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1 INTRODUCTION 

Power production via renewable energy sources is a 
hot topic of research and application. This is due to 
both the widespread availability of such sources (e.g. 
wind, sun, etc.) and to the sustainability of the 
associated production process. Among renewable 
energy sources, wind power is widely recognized as 
one of the most promising, because of its 
tremendous potential in commercialization and bulk 
power generation. 

The management of wind power generation 
systems relies on short-term wind power generation 
forecasting, which must also provide a measure of 
the associated uncertainty. Two uncertainty sources 
can be considered: the inherent uncertainty in wind 
speed, due to the intermittent and unstable nature of 
wind (aleatory uncertainty); the uncertainty in the 
relationship between wind power and wind speed 
(epistemic uncertainty) (Helton 1994). The latter 
uncertainty is mainly due to the parameters defining 
the power curve (cut-in, rated and cut-off speeds, 
and rated power), which can be different for each 
single turbine within a wind farm (Novoa & Jin 
2011).  

In the present work, we treat the power curve 
parameters as random variables and account for the 
epistemic uncertainty by bootstrapping (Efron 
1981), which allows combining also the aleatory 
uncertainty in the wind speed. 

To do so, we first perform short-term forecasting 
of wind speed in a multi-objective optimization 
framework, where the non-dominated sorting 
genetic algorithm–II (NSGA-II) (Deb et al., 2002) is 
applied to optimize the weights of a neural network 
(NN) for estimating the prediction intervals (PIs) of 
wind speed. We, then, combine the uncertainty in 
wind speed forecasting with the uncertainty in the 
power curve via a bootstrap sampling technique. 
This results in obtaining wind power PIs with the 
associated uncertainty. By a precise probabilistic 
formulation, we show that the coverage probability 
of the wind power PIs obtained is the same as the 
one of wind speed PIs. Moreover, we test the 
robustness of the procedure with respect to the form 
of the distributions for the power curve random 
parameters. 

The rest of the paper is organized as follows. In 
Section 2, the methodology for NN-based wind 
speed PIs estimation and for bootstrap-based wind 
power PIs estimation is introduced and described. In 
Section 3, a case study is carried out to test the 
effectiveness of the proposed approach. Finally, in 
the Conclusion Section some final remarks are 
given. 
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ABSTRACT: Accurate short-term wind power forecasting with quantification of the associated uncertainty is 
crucial for the management of energy systems including wind power generation. On top of the inherent 
uncertainty in wind speed, it is necessary to account also for the uncertainty in the relationship between wind 
speed and the corresponding power production, typically described by a power curve whose characteristic 
parameters are not precisely known in practice. In this paper, we propose a novel approach to wind power 
forecasting with uncertainty quantification. The approach can be schematized in two steps: first, short-term 
estimation of wind speed prediction intervals (PIs) is performed within a multi-objective optimization 
framework worked out by non-dominated sorting genetic algorithm–II (NSGA-II); then, the uncertainty in 
wind speed and the uncertainty in the power curve are combined via a bootstrap sampling technique, thus 
obtaining wind power PIs with same coverage as the wind speed PIs.  



2 METHODOLOGY 

2.1 Estimation of Wind Speed PIs by NSGA-II 

A PI is comprised of upper and lower bounds in 
which a future unknown value of the target is 
expected to lie with a predetermined confidence 
level      .The formal definition of a PI is thus 
(Geisser, 1993): 
 

                                                 (1)

      

where      and      indicate respectively the lower 
and upper bounds of the PI of the output      
corresponding to input  ;  the confidence level 
      refers to the expected probability that the 
true value of      lies within the PI, [         ]. 

