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Measurements of some Relaxed Properties

of Simulated Point Processes

Bernard Picinbonol.ife Fellow, |1EEE,

Abstract

This paper presents an algorithmic method for measurenénédaxed statistical properties of point
processes (PP). In particular it makes it possible to deterrthe probability density function of the
residual waiting time, which is the distance between an atyitorigin and the first point of the PP
posterior to this origin and also the probabilities of canigit. points of the PP in an interval open by
an instant independent of the PP. These quantities arey racekssible from a theoretical calculation.
However, in the cases where this is possible, various expetamsfiow quite good agreement with the

theory.

Index Terms

Point processes, Simulation, Poisson processes, Timahtmeasurements, Counting, Simulations

of point processes.

. INTRODUCTION

Time point processes (PP) are used in numerous domains ehc&gi Engineering and Economics.
There are especially appropriate to describe sequenceeotsarriving randomly in time appearing at
a microscopic scale for example in the description of thession of electrons or photons and also at
a macroscopic scale in problems such as traffic congest@muiom risks in insurances prediction and
finance.

The mathematical theory of PPs is a well established field ob&lility Theory and there exists an

extensive literature on this subject going from very alesteand rigorous mathematical theory to more
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applied approaches where practical problems are presdntége first category we refer to [1] and in
the latter to [2], [3], [4]. In this paper devoted to simutatiand measurement problems we use more
frequently the methods appearing in this second category.

In order to represent random physical events nhumber ofsitai models have been presented in
the literature and a rather extensive presentation of thesgels appear in [2]. Among them the most
important are certainly the stationary Poisson PPs defiyethé fact that the time intervals between
successive points, callédetimes, are positive 1ID random variables (RV) with an exponentialqability
density function (PDF). Renewal PPs introduce also a larges dimodels important for the applications.
They are defined by the fact that the lifetimes are positive s are 11D but with arbitrary PDFs. It is
obvious that stationary Poisson PPs are also renewal megdsor various applications it is necessary to
delete the assumption of stationarity and non stationarmga homogeneous) Poisson PPs are the most
important examples. Finallgoubly stochastic Poisson PPs, or Poisson processes with a random density
play a central role in Statistical Optics in order to desctifoe fluctuations of the electromagnetic field
and various theoretical or experimental papers have belelispad on their properties. A good summary
of this field of research can been found in [5], [6] and theie irs Quantum Optics is summarized in
[71, [8].

But PPs appearing in physical phenomena are sometimes toplicated to make it possible a clear
mathematical analysis. It is then often much easier to worith wimpler PPs obtained bgomputer
simulations and we shall now present the most significant methods for thipgse. The simplest
simulation procedures concern the renewal PPs. Indee@ sincandom distribution of point%; is
completely determined by the sequence of lifetimdés defined byX; = T; — T;_1, and since for a
renewal PP these RVX; are IID, the simulation of such a PP is equivalent to that ofqueace of IID
RVs of a given PDF. This is a classical problem well describe®]n [

The simulation of non stationary and doubly stochastic $twisprocesses is a much more difficult
problem non still completely solved. The first attempt irsttlirection appeared in the fundamental paper
[10] by using the so called thinning method well known for theagiation of RVs (see also [9]). This
method was enlarged in [11]. But various other procedures baen proposed and applied in Statistical
Optics [12], Biology [13] or in management problems [14], [1B]6]. Models of heartbeat PPs and their
simulation have been presented in [17].

It is worth pointing out that the simulation procedures act always limited to the generation of
simulated PPs but can also be used for the simulation of sdmsigal operations on such processes.

One of the best examples is that of ttkead time effect on PPs. This effect appears practically in every
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physical system and means that if the time interval betweentg@ too small, some of these points
are deleted. There are various different possible mechsnid dead time effects. A rather elementary
treatment of the two most important was presented in [2]irTtheoretical analysis is rather complicated
and an approach where the PPs and the dead time effect areatsichid presented in [18], [19] for
the so called output or input dead time effects which are qiifferent. Similarly the use of adaptive
filtering for PPs models of heartbeat is presented in [20].

