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1 INTRODUCTION 

In Nuclear Power Plant (NPP) systems, effective 
prediction methods are sought to anticipate, diag-
nose and control abnormal events in a timely man-
ner, and to prevent high economic losses in case of 
unexpected faults (Venkatasubramanian, 2005). 
Condition monitoring of NPP components is usually 
performed at regular intervals, in order to effectively 
identify faults possibly affecting the system state. 
The prediction of the failure behavior evolution is 
also of interest for the purpose of maintenance, and 
for informing decisions on the actions to take to re-
cover the system (Zio, 2012). 

Considering the huge amount of data arising from 
NPP components condition monitoring, data-driven 
approaches are often the most suited for real applica-
tions in the context of complex systems. Some re-
search work concerns data-driven approaches for 
condition monitoring of engineering systems. In par-
ticular, Support Vector Regression (SVR) is a learn-
ing machine implementing the Structural Risk Min-
imization (SRM) inductive principle to obtain good 
generalization performance on a limited number of 
learning patterns (Vapnik et al., 1996). SVR is used 
in Trontl et al. (2007) and Bae et al. (2008) for per-
forming point estimation with satisfactory results in 
the context of multi-layer shields and nuclear reac-
tor. In Elnokity et al. (2012), a hybrid modeling 
combined with the Industrial Source Complex (ISC) 
model and an Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) has been used to improve the modeling 
ability of predicting tracer concentrations. SVR 
method is used in Cai (2012) to predict the critical 
heat flux, while Fuzzy Neural Networks are used in 
Na et al. (2006) to estimate the collapse moment due 

to the wall-thinned defects of bends and elbows in 
piping systems. However, uncertainty quantification 
is not included in the previously described data-
driven models. In Zio et al. (2010) and Zio and Di 
Maio (2010), a fuzzy similarity analysis is intro-
duced to compare the evolving failure scenario with 
a library of reference patterns describing the multi-
dimensional evolution of monitored process varia-
bles. The aim is to find a combination of the refer-
ence patterns, weighed by their similarity to the 
observed failure scenario, to determine the future 
evolution of the observed scenario and to derive the 
corresponding RUL. However, failure patterns in 
NPP components are rare and thus a ‘‘solid’’ library 
of references cannot be easily formed. SVR has also 
been used in Kim et al. (2012) to build Prediction 
Intervals (PIs) for the collapse moments of wall-
thinned pipe bends and elbows. However, since the 
method has been trained on a relatively small 
amount of data, its generalization power is not as-
sured. 

After the Bayesian probabilistic paradigm has 
been introduced within the SVR framework, Proba-
bilistic Support Vector Regression (PSVR) has been 
defined, which can give a point estimation of the 
target of interest along with the associated PIs. The 
authors prove that the proposed modified PSVR can 
give better results than some other data-driven ap-
proaches in the real case study of a NPP component 
(Liu et al., 2013). Indeed, in Liu et al. (2013) con-
siders only one failure scenario is considered, and 
the model is built only on the historical data of this 
scenario. In the present work, the authors try to use 
PSVR with multiple scenarios. An ensemble-based 
approach of PSVR models is proposed to exploit in-
formation carried by all the scenarios. Fuzzy Simi-
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larity Analysis (FSA) in Zio and Di Maio (2010) is 
applied to determine the best inputs for the PSVR 
model among the training data. The proposed ap-
proach gives satisfactory results in the case study of 
interest, concerning several NPPs of Electricité De 
France (EDF). 

The paper is structured as follows. Section 2 pro-
vides an overview of PSVR, FSA and of the proce-
dure that combines them. The real case study with 
the results is introduced in Section 3. Some conclu-
sions are drawn in section 4. 

2 METHODOLOGY 
Suppose that N recorded scenarios are available, 
which are representatives of the evolution concern-
ing relevant signals of the same failure. Then the 
prediction of the target of the ongoing failure scenar-
io at the next time step can be based not only on the 
historical values of the ongoing failure, but also on 
the information contained in all the N recorded sce-
narios. These recorded scenarios are taken as refer-
ences with respect to the ongoing scenario to be pre-
dicted: the former will be named “Reference 
Scenarios” and the latter “Observed Scenario”. 