In order to provide wind speed PIs, we use multi 
perceptron artificial neural networks (NNs) (Korbicz 
et al. 2004) which are a class of nonlinear statistical 
models inspired by brain architecture, capable of 
learning complex nonlinear relationships among 
variables from observed data (Hornik et al. 1989), 
by a process of parameter tuning called “training”. It 
is common to represent the task of such a NN model 
as one of nonlinear regression of the kind (Zio 2006, 
Shrestha & Solomatine 2006): 

 

                               
             (2)             

             
where  ,      are the input and output vectors of the 
regression, which in our case represent measured 
historical wind speeds at time              
and the true target at time  , respectively.   
represents the vector of values of the parameters of 
the model function  , in general nonlinear. The term 
     is the error associated to the regression model 
 , and it is assumed normally distributed with zero 
mean. 

We evaluate the PIs by the coverage probability 
of the prediction intervals (CP), which one wants to 
maximize, and the interval width (PIW), which one 
wants to minimize. The mathematical definitions of 
the PICP and PIW used in this work are (Khosravi et 
al. 2011): 
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where np is the number of samples in the training or 
testing sets, and     , if    [           ] and 
     otherwise.       and        are the estimated 
lower and upper bounds of the prediction interval in 
output, in correspondence of the input   . 
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where       is the Normalized Mean PIW, and 
     and      represent the true minimum and 

maximum values of the targets (i.e., the bounds of 
the range in which the true values fall) in the 
training set, respectively. Normalization of the PI 
width by the range of targets makes it possible to 
objectively compare the PIs, regardless of the 
techniques used for their estimation or the 
magnitudes of the true targets.  

The PIs estimation problem is addressed by 
taking into account the two conflicting objectives in 
a multi-objective framework. For this, we use 
NSGA-II, which is one of the most efficient multi-
objective genetic algorithms (MOGAs) (Konak et al. 
2006, Deb et al. 2002), to optimize the parameters 
(i.e. the weights) of the network taking into account 
both objectives. More precisely, the neural network 
is trained by NSGA-II to produce the lower and 
upper bounds of the prediction intervals for short-
term forecasting (1-hour ahead) of wind speed. The 
practical implementation of NSGA-II on our specific 
problem involves two phases: initialization and 
evolution. These can be summarized as follows: 

 
Initialization phase: 
Step 1: Split the input data into training (Dtrain) 

and testing (Dtest) subsets. 
Step 2: Fix the maximum number of generations 

and the number of chromosomes (individuals)    in 
each population; each chromosome codes a solution 
by   real-valued genes, where   is the total number 
of parameters (weights) in the NN. Set the 
generation number    . Initialize the first 
population    of size   , by randomly generating 
   chromosomes. 

Step 3: For each input vector   in the training set, 
compute the lower and upper bound outputs of the 
   NNs, each one with   parameters. 

Step 4:  Evaluate the two objectives PICP and 
NMPIW for the    NNs (one pair of values 1-PICP 
and NMPIW for each of the    chromosomes in the 
population   ). 

Step 5: Rank the chromosomes (vectors of   
values) in the population    by running the fast non-
dominated sorting algorithm (Deb et al. 2002) with 
respect to the pairs of objective values, and identify 
the ranked non-dominated fronts            where 
   is the best front,    is the second best front and    
is the least good front. 

Step 6: Apply to    a binary tournament selection 
based on the crowding distance (Deb et al. 2002), for 
generating an intermediate population    of size   . 

Step 7: Apply the crossover and mutation 
operators to   , to create the offspring population    
of size   . 

Step 8: Apply Step 3 onto    and obtain the 
lower and upper bound outputs. 

Step 9: Evaluate the two objectives in 
correspondence of the solutions in   , as in Step 4. 

 
 



Evolution phase: 
Step 10: If the maximum number of generations 

is reached, stop and return   . Select the first Pareto 
front    as the optimal solution set. Otherwise, go to 
Step 11. 

Step 11: Combine    and    to obtain a union 
population         . 

Step 12: Apply Steps 3-5 onto    and obtain a 
sorted union population.  

Step 13: Select the    best solutions from the 
sorted union to create the next parent population 
    . 