There are number of kinds aheasurements in order to determine or to use the statistical properties
of simulated PPs. For example in insurance or risks problemesis interested to the use of the methods
of estimation or prediction well established in Signal Pesieg. Their transposition to PPs require
some specific analysis [21]. In some applications in Physicdstronomy direct measurements of some
properties of PPs have a direct interpretation. This is f@ngple the case in Statistical Optics where
the measurements of the variance of the number of pointseoPth measured in some time intervals
is a practical mean to make a difference between classicalantgm optical fields [7], [8]. Indeed for
the classical fields this variance is necessarily greaten the mean value, which justifies the precise
measurements of this mean value and this variance. Measuatsrof moments or cumulants of order
higher than two is also used in Astronomy [22]. Finally the artance of second order analysis with its
consequences concerning the spectral properties of PHgepia specific interest in their measurements
[23], [24].

But the most fundamental measurements concerning thetisttiproperties of PPs are those of
counting probabilities and of time intervals distributiolbecause they appear, as seen later, in the
mathematical definition of these processes. In physicaleagineering literature the basic devices for
such measurements are counters and time to amplitude ters/€FAC). A counter is a linear filter with
an impulse responsgi(t) equal to 1 in the interval0, 7') and to O otherwise. If its input is a sequence
of pulses at random time instarif$, its output is the signad(¢) = > h(t — T;) sometimes called shot
noise of the PP (see p. 321 of [25]) and it results from the ifipe@lue of h(t) thats(¢) is equal to the
numberN (¢, T) of random pointsl; appearing in the intervgt — 7', ¢]. From the processing of a great
number of values ofV(¢,T) we can deduce the counting probabilities. On the other handsimga
TAC system we can convert time intervals in pulses and thésstatl analysis of these pulses can yield
their probability density function which appears in the nestiatical definition of PPs. A great number
of such results obtained some time ago in Statistical Optieseported in [5].

The purpose of this paper is to transpose these methods aasieeof simulated PPs in which the input

data on the process is the sequence of distafGdsetween successive points. Because of the structure
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of these inputs the use of the shot noise signal is no longersimplest way to reach the counting
probabilities and a quite different approach appears sacgsFor this purpose let us first recall some
fundamental definitions and notations on PPs.

A point process (PP) is a random distribution of points in e@pace. In everything that follows this
space is the time axis, which introduces the expression ointd PP. There exist two main ways to
describe the statistical properties of PPs. Consider &PPdhd let us notel; its random points, that
are time instants classed in an increasing order(7;.1). The intervalsX; between successive points
(X; =T, — T;_1) are called the lifetimes, or sometimes interevents timé®gse quantities are positive
random variables (RV) and it is clear th@ is described as well by the sequencesIgfor by the
sequences oK;. This implies that the statistical properties Bfare entirely described by those of the
X;s which can be considered as the values of a positive dis¢matesignal. For this description we can
apply all the standard methods used in random signal théorhis case we use the expression of of
time intervals description of a PP.

The second approach is called counting description. Congiflerbitrary non-overlapping time in-
tervals Ay and let NV, be the random number of poini of P appearing inAg. If for any M and for
eachM for any set on intervalg\, we know the statistical properties of the set of R¥g, we also
have a complete description of the statistical propertfe®.oln this case we use the term of counting
approach which comes from the fact that the random numidgrare physically obtained by a counting
procedure.

The simplest, and probably the most important, example ofsPe stationary Poisson process. In
this case the RVs; are positive 1ID random variables with an exponential disttion and theV;s are
independent RVs with a Poisson distribution.

The relation between these two approaches to the descriptiarPP is a well documented question.
It appears in the books indicated above and in [26], [27] anthé references herein.

