INTRODUCTION

Failures of components generally occur in two modes: degradation failures due to physical deterioration in the form of wear, erosion, fatigue, etc, and catastrophic failures due to damages caused by sudden shocks in the form of jolts, blows, etc [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF][START_REF] Wang | An approach to reliability assessment under degradation and shock process[END_REF]). In the past decades, a number of degradation models have been proposed in the field of reliability engineering [START_REF] Gebraeel | Residual life predictions in the absence of prior degradation knowledge[END_REF][START_REF] Lawless | Covariates and random effects in a gamma process model with application to degradation and failure[END_REF][START_REF] Elsayed | A geometric Brownian motion model for field degradation data[END_REF][START_REF] Lisnianski | Multi-state system reliability: assessment, optimization and applications[END_REF][START_REF] Giorgio | An age-and statedependent Markov model for degradation processes[END_REF][START_REF] Kim | Optimal maintenance policy for a multi-state deteriorating system with two types of failures under general repair[END_REF][START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF]. They can be grouped into the following categories [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF]): statistical distributions (e.g. Bernstein distribution [START_REF] Gebraeel | Residual life predictions in the absence of prior degradation knowledge[END_REF])), stochastic processes (e.g. Brownian motion and Gamma process) [START_REF] Lawless | Covariates and random effects in a gamma process model with application to degradation and failure[END_REF][START_REF] Elsayed | A geometric Brownian motion model for field degradation data[END_REF], and multi-state models [START_REF] Lisnianski | Multi-state system reliability: assessment, optimization and applications[END_REF][START_REF] Giorgio | An age-and statedependent Markov model for degradation processes[END_REF][START_REF] Kim | Optimal maintenance policy for a multi-state deteriorating system with two types of failures under general repair[END_REF].

Most of the existing models are typically built upon degradation sample data from historical collection [START_REF] Gebraeel | Residual life predictions in the absence of prior degradation knowledge[END_REF][START_REF] Elsayed | A geometric Brownian motion model for field degradation data[END_REF][START_REF] Giorgio | An age-and statedependent Markov model for degradation processes[END_REF] or expensive degradation tests [START_REF] Lawless | Covariates and random effects in a gamma process model with application to degradation and failure[END_REF]. For critical components, it is often difficult or even impossible to collect degradation/failure samples, especially under operational conditions [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF], so that the degradation models mentioned above might not be feasible for reliability assessment. An alternative is to resort to failure physics and structural reliability models, which do not require degradation/failure sample data and incorporate the knowledge of physics of failure [START_REF] Kostandyan | Physics of failure as a basis for solder elements reliability assessment in wind turbines[END_REF]. Recently, [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF] have proposed a multi-state physics model (MSPM) for modeling nuclear component degradation, also accounting for the effects of environmental factors (e.g. temperature and stress) within certain predetermined ranges [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF].

Random shocks also need to be accounted for because they can bring considerable variations to the environmental factors, even outside their predetermined ranges [START_REF] Nakagawa | Shock and damage models in reliability theory[END_REF]). In the literature, random shocks are typically modeled by Poisson processes [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF][START_REF] Nakagawa | Shock and damage models in reliability theory[END_REF][START_REF] Bai | Generalized shock models based on a cluster point process[END_REF][START_REF] Wang | Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[END_REF][START_REF] Esary | Shock models and wear processes[END_REF], distinguishing two main types, extreme shock and cumulative shock processes [START_REF] Bai | Generalized shock models based on a cluster point process[END_REF], according to the severities of the damages. The former type could directly lead the component to immediate failure [START_REF] Gut | Extreme shock models[END_REF][START_REF] Anderson | Limit theorems for general shock models with infinite mean intershock times[END_REF], whereas the latter increases the degree of damage in a cumulative way [START_REF] Agrafiotis | On excess-time correlated cumulative processes[END_REF][START_REF] Nakagawa | Replacement policies for a cumulative damage model with minimal repair at failure[END_REF].