Step 14: Apply Steps 6-9 onto      to obtain 
    . Set       ; and go to Step 10.  

 
Finally, the best front in terms of ranking of non-

dominance and diversity of the individual solutions 
is chosen. Once the best front of solutions is 
obtained, then the testing step is performed on the 
trained NN with optimal weight values. 

2.2 Wind Power PIs Estimation 

The wind power value      depends on the wind 
speed     . Suppose that [Lp(x), Up(x)] is the PI 
associated to the wind power value      in 
correspondence of the input  , i.e. to the wind speed 
value     . Then, the following property must hold: 
 

 (                )      ,                      (5) 

  
where 1 ─  p ϵ [0,1] is the coverage probability.  

Our working hypothesis stands on the fact that 
both wind power values and PIs depend on the wind 
speed values and PIs, respectively, via a non-
monotonic transformation, namely the power curve. 
In this hypothesis, the rest of the subsection is 
devoted to the following two issues: 
1. assess the value of 1 ─  p given the coverage 

probability of the PI associated to the wind speed 
    ; 

2. develop a bootstrap-based approach to the 
estimation of [Lp(x), Up(x)]. 

In order to assess the coverage probability of 
wind power PIs, we have to take into account the 
fact that they have been obtained via a power curve 
transformation, which means: 
 

        (    )                                                    (6) 

        (    )                                                       (7) 
 
where [         ] is the PI for the wind speed value 
     associated to the input  , with associated 
coverage probability     , while    is a quadratic 
power curve transformation given by the following 
expression (Justus et al. 1976): 
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and with                   being the vector of 
parameters defining the power curve, i.e. cut-in 
speed, rated speed, cut-off speed and rated power. A 
plot of the power curve    is shown in Figure 1. In 
the following, we will consider     and    to be fixed 
(deterministic) values, and respectively equal to the 
values 30 m/s and 20 MW (Albadi & El-Saadany 
2012, Akdag & Guler 2010), while     and    are 
random variables with distributions     and   , 
respectively. The inherent stochasticity in the power 
curve is motivated by the fact that different wind 
turbines correspond to specific power curve 
parameters, which leads to an imprecise and 
imperfect knowledge of the power curve 
transformation.  
 
 
 
 
 
 
 
 
 
 
Figure 1. Plot of the power curve    as a function of wind 
speed. Solid vertical lines correspond to the values of the two 
stochastic parameters     and   . Dashed vertical lines identify 
the domains of the distributions     and   , respectively. 

 
The following chain of identities holds: 
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The first and third equalities in Equation (12) 

derive from our working hypothesis, the second one 
from the theorem of total probability, the fourth one 
from the definition of coverage probability for wind 
speed PIs, and the last one stands because we 
integrate out the parameter vector   over the whole 
probability space  . 

Hence, we can conclude that      , i.e. the 

coverage probability is maintained while passing 

from wind speed PIs to wind power PIs via a wind 

power curve transformation. 
We remark that, in general,  (          

    )           if and only if   is a strictly 
monotonic function, because in this case the 
existence of the inverse is ensured. The power curve 
transformation   , whose definition is given in 
Equation (8), is non-monotonic, but it is monotonic 
when restricted to the open subset of the co-domain 
      . Note that the co-domain of the power curve 
is given by the closure of the latter subset, i.e. [    ]. 
Hence, we can restrict our analysis to the open 
subset       , and treat the non-monotonicity issue 
as a border issue, a posteriori restricting the obtained 
wind power PIs to their domain of admissibility 
(note that this is usually done in the context of PIs 
estimation when the target of interest is a bounded 
variable, e.g. a proportion). 

We now move to the problem of estimating the 
wind power PIs [Lp(x1), Up(x1)], …  ,[Lp(xn), Up(xn)] 
corresponding to the testing set {     }, for   
     .  