Let us now introduce the concept dlaxed properties. Consider an arbitrary tindewhich is not a
point of P. Let T'(9) be the first point ofP posterior tod. The positive time interval’(§) — 6 is called
the residual lifetime, or also the residual waiting time (RWIt is obviously an RV and in principle
its statistical properties can be deduced from those defitiie PP but the calculations are often very
complicated. It is clear, however, thatfif is stationary, these properties do not depend.ofhe residual
waiting time is the simplest example of a relaxed propertyirich a time instan® that does not have
any relation with the PPBP is introduced. In contrast, the lifetime, which is the inwrbetween two

successive points of the PP, is called a triggered propkrtg. clear that for practical application the
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relaxed properties have the same importance as the trijjgeres. For example, in the analysis of the
behaviour of a switching system for telephone calls, thearust is more interested in his waiting time

than in the interval between successive calls, even if th@eeptoperties are closely interconnected.

The same distinction can be introduced in the case of cayiptioperties. If the intervala ;, introduced
above have no relation with the FPwe talk about relaxed counting. On the other hand, if thesevial®
have, for example, the forrfi;, 7; + T'|, which means that the beginning of the interval is a point of
P, we talk about triggered counting. In the case whPrés stationary, the statistical properties of the
number of pointsV recorded in[f, 6 + T does not depend ofy but it is clear, and we shall verify this
point below, that for the same value of the len@ththese statistical properties &f have no reason to
be the same iP = T; or not,i.e. in the triggered or the relaxed cases. The best example epfra
PPs with dead-time effects. If all the points Bfbelonging to the intervall;, T; + D], whereD is the
dead-time constant, are erased, we obtain a new PP in whichinbgam appear in intervals such as
[T;, T; + D] while this property has no reason to be true for intervals sagh+ D], wheref is not a

point of the PP, (see [18], [19] and references herein).

There is, however, a case where this distinction between rlard triggered properties disappears.
This is the case of stationary Poisson processes mentionedealndeed one of the characteristic
properties of such processes is the fact that they have noomgenvhich suppresses the difference

between triggered and relaxed properties.

Measurements of relaxed properties are in general more laatgd than those of triggered ones.
This appears clearly in the case @hewal processes, which, after the Poisson processes, are the most
important for practical applications. Such PPs are definetthé fact that the intervals between successive
points (lifetimes) are IID positive RVs. Consequently thetisteal properties of these PPs are entirely
defined by the distribution function (DF) of all the lifetimel$ is clear that the triggered properties of
such processes result from certain properties of the sumkiofandom variables, which is a rather
classic problem of probabilities. On the other hand, measent and calculation of relaxed properties
such as the residual waiting times are in general much monglcated and, in some cases, almost
impossible. It is the purpose of this paper to present somasuarement methods for these properties
and when calculations are affordable to compare their esuth those obtained with our measurement

methods in order to evaluate their performances.
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II. PRINCIPLES OF THEALGORITHMS

Let Ps be a stationary PP, the indékmeaning that it is the signal that we want to analyze. Its @dler
sequence of instants is not¢s; }. In order to obtain its relaxed properties it is necessaryaee at our
disposal another stationary and ordered sequence of tigtanitst; independent ofPs They are the
instants opening its analysis according to the proceduseriteed below. These instants constitute the
analysis PP calle@® 4. The only property ofP4 required at this step is to be independenf@f and we
shall discuss below the relative interest of the varioussids choices.

To each point; of P4 we associate the point fs noteds;;) which is the last point ofs anterior to
t;, which means thatt; —s;;)) > 0 and(t; —s;;)41) < 0. Itis then characterized by the fact that it is the
only point of the sequencts; } such that the produdt; —s;)(¢; —s;+1) is negative. This property can be
used for its calculation. Indeed for eathwe can calculate the produdis — s;)(t; —s;+1), 1 < j < M,
where M is the number of possible values gfand j(i) is the only value ofji among possiblé\/ for
which this product is negative. This procedure however regurery long calculation times because there
are of the order of\/? products to calculate and ¥/ ~ 109, as in most of our following experiments,
this can require more than one hundred hours of calculatisivgy standard computers.

