZZY

bility of the dike. The results obtained have beenNTERVAL ANALYSIS APPROACH
compared with those produced by a standard Monte

Carlo (MC) and Fuzzy Interval Analysis (FIA) ap- The main steps of the hybrid MC-FIA approach are

proach. the following (Baudrit et al. 2008):
It has been shown that LS-FIA outperforms MC-1.seta = 0 (outer loop processing epistemic uncer-
FIA in terms of bothaccuracyandprecisionof the tainty by fuzzy interval analysis);

failure probability estimates. In addition, althbug 61 Af» Op o _

the computationdime associated to the LS-FIA ap- 2.select thez-cuts A", A7 AL T = 1,2,

proach is generally higher than that of MC-FIA, the n, of the possibility distributionsz” @, )=

overall computational efficiencyguantified by the . » b;p

FOM) is still consistently superior. {”GJ' (91,1)' " (91 ,2)'---’” J(ej,Pi )} of the pa-
The outstanding performance of the LS method in rametersf, ,j =1, 2, ...,

combination with the FIA approach makes it a rather , W o

attractive tool for the propagation of “level-2” y 3-Sample Nr random intervals [y” .y;,],

brid probabilistic-possibilistic uncertainties imsk i,=12..,N;,j=1,2,...,n, of the “probabil-

assessment problems. istic” variablesY;, j =1, 2, ...,n, letting param-

eters §; range within the correspondingcuts
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Koutsourelakis, P.S. Pradlwarter, H.J. Schuellek, Z004. Re-
liability of structures in high dimensions, Partalgorithms



5.take the valuesz® and z found in 4. above as
the lower and upper limits of tiér a-cuts A"
of Z, i,=1212..,N;. A probability mass
m(Af'ia):J/NT IS associated at each-cut
Al i =12...,N

6.calculate the upper and lower CDF%(z) and
> m(A7 ")

inf{AZ'a}<z

> m(AZ'+), respectively.

suf A7} <z

if a<1, then seta=a+Aa (e.g. Aa =005 in this

FZ(z) of level a as F,%(2)=

andF " (A) =

4.Define the sample matrix¢9, q=12---,

<y,?’?> is the scalar product betwegnand ¥ 9,
g=12---,Nt, j=12---,n. It is worth noting
that since the standard Gaussian space is isotropic
the matrix!]l?"j is also standard normally distrib-
uted.

S
j=212---,n, as a sum of a deterministic multiple
of y and the matriwr®"” in (A.1), i.e.

q7? :qu+y/?’[|, (AZ)

whereq=12---,Nt, j=12---,n andc? is a re-

paper) and return to step 2. above; otherwise, stop al number in [0, +x]. Again, it is worth noting

the algorithm.

APPENDIX B: LINE SAMPLING AND FUZZY
INTERVAL ANALYSIS APPROACH 5
The operative steps for the propagation of hybrid

probabilistic and possibilistic uncertainty in @vel-
2" framework by LS — FIA approach are the follow-
ing (Koutsourelakis et al. 2004, Zio & Pedroni 2009
2010):

1. Determine unit direction

the important

y={11,¥2 ...y} that points towards the failure 6.

domain,Q, of interest. The important direction is
computed as the normalized “center of mass” of
the failure domain of interest applying Markov
chain to generate failure samples.

2. Sample in the normal space a matfi},
with g lines, q=12:---,Ny, and j columns,
j=212---,n, of random values of the variables
Yj,j=L%---,n; Ny is the number of simulations.

Each component of the matrw ?} is associated

with an independent central unit Gaussian distri-
bution.
.Project each line of the random sample matrix

{W?}l q:lzf'"NTu j:lza"',n, onto the

straight line passing through the origin O of the
standard normal space and perpendiculay tm

order to obtain the matrig "} :

g0 _ywd_ q
whereq=12---,Ng, j=12--,n
In (A1) ¥, =12-,Ny, j=12-,n, de-

notes a random realization of the input variables
in the standard normal space of dimensiorand

7.

8.

that since the standard Gaussian space is isotropic
the matrixy?'j-q is also standard normally distribut-

ed.

.Moving along the straight line passing through

NT’ J =12,
v, select three different valuesg', i = 12,3, for

{rfH, a=12-, n, and parallel to

cd and calculate the corresponding sample points
Y—;ﬁi, q= ]_’2’...,NT, J = :L2,...,n, i = 1'2’3, ac-

cording to (A.2).
Compute the standard normal cumulative values

q]cumq q 12 NT f j=1,2,"',n, |= 112131
in correspondence of the sample poinf#i
q=12--N7y, j=12---,n,i=123.

Seta =0 (outer loop processing epistemic uncer-
tainty).