Since the parameter vector   is a multivariate 
random variable, the wind power PIs estimation 
process provides a distribution of intervals 
accounting for the parameters stochasticity. To get 
such a distribution, parametric bootstrap (Efron 
1981, Shao & Tu 1995) is used. Parametric 
bootstrap is a technique which allows generating a 
sample for each parameter, and then estimating 
some relevant quantities concerning the target of 
interest. 

More precisely, given the estimated wind speed 
PIs [           ]   [           ] in the testing set, 
the parametric bootstrap sampling technique is 
articulated in the following two steps: 
 

1. Bootstrap Phase: 
Sample two values for the stochastic parameters 
    and    from the corresponding distributions, 
i.e.         and      , and transform all wind 
speed PIs [           ]   [           ] into 
wind power PIs [Lp(x1), Up(x1)], …  ,[Lp(xn), 
Up(xn)] via the power curve transformation    
defined in (8), and using the previously sampled 
parameter values. Repeat the sampling until a 

sufficient number of sets of wind power PIs has 
been obtained. 

 
2. Aggregation Phase:  
Aggregate the results of the bootstrap phase by 
computing, for each element of the testing set, 
the bootstrapped average wind power PI and the 
5

th
 and 95

th
 percentiles of the wind power PI 

bootstrapped distribution. 
 

This bootstrapping technique allows obtaining a 
set of wind power PIs, which accounts for both the 
aleatory uncertainty intrinsic in wind power 
generation and the variability associated to wind 
power PIs themselves, thus expressing the epistemic 
uncertainty related to the power curve estimation 
procedure. The aleatory uncertainty can be 
expressed by showing the bootstrapped average 
wind power PIs, while the epistemic one can be 
summarized in the 5

th
 and 95

th
 percentiles of the 

wind power PIs bootstrapped distribution. 

3 CASE STUDY 

The wind speed data used in this study have been 
measured for Regina, Saskatchewan, a region of 
central Canada (Canadian Weather Office, 2012) 
over a period of two months from 1st of February 
2012 to 31st of March 2012. The total data set 
includes 1437 samples (see Fig. 2), among which the 
first 80% (the first 1150 samples) are used for 
training and the rest for testing. The architecture of 
the multi-perceptron NN consists of one input, one 
hidden and one output layers. The number of input 
neurons is 3 corresponding to the wind speed values 
of the previous three time steps (Wt-1, Wt-2 and Wt-3); 
the number of hidden neurons is set to 10 after a 
trial-and-error process; the number of output 
neurons is 2, one for the lower and one for the upper 
bound values of the PIs. As activation functions, the 
hyperbolic tangent function is used in the hidden 
layer and the logarithmic sigmoid function is used at 
the output layer (these choices have been found to 
give the best results by trial and error, although the 
results have not shown a strong sensitivity to them). 
The training of the NN weights is done by NSGA-II 
to maximize PICP (Equation 3) while minimizing 
(Equation 4). All data have been normalized within 
the range [0.1, 0.9]. To account for the inherent 
randomness of NSGA-II, twenty different runs have 
been performed and an overall best non-dominated 
Pareto front has been obtained from the twenty 
individual fronts. 
 



 

Figure 2. The wind speed data set used in this study. 

 
 

 

Figure 3. Estimated PIs for 1-hour ahead wind speed prediction 
on the test data set (dashed lines), and wind speed target data 
included in the test data set (solid line). 
 

Given the overall best Pareto set of optimal 
solutions (i.e. optimal NN weights), one has to pick 
one (i.e. one trained NN) for use. We take a solution 
subjectively chosen, because judged to provide a 
good compromise in terms of high PICP and low 
NMPIW. The selected solution has 90% CP and 
0.242 NMPIW on the training, and 82% CP and 
0.255 NMPIW on the testing. Figure 3 shows wind 
speed target data (testing set) together with the 
estimated PIs corresponding to the selected solution. 