It is then more appropriate to introduce a recursive proeeduhich can significantly reduce the
calculation time. This results from the following principuppose that; ;) is known and consider the
differenced,, (i + 1) = ti11 — sj()4. It is clear thatj(i + 1) = j(i) +n if and only if d,, (i + 1) > 0
andd,,+1(i + 1) < 0. This yields the following:

D) =)+ 3 nFui), o
n=1
with
E,(i) = uld, (i + 1)v[dp41 (7 + 1)], 2

wherew(z) is the unit step function equal to 1 if > 0 and to—1 otherwise, and(z) = u(—=x). The
advantage of (1) seenaspriori weak, because of the presence of a series of an infinite hurhibemus.
It appears however that this number can in practice be venjl.smaparticular when the densities
and v of the PPsPg and P4 respectively satisiyA\ << v, which is a very common situation, a short
calculation shows that there is practically only one ternresponding to» = 1 in the series of (1), and
for each set of experiments presented below we have intrddagrocedure ensuring that replacing the
series by a sum of a finite number of terms does not introducerran in the calculation of (1).

Once the sequencgi) is known, it can be used for the measurements of some relaxgepies of

the PPPg. Let us begin by the analysis of the residual waiting time BW
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The RWT associated with each instantof the PPP4 is, from the definition of the sequenee;),
the quantitys;; 4, — t;. It is a positive random variable (RV), and if the sequenceheftts contains
M4 values, there are alsbf 4 values of this RV. Assuming that the PPg andP,4 are stationary and
ergodic, we can deduce from the normalized histogram of thakees the probability density function
(PDF) of the RWT which is in general rather difficult to obtainrr a theoretical calculation, except for
some cases discussed below. For a less extensive analigspoisible to limit the measurements to the
determination of the mean and the variance of the RWT.

Consider now theounting analysis. The problem is to determine the statistics of the numberoaftp
of Pg in time intervals of duratiod” and open by the points of P4.

Let D, (i) be the time interval betweety and then!” point of Pg posterior tot;. It results from
the definition ofs;(;) that D,,(i) = s;()4+, — ti, in such a way that the intervalB,, (i) are known
as soon as the;;s are known. It is clear that there arepoints of Pg in the interval[t;,¢; + T
(relaxed counting) if and only ifD, (i) < T and D, (i) > T. This leads to introduce the function
G (i) = u[Dp41(i) — T[D,,(i) — T], whereu(.) andv(.) have been defined after (2). We note then
that G,, () takes only the values 0 or 1, and furthermore #ig(i) = 1 if and only if there aren points
in [t;,t; +T]. As the expected value of a RV taking only the values O or 1 isktguthe probability that
this RV is equal to 1, we deduce that the probability that there are: relaxed points in the interval
[ti,t; + T is the expected valug[G,,(7)]. Finally it results from our assumptions of stationaritydan
ergodicity that this expected value is the time averagél gkl ) >4 G, (i), whereM 4 is the number
of time instantg; introduced for the analysis. Finally it is clear thatif= 0, the corresponding relaxed
probability pg is simply the ensemble, or time, mean valueupb () — T7.

Note finally that if the instant$, are chosen among thg the previous algorithms vyield either the

lifetime statistics or the triggered counting probalmskti

I1l. EXPERIMENTAL RESULTS

A. Principles of the Experiments

We shall now present various experimental results for thedyars of PPs obtained by applying the
previous algorithms. The starting point is the definitiorthef PPPg subject of this analysis. As indicated
in the introduction,Ps can be defined by the sequen&e of the distances between successive points
which are positive RVs, or constitute a positive discrete tsigmal. This signal is obtained either from

a physical experiment or from a computer simulation. We uUsg $econd procedure exclusively in
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everything that follows. In other words we realize computemsugements on simulated data, but the
computer measurements can also be carried out with realqathydata.