Suppose that M process variables are measured 
for each scenario, among which one is the target b 
and the other M - 1 are variables a = (a1, a2, …, aM-1) 
related to the target b. 

The authors propose an ensemble-based approach 
to give the predicted values of the target and the as-
sociated PIs. Each model of the ensemble is built us-
ing PSVR with the Observed Scenario and one Ref-
erence Scenario. FSA is used to determine the best 
inputs for each PSVR model. 

The inputs of the PSVR model to predict the tar-
get of the Observed Scneario b(t + 1) are the M - 1 
related variables of the Observed Scenario at time t, 
i.e. a(t), three historical values of the target: b(t), b(t 
- 1), b(t - 2), and one target value bRS(t0 + 1) in one 
of the Reference Scenarios, which is determined by 
FSA. A motivation for the selection of the historical 
values can be found in Liu et al. (2013). 

In the next sub-sections, the details of FSA, 
PSVR and ensemble are presented.  

2.1 Fuzzy similarity analysis 

Consider a fixed vector v = (a(t
*
), b(t

*
), b(t

* 
- 1), b(t

* 

- 2)) in the Observed Scenario and a time-dependent 
one w(t) = (aRS(t), bRS(t), bRS(t - 1), bRS(t - 2)) in a 
Reference Scenario; for each time t, w(t) has the 
same data structure as v. The purpose is to find t0 
such that the distance score d(t0) between w(t0) and v 
is minimized. In the present paper, three steps are 
proposed to tackle this issue. 

The first step consists in calculating the Euclidean 
distance between v and w(t) for all times t: 

     |      |                                                (1) 

The second step is the computation of the trajec-
tory point wise similarity and the corresponding dis-
tance score. The point wise difference between the 
trajectories w(t) and v expressed by Equation 1 is 
evaluated with reference to an “approximately zero” 
fuzzy set (FS) specified by a function which maps 
the elements of the Euclidean distance (t) into the 
corresponding similarity value (t) (Joentgen et al., 
1999). Common functions can be used for the defini-
tion of the FS, e.g. triangular, trapezoidal, and bell-
shaped. In the application illustrated in this work, 
the following bell-shaped function is used: 

                                                   (2) 

The arbitrary parameters  and  can be set by 
the analyst to shape the desired interpretation of sim-
ilarity into the fuzzy set: the larger the value of the 
ratio -ln() / 2

, the narrower the fuzzy set and the 
stronger the definition of similarity (Zio & Di Maio, 
2010).Then the distance score d(t) = 1 - (t) be-
tween v and the trajectory w(t) is computed. 

The third step is to find t0 which minimizes d(t), 
and to compute the corresponding distance score 
d(t0). 

Finally, the value of the target bRS(t0 + 1) in the 
Reference Scenario is also used as one input in the 
PSVR model. 

2.2 Probabilistic Support Vector Regression 

Different Gaussian-based versions of the PSVR 
method can be defined, depending on the choice of 
the loss function. A large number of loss functions 
have been proposed in the literature, e.g. Quadratic 
Loss Function, Laplacian Loss Function, Huber’s 
Loss Function (Chu et al., 2002). In the proposed 
modified PSVR approach, the authors have chosen 
the ɛ-insensitive Loss Function, which enables a 
sparse set of support vectors to be obtained (Smola 
and Schölkopf, 2004). The PSVR method can give 
an error bar associated to the predicted value. 

2.2.1 PSVR with ɛ-Insensitive Loss Function 
Suppose we are at time T, and let us assume that the 
input data is a n-dimensional set of vectors X = {x1, 
x2, …, xn} with xi = (a(t), b(t), b(t - 1), b(t - 2), 
bRS(t0(t) + 1)) independently drawn in R

M+3
. Sup-

pose we also have an independent sample of target 
values Y = {y1, y2, …, yn}, with yi = b(t + 1), where t 
= T – n + i - 1 and i = 1, 2, …, n,. In regression 
methods, the final aim is to find a function f(x): 
R

M+3
   R describing the relation between the input 

data and the target. 
We hereafter briefly recall the PSVR approach to 

the estimation of f(x); further mathematical details 
on the derivation of the method can be found in Gao 
et al. (2001). 