The bootstrapping estimation technique described 
in the previous section is then applied to the 
estimated wind speed PIs (testing set) shown in 
Figure 3 to obtain wind power PIs. The number of 
bootstrap replicates has been set equal to 1000. In 
order to test the robustness of this bootstrapping 
technique with respect to the parametric assumption 
concerning the distribution of the power curve 
parameters, we sample     and    from both a 
uniform and a Gaussian distributions centered 
around average values of 3.5 and 14.5 m/s, 
respectively, with a range of uncertainty of [3, 4] 
and [12, 17] m/s, respectively, defining the domain 
of the associated distribution (see Figure 1). Then, 
the two parameters are sampled either from a 
uniform distribution (     [   ] and    
 [     ]), or from a Gaussian one (    
              and                  . 

The resulting average bootstrapped PIs for 1-hour 
ahead wind power prediction, obtained by applying 
to the wind speed PIs of the testing data set the 
bootstrapping scheme described in the previous 
section, are shown in Figure 4. From inspection, the 
robustness of the bootstrapping procedure with 
respect to the distribution hypothesis can be 
appreciated. The results are also compared with the 
ones obtained by fixing the stochastic parameters 
defining the power curve to their average values; in 
this case, the uncertainty is evidently 
underestimated. 
 

 

Figure 4. Average bootstrapped PIs for 1-hour ahead wind 
power prediction on the testing data set, obtained by sampling 
the power curve stochastic parameters from a uniform 
distribution (dashed lines), from a Gaussian distribution (dotted 
lines), and by fixing them to their average values (solid lines). 

 
In Figures 5 and 6, we finally show the 

bootstrapped distributions of the wind power PIs 
obtained by uniform and Gaussian sampling, 
respectively. The bootstrapped distributions are 
shown by the 5

th
 and 95

th
 percentiles (dotted and 

dashed lines, respectively). By looking at these 
plots, some considerations can be made: first, the 
bootstrapping technique allows us to efficiently 
decouple epistemic (PIs distribution) and aleatory 
(PIs width) uncertainty. Secondly, the epistemic 
uncertainty that generates a variability into the PIs 
bounds, described by the percentiles in Figures 5 and 
6, is smaller than the aleatory uncertainty, quantified 
via the PIs width: this can be appreciated in the fact 
that the 95

th
 percentile of the lower bound 

bootstrapped distribution is never greater than the 5
th

 
percentile of the upper bound bootstrapped 
distribution; or, in other words, by the fact that the 
PIs width is in general bigger than the uncertainty 
associated to the PIs themselves.  
 
 



 

Figure 5. 5
th

 (dotted lines) and 95
th

 (dashed lines) percentiles of 
the bootstrapped distribution of 1-hour ahead wind power PIs 
obtained by sampling the power curve stochastic parameters 
from a uniform distribution, together with wind power PIs 
obtained by fixing the parameters to their average values (solid 
line). 
 

 

Figure 6. 5
th

 (dotted lines) and 95
th

 (dashed lines) percentiles of 
the bootstrapped distribution of 1-hour ahead wind power PIs 
obtained by sampling the power curve stochastic parameters 
from a Gaussian distribution, together with wind power PIs 
obtained by fixing the parameters to their average values (solid 
line). 

4 CONCLUSIONS 

In this work, we presented a novel approach to wind 
power PIs estimation, taking into account both 
aleatory and epistemic uncertainty. The proposed 
approach quantifies aleatory uncertainty by 
estimating wind speed PIs, and then transforms them 
into wind power PIs by using a power curve. In 
doing so, epistemic uncertainty arising from the 
imperfect knowledge of the power curve parameters 
is also taken into account through bootstrap 
sampling. The procedure manages to effectively 
decouple aleatory and epistemic uncertainty, and 
moreover shows a good robustness with respect to 
the parametric assumptions implicit in the bootstrap. 
The invariance of the coverage probability by 
passing from wind speed to wind power PIs has also 
been shown. 
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