Our purpose is to measure some propertie®offrom a sequence aff realizationss; of its lifetimes
S;. In order to use the algorithms discussed in the previoutiosegve must introduce an analysis
stationary PPP 4. The only requirement concerning this PP is the relatiorothiced above between its
densityrv and the density\ of Pg. In all the experiments presented below we have chesen10\.
On the other hand we have verified that the statistical praggei P4 do not play any role in the
results of the analysis, in such a way that we have chosen itiy@desit PP possible defined by the fact
that the lifetimes are constant and equallfo. The other important point to define is the numBér
of values of P, chosen for the experiment. We must adapt this number to tinebaul of values
of Ps. Indeed it results clearly from the structure of the caltataof j(i) that if A4 is too small a
large number of values dPg are not taken into account, and on the contrary/if; is too high many
values of P4 are useless. Since the mean duration of the sequenPg @hdP4 are M/ and M 4 /v
respectively, we have chosen the compromnigg = (v/A)M. Finally it is appropriate to choose values
of M sufficiently large to obtain a fairly good statistical pigon when measuring time averaging. In
most of our experiment)/ is of the order ofl0®. Greater values are sometimes necessary, but at the

expense of much longer experiment time.

B. Poisson Processes

In order to verify the behaviour of our method we shall begirhwifie simplest and most common
example of PP which is the stationary Poisson process. Suchcags is defined by the fact that the
positive RVs X; are IID and with an exponential distribution. There are vasistandard programs
for the generation of a sequence of such RVs, the most commosisting in realizing a specific
nonlinear transformation of a sequence of IID random véeguniformly distributed in the interval
[0,1]. More precisely letiV; be such a sequence. It is then easy to verify that the Ryslefined by
X; = —(1/a)In(W;) are 1ID and with the PDFp(x) = aexp(—axz). Their mean value and variance
are 1/a and1/a? respectively. It is well known that the PDFs of the RWT and of tifietimes of a
stationary Poisson process are the same and equalzio In Fig. 1 we present experimental results
of measurements of these PDFs obtained from normalizedgnéstes either of theX; or of the results
of the measurements of the RWT by using the algorithms desttrabove. In this figure, as in all the
others that follow, the continuous curves correspond tdhkeretical PDF while the points represent the

values of the measurements of these PDS from a standard pirgges experimental histograms. For

DRAFT July 30, 2012



PICINBONO 9

this experiment the value chosen for the parametef the DDP isa = 1. As expected the experimental
points are very well located on the continuous curve which withdhoice of semilogarithmic coordinates
is simply a straight line. This figure clearly shows that the Ribfhe RWT isexp(—x) which means,
as predicted by the theory, that the RWT and lifetime havestmae exponential PDF.

Let us now consider the case of relaxed counting experim&htsy are realized for two values @f,
T = 0.5, andT = 1. The theory predicts that the random number of relaxed pomthese intervals
are Poisson RVs with meam = A\T. Since\ = 1, which results from the choice of the value= 1
for the coefficient of the exponential distribution of théetimes, these mean values &@é or 1 for
the two experiments reported in Table 1. In this table we mtede theoretical values of the counting
probabilitiesp,, given byp,, = exp(—m)(m™/n!). The last two columns of the table indicate the values
of the sum of they,,s appearing on the same line and the corresponding mearsvslligeobserve a fairly
good agreement between the theoretical results and thossuredawith our algorithms, which indicates

a good performance of the method introduced above.

TABLE 1. RELAXED COUNTING PROBABILITIES FOR POISSONPROCESSES

PO p1 P2 p3 P4 P5 D6 7 P8 Sum  mean
T =0.5
TH 0.6065 0.3033 0.0758 0.0126 0.0016 0.0002 0 0 0 1.0000 0.5000
EXP 0.6069 0.3030 0.0755 0.0128 0.0017 0.0002 0.0000 0 0 1.0000 0.5000
T=1

TH 0.3679 0.3679 0.1839 0.0613 0.0153 0.0031 0.0005 0.0001 0.0000 1.0000 1.0000
EXP 0.3688 0.3671 0.1831 0.0616 0.0157 0.0031 0.0005 0.0001 0.0000 1.0000 1.0000

C. Erlang