The degradation processes subject to random shocks have been intensively studied [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF][START_REF] Wang | An approach to reliability assessment under degradation and shock process[END_REF][START_REF] Wang | Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[END_REF][START_REF] Esary | Shock models and wear processes[END_REF][START_REF] Ye | A distribution-based systems reliability model under extreme shocks and natural degradation[END_REF][START_REF] Fan | Multicomponent lifetime distributions in the presence of ageing[END_REF][START_REF] Klutke | The availability of inspected systems subject to shocks and graceful degradation[END_REF][START_REF] Wortman | A maintenance strategy for systems subjected to deterioration governed by random shocks[END_REF]. [START_REF] Esary | Shock models and wear processes[END_REF] have considered extreme shocks in the component reliability model, whereas [START_REF] Wang | An approach to reliability assessment under degradation and shock process[END_REF], [START_REF] Klutke | The availability of inspected systems subject to shocks and graceful degradation[END_REF], [START_REF] Wortman | A maintenance strategy for systems subjected to deterioration governed by random shocks[END_REF] have modeled the influences of cumulative shocks onto the degradation model. Both types of random shocks have been considered by [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF][START_REF] Wang | Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[END_REF]. Additionally, [START_REF] Ye | A distribution-based systems reliability model under extreme shocks and natural degradation[END_REF][START_REF] Fan | Multicomponent lifetime distributions in the presence of ageing[END_REF] have considered that higher severity of degradation can lead to higher probability that a random shock causes extreme damage.

The contribution of this work is twofold: first, we extend our previous MSPM framework [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF] current state and hence is more suitable for considering maintenances [START_REF] Huzurbazar | Flowgraph models for complex multistate system reliability[END_REF]; then, we integrate the random shock model into the MSPM framework. We propose a general random shock model, where the probability of a random shock resulting in extreme damage and cumulative damage are both dependent on the component degradation state and residence time in the state. The rest of this paper is organized as follows. Section 2 introduces the semi-Markov scheme into the MSPM framework. Section 3 presents the random shock model; in Section 4, this integration into MSPM is presented. Monte Carlo simulation procedures for component reliability assessment are presented in Section 5. Section 6 uses a numerical example regarding a case study of literature, to illustrate the proposed model. Section 7 concludes the work.

MSPM OF COMPONENT DEGRADATION PROCESSES

The following assumptions are made for the extended MSPM framework [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF] The probability that the continuous time semi-Markov process will step to state j at time T n+1 in the next infinitesimal time interval (t,t+∆t), given that it has arrived at state i at time T n after n transitions and remained stable in i from T n until time t, is:
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where X k denotes the state of the component after k transitions and T k denotes the time of arrival at X k . The degradation transition rates can be obtained from the structural reliability analysis of the degradation processes (e.g. a crack propagation process, [START_REF] Kostandyan | Physics of failure as a basis for solder elements reliability assessment in wind turbines[END_REF][START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF])), whereas the transition rates related to maintenance tasks can be estimated from the frequencies of maintenance activities.

The solution to the semi-Markov process model is the state probability vector (2) where p 0 (t) is the probability of the complete failure state at time t.

P(t) = {p M (t), p M- 1 (t),…, p 0 (t)} where p i (t)
Analytically solving the continuous time semi-Markov model with state residence time dependent transition rates is a difficult or sometimes impossible task, and the Monte Carlo simulation method is usually applied [START_REF] Gillespie | Monte Carlo simulation of random walks with residence time dependent transition probability rates[END_REF][START_REF] Rachelson | A simulation-based approach for solving generalized semimarkov decision processes[END_REF]).

RANDOM SHOCKS

The following assumptions are made on the random shock process:  The random shocks are independent of the degradation process, but they can influence the degradation process (see Figure 2).  The arrivals of random shocks follow a homogeneous Poisson process {N(t),t  0} [START_REF] Bai | Generalized shock models based on a cluster point process[END_REF] with constant arrival rate  , where the random variable N(t) denotes the number of random shocks occurred until time t.  The damages of random shocks are divided into two types: extreme and cumulative.