We make the following assumptions: 



1. The training data  = {X, Y} is composed 
by independent samples, which, given f(X) = 
(f(x1), f(x2), …, f(xn)), are drawn from the 
same probability distribution. 

2. The a priori probability distribution of the 
unknown f(X) is P[f(X)]  exp{-1/2  
||Pf||

2
}, where ||Pf||

2
 is a positive semi-definite 

operator. 
3. The ɛ-insensitive loss function is chosen as 

loss function of the PSVR method (see Gao 
et al., 2001). 

       {
| |          | |    

                  | |   
           (3) 

4. The covariance function is K(X, X), where 
the element Ki,j of the i-th row and j-th col-
umn is K(xi, xj) = exp{-|xi  -  xj|

2
/2/ɣ

2
}, with 

xi, xj being elements of X, and i, j = 1, …, n. 
The posteriori probability of f(X) can be written 

as 

 [    | ]   
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where G(C, ɛ) = C/2/(C  ɛ + 1), and Kx,x is a short-

ened notation for the covariance matrix K(xi, xj). 

The Maximum A Posteriori (MAP) solution of 
Equation 4 is found by finding the minimum of the 
following function 

         

  ∑   (        )  
 

 
         

          
.       (5) 

Following the discussion in Mackay (1997), we 
can write the solution of the minimization problem 
associated to Equation 5 in the following form 

       ∑              
                             (6) 

where βi = ai -   
  is a combination of the Lagrange 

Multipliers associated to the optimization problem 

(Smola and Schölkopf, 2004) and x is a new input 

vector. The ai and   
  can be determined by a Quad-

ratic Programming approach.  According to Smola 

and Schölkopf (2004),  i = 1, …, n, ai and   
  lie in 

the  interval [0, C], and βi consequently lies in the 

interval [-C, C], which is the domain of the optimi-

zation problem. 

2.2.2 Error Bar Estimation 
In the Bayesian treatment of the prediction problem, 
error bars arise naturally from the predictive distri-
bution. They are made up of two terms, one due to 
the a posteriori uncertainty (the uncertainty of f(x)) 
and the other due to the intrinsic noise in the data 
(Kim et al., 2012). Suppose that x is a test input vec-
tor, and that the corresponding value of the target is 
the random variable y, obtained adding to f(x) as un-
known noise  with zero mean; then, 

 [ |    ]         ∑      
 
                              (7) 

We can also obtain the density of the noise  

 [ ]   
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and the noise variance 
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The conditional probability distribution of f(xi) 
given , can instead be written as  

 [    | ]   
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with 

  
                   

       

                     (11) 

Consequently, the error bar width of the predic-
tion corresponding to the test input point x is  

         
     

      
 

  
 

        

       
         

                      
       

                                        (12) 

The conditional probability distribution and the 
error bar are given in Equation 10 and 12. See Gao 
et al. (2001) for more details on the calculations. 

2.3 Ensemble-based approach 

An ensemble-based approach is obtained by combin-
ing diverse models, to obtain superior performance 
with respect to the one obtained with a single model. 
Ensemble-based approaches attempt to take ad-
vantage of each single model, by fusing results from 
all the models. The strategy of combining different 
algorithms into an ensemble has been found attrac-
tive in a wide variety of research fields. One way for 
obtaining a final result from an ensemble of models 
is to obtain the prediction as weighted sum of the 
single model results.  

In our approach, the single models are PSVR, 
built by using FSA to determine the best target value 
bRS(t0 + 1) in a Reference Scenario to be used as in-
put together with other inputs from the Observed 
Scenario. There are N Reference Scenarios, so N 
PSVR models are totally built, one for each Refer-
ence Scenario.  

Suppose to be at time t. The predicted value of 
the ensemble of models for the target of the Ob-
served Scenario at time t+1 is the combination of the 
predicted values of all the models, weighted by their 
similarity to the evolving scenario. To calculate the 
weight of each model, we need to find the minimum 
of di(t), which is the distance score of the i-th Refer-
ence Scenario. Supposing   

        is the mini-
mum, the weight of the i-th model is calculated with 
Equation 13. 