Estimate Nt lower and upper conditional “one-
dimensional” failure  probability estimates
P®9(Q), and P*®9(2),, q=12---,Nt, by the
following steps:

Select thea-cuts A, A7 ...,
possibility

Aj”’" of the
distributions

A (01-):{ Ag,)A2(g A (ej,pl)} of the pa-
6,,}, of the

“probabilistic” variablesVY;,Ys.....Y,,, as inter-
vals of possible values

L9]0,01a] {’9110/91,10/] ’9]2a9120] [Jpaejpa}}

J = ]_’2’...,n
Set q=1 (inner loop processing aleatory un-

certainty);
c. Compute

a.

rameters 0, ={6,,,6;, ... of

the g-th random intervals

[y“a y]|aj|1 j=12--4n, i=123, in the phys-



ical space, of the “probabilistic” variables the straight line passing through? and par-
Y;, J=12--,n, corresponding to the-cuts

B - ~ B alleltoy.
le,a,0j,aJ=“lea,91;m 1le,2a10j,2ﬂJa--a[Qj,R,a’eij}vﬂl} g. Calculate the lower and upper conditional
(found at step 8.a. above) and to theth “one-dimensional” failure probabilities esti-

mate, P**9(2), and P*%(Q),, associated

random matrix {¥ "M%, w5Ima | pCumay
’ to each random samplas?; q=12-- Nr,

i = 12,3, (generated at step 6. above). In par- .
ticular, the q-th random interval J=12...n, i=123 for the a-cut under
evaluation, as:

qa _(.:I. o= i -
[ Shia¥hia | for ¥y, =120, is calu PIP9(Q)4 = PIN (01 > 5] =1- PIN (01 <]

=.L,a

1 —1-d(cd) = d(-cd
lated by quia: inf _ [F;J} (y;jC’iumq) :1 ®(Cy) = d(-Cy) (A.3)
g 0hal P9(Q), = PIN(01) >c] =1-PIN (@) <cj]
-1
and Vie=  sup [FJ_J} (wEoma), =1-d(cd) = o(-c) (A.4)
0;010; ,0ial- where @() denotes the standard normal cu-
i = 12,3, where [FHY' ]_l is the inverse of the mulative distribution function.

h. If g# N, then setg=q+1 and return to step
8.c. above; otherwise go to step 9. below.
9.Compute the lower and upper unbiased estimators
. Calculate the smallest and largest values of p(Q) and P(2), for the failure probability,
z=1fn Y2 .Y .. Y), =123, denoted by  p(0)=p(z>z*), as the sample average of the
Ziq,a and z°, respectively, letting variables lower and upper independent conditional “one-
dimensional” failure  probability estimates

ElD,q(Q)a and ﬁlD,Q(Q)a' gq= 127"'!NT’ in

Cumulative Distribution Function (CDF)
FS of p,;

Y, range within the interval%z?’i’a,yﬁi’a},

j=212..,n, i=2123; in particular, (A.3) and (A.4), respectively:
9 = ' : - Nt 51D,
Zig i'YjEl;‘,»E::??,i‘a] f(Yl Yo e, ,...,Yn) and P(Q), =/ NT)ZqulE 9Q), (A.5)
74 = i _ _
2= s (6% X nY) P(Qa = WUND T, P (@), (A6)
J’YjE[leilg’yj.i‘D] q
i=123. The variance of the estimators (A.5) and (A.6) can
. Normalize the valueg’, and z%,, i = 12,3, thzen be written, reSpegtiViLy, as:
found in step 8.d. above with respect to the 7% (P(Q)a)= WN7) *Qa(E 'q(Q)a) and
threshold of interestz*, computing the per- 53(5(9)51): (1/N7) *53(51D,q(9)a), where
formance functiong? and g, , respective-
L e q o2 (PP9(Q) )= 11N —1)23;1@10"*@)” -P@),f
Z A
ly, as g’ ==%-1andg’, =2 -1. Posi- and
~ia Z* ) Z*

2= N; [5 = 2

? (PlD'Q(Q)a):ﬂ(NT —1)Zq=1('°“"q(9)a - P(Q)a)
represent the sample variance of the independent
lower and upper valuesz', and Zz°,, conditional “one-dimensional” failure probability

i = 12,3, respectively, exceed the threshold _€Stimates.
z* . 10.if a#1, then seta=a+Aa (e.g. Aa = 005)

tive values ofg? and g, indicate that the

_ ) —q and return to step 8. above; otherwise, stop the
Fit the points E.g? 1 and [c.g;,]. algorithm.

i = 1,2,3, by means of first- or second-order  The possibility distributiorz"® of the probabil-
polynomials and determine its roots ity that the outputZ = (¥, Y, .....Y,) exceeds a giv-
[cd,c9]. The values 3,cd] represent the €N thresholdz* is constructed as the collection of
intersection between the limit state functionth® valuesk(e), and P(e),, a = 0,005...,0.95],
g%z, 2) =0 or gd(z%,. 2 =0, i = 12,3, and found at step 8.g. above (in other vv_ord§§9) is de-
o ' fined by all itsa-cut intervals[P(2),, P(2),1).