 Extreme and cumulative shocks are mutually exclusive.  The component fails immediately upon occurrence of extreme shocks.  The probability of a random shock resulting in extreme damage is dependent on the current component degradation.  The shock of cumulative damage can only influence the degradation transition departing from the current state and its impact on the degradation process is dependent on the current component degradation. The first five assumptions are taken from [START_REF] Wang | Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[END_REF]. The sixth assumption reflects the aging effects addressed in [START_REF] Fan | Multicomponent lifetime distributions in the presence of ageing[END_REF] where the random shocks are more fatal to the component (i.e. more likely lead to extreme damages) when the component is in severe degradation states. However, the influences of cumulative shocks under aging effects have not been considered in [START_REF] Fan | Multicomponent lifetime distributions in the presence of ageing[END_REF]'s model, as in the last assumption. In addition, the random shock damage is assumed to depend on the current degradation, characterized by three parameters: 1) the current degradation state i, 2) the number of cumulative shocks m occurred while in the current degradation state since the last degradation state transition, 3) the residence time τ' i,m of the component in the current degradation state i after m cumulative shocks τ' i,m ≥0.

Let p (i,m) (τ' i,m ) denote the probability that one shock results in extreme damage (the cumulative damage probability is then 1-p (i,m) (τ' i,m )). In case of cumulative shock, the degradation transition rates for the current state change at the moment of occurrence of shocks, whereas the other transition rates are not affected. Let λ (m) i,j (τ' i,m ,θ) denote the transition rates after m cumulative random shocks, where λ (0) i,j (τ' i,0 ,θ) holds the same expression as the transition rate λ i,j (τ i,0 ,θ) in the pure degradation model, and the other transition rates (i.e. m>0) depend on the degradation and the external influencing factors, which are obtained from material science knowledge and data from shock tests [START_REF] Chan | Accelerated stress testing handbook[END_REF]. These quantities will be used as the key linking elements in the integration work of next section.

INTEGRATION OF RANDOM SHOCKS IN THE MSPM

Based on the first and second assumptions on random shocks, the new model that integrates random shocks into MSPM is shown in Figure 3. In the model, the state of the component is represented by the pair (i,m), where i is the degradation state and m is the number of cumulative shocks occurred during the residence time in the current state. For all the degradation states of component except for the state '0', the number of cumulative shocks could range from 0 to positive infinity. If the transition to a new degradation state occurs, the number of cumulative shocks is set to 0, coherently with the last assumptions on random shocks. The state space of the new integrated model is denoted by S' = {(M,0), (M,1), (M,2), … , (M-1,0), (M-1,1), … , (0,0)}. The component is in failure whenever it reaches state (0,0). The transition rate denoted by λ (i,m),(j,n) (τ' i,m ,θ) is residence time-dependent thus, rendering the process a continuous time semi-Markov process.

Suppose that the component is in a non-failure state (i,m); then, we have three types of outgoing transition rates:
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the rate of occurrence of a cumulative shock which will cause the component to go to state (i,m+1) and
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the rate of transition (i.e. degradation or maintenance) which will cause the component to go to state (j,0). Similar to the solution of semi-Markov process presented in Section 2, the state probabilities of the new integrated model can be obtained by Monte Carlo simulation and the expression of reliability of component is: where a* represents one state in the ordered sequence of all possible outgoing states of state (i,m). The algorithm of Monte Carlo simulation for the reliability assessment of components under degradation and random shocks via MSMP, on a time horizon [0,t max ], is given by the following pseudo-code: Set the maximum number of replications to N max Set k = 0 Set k' = 0 While k < N max Initialize the system by setting s = (M,0) (initial state of perfect functioning), setting the time t = 0 (initial time) Set t' = 0 While t < t max Sample a holding time t' by using equation ( 7)
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Sample an arrival state (j,n) by using equation ( 8)

Set t = t + t' Set s = (j,n) If t  t max And if s = (0,0) then set k' = k' + 1 break End if End While Set k = k + 1 End While □
The estimated component reliability at time t max can be obtained by
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where k' represents the number of trials that end in the failure state, with a sample variance as follows [START_REF] Lewis | Monte Carlo simulation of Markov unreliability models[END_REF] 
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6 CASE STUDY AND RESULTS

Case study

We illustrate the proposed modeling framework on a case study slightly modified from [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF]. The case study considers an Alloy 82/182 dissimilar metal weld in a primary coolant system of a nuclear power plant. The MSPM of the original crack growth is shown in Figure 4. In the Figure, φ i and ω i represent the degradation transition rate and maintenance transition rate, respectively. Except for φ 5 ,φ 4 , φ 4' , and φ 3 , all the other transition rates are assumed to be constant. The expressions of the transition rates and parameters of the model can be found in [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF].