        
              

  
 

 
                         (13) 



After normalization of the weights so that their 
sum is 1, the final weight for each model is finally 
obtained and thus the predicted value of the ensem-
ble is derived. They are separately given in Equation 
14 and 15. 

      ∑   
  
                                                    (14) 

 ̂      ∑    ̂        
                                  (15) 

where  ̂      is the predicted value of the ensem-
ble and  ̂       is the predicted value of the i-th 
model. 
Assume σi(t + 1) is the error bar of the prediction 
 ̂       of the i-th model. Then, the error bar of 
the ensemble is calculated as Equation 14 

   ̂       ∑            
             (14) 

where    (t + 1) is the variance of the predicted  
values of the single models, and calculated as 

          
 

   
∑   ̂     ̂   

   ,  

with E( ̂) being the average of all the predicted val-
ues of the single models. 
The paradigm of the proposed ensemble approach is 
shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Paradigm of ensemble approach. 

3 CASE STUDY 

3.1 Case study description 

Pumps play a major role in the design and operation 
of NPPs and of other industrial facilities. Their oper-
ating characteristics are believed to play a significant 
role in determining the thermal and hydraulic behav-
ior of the nuclear reactor following transients. The 
Reactor Coolant Pump (RCP) is a critical component 
in the normal operation of a NPP, since it guarantees 
enough cold water in the core of the plant to protect 
the nuclear materials and to deliver the heat released 
from the nuclear fission to the heat exchanger. 

In the Observed Scenario considered in this 
study, due to a failure the leak flow of the first seal 
of RCP starts drifting towards exceeding a prede-
fined control threshold. The aim of the study is to 
predict the value of the leak flow in the next time 

point (i.e. to perform 4-hours-ahead forecasting). 19 
Reference Scenarios are available from other NPPs, 
and they can be exploited to the prediction purposes.  

All the scenarios are measured every four hours 
until the failure of the RCP. For each NPP, the vari-
ables are monitored starting from different time in-
stances and for different durations; hence, the num-
ber of measurements for each NPP is different. The 
fault occurred at different times, and in some scenar-
ios the operators managed to bring the pump back 
into a normal condition. 

3.2 Data pre-processing 

Since the dataset we are going to analyze contains 
both missing data and outliers, we have to deal with 
both these issues. Data pre-processing methods de-
scribed in Liu et al (2013) are here used to eliminate 
the outliers and reconstruct the missing data. The da-
ta concerning the same variable of all the 20 scenar-
ios are then normalized within the arbitrary chosen 
range [0, 1]. 

3.3 Results and illustration 

200 data points are used to train each model of the 
ensemble and 300 to test the model. Testing results 
are shown in Figure 2, where the solid line is the 
measurements, the dashed line is the predicted value 
and the two dot lines are the PIs associated to a con-
fidence level of 95%, i.e. [ ̂ – 2σ( ̂),  ̂ + 2σ( ̂)]. 

The results of the prediction on the testing data 
are satisfactory. The coverage of the PIs is 98.33%. 
The relative and absolute errors of the prediction are 
0.0083 and 0.0032, respectively. The average of the 
PIs is 0.144. 

4 CONCLUSION 

In this paper, a short-term forecasting approach is 
proposed for the purposes of condition monitoring. 
It includes pre-processing for data reconstruction 
and model selection, FSA for choosing the best in-
puts of the PSVR model and an ensemble-based ap-
proach for estimation of the PIs of the target of in-
terest. The results of the application to a real case 
study of leak flow in the first seal of a RCP are satis-
factory. The coverage of the prediction interval is 
98.33 % with a confidence level of 95 %. 

The future work will focus on the development of 
a method to compute the Remaining Useful Life 
(RUL) on the basis of the prediction of the target pa-
rameter of interest. This entails verifying the adap-
tivity of the model and updating the model when the 
results cannot satisfy some relevant predefined crite-
ria.  
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Figure 2. Point predictions and PIs of ensemble-based approach results.
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