For the random shocks, we assume the occurrence rate μ = 1/15, the same value in [START_REF] Wang | Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[END_REF], and the probability of a random shock becoming extreme shock p (i,m) (τ' i,m ) = 1 -exp [-δm(6 -i)(2exp(-τ' i,m )], which takes the exponential formulation from Fan et al.'s work [START_REF] Fan | Multicomponent lifetime distributions in the presence of ageing[END_REF]. In this formula, we use m(6 -i)(2 -exp(-τ' i,m )) to quantify the component degradation. It is noted that the quantity 2 -exp(-τ' i,m ) ranges from 1 to 2, representing the relatively small effect of τ' i,m onto the degradation, in comparison with the other two parameters m and i, and δ is a predetermined constant which controls the influence of the degradation onto the probability p (i,m) (τ' i,m ). In this study, we set δ = 0.0001. In addition, we assume the corresponding degradation transition rates after m cumulative shocks to be λ (m) i,j (τ' i,m ,θ) = (1+  ) m λ (m) i,j (τ' i,m ,θ), where  = 0.3 is the relative increment of transition rates after one cumulative shock happens, and the formulation (1+  ) m is used to characterize the accumulated ef- fect of such shocks.

Results and analysis

The Monte Carlo simulation over a time horizon of t max = 80 years is run N max = 10 6 times. The estimated component reliabilities with and without random shocks throughout the time horizon are shown in Figure 5, respectively. At year 80, the estimated component reliability with random shocks is 0.9930, with sample variance equal to 6.95e-9. Compared with the case without random shocks (reliability equals to 0.9998, with sample variance 2.00e-10), the component reliability has decreased by 0.0068. Table 1 presents the frequencies of different numbers of random shocks occurred per each trial of the simulation. The most likely number is around 5, which is consistent with our assumption on the occurrence rate (μ = 1/15) of random shocks. Based upon this Table, the influence of the number of cumulative shocks occurred per trial onto the probability of next random shock becoming extreme shock is shown by the curve in Figure 6. It is shown that high numbers of cumulative shocks lead to high probability of next random shock resulting in extreme shock.

In order to characterize the influences of cumulative shocks to the degradation processes, we use the same case except requiring that the probability of a random shock becoming extreme shock is 0, so that all the random shocks will be cumulative shocks. In Figure 7, we compare the estimated component reliability with cumulative shocks against the other two estimated probabilities in Figure 5. At year 80, the estimated component reliability with cumulative shocks is 0.9973 and the sample variance equals to 2.69e-9. Due to the influence of cumulative shocks, the component reliability has decreased by 0.0026.

By these results, it is seen that our model is able to characterize the influences of different types of random shocks onto the component reliability. 

CONCLUSION

In this paper, a general degradation process dependent on random shocks has been proposed and integrated into a MSPM framework with semi-Markov processes for the reliability assessment of components. A literature case study has been considered to show the effectiveness and modeling capabilities of the proposal.
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  is the probability of the component being in state i at time t. Since no maintenance is carried out from the component failure state and the component is regarded as functioning in all other intermediate alternative states, its reliability can be expressed as
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Table 1 .

 1 Frequency of the number of random shocks occurred per trial (mission time t = 80 years)In total, there are 6973 trials ended in failure, among which 4531 trials (64.98%) are caused by extreme shocks. Table2records the number of trials and the number of trials ended with extreme shocks, as a function of numbers of cumulative shocks occurred per trial, respectively.

	Nb of random	Percentage(%)
	shocks/trial	
	0	0.63
	1	3.14
	2	8.00
	3	13.55
	4	17.15
	5	17.56

Table 2 .

 2 Number of trials and number of trials ending with extreme shocks (mission time t = 80 years).

	Nb of cumula-	Nb of trials	Nb of trials
	tive shocks per		ending with ex-
	trial		treme shock
	0	6345	0
	1	31739	367
	2	80292	633
	3	135676	812
	4	171526	809
	5	175569	743
	6	148844	500
	7	108101	332
	8	68579	172
	9	38964	90
	10	19569	43
	11	8998	19
	12	3683	11
	>12	2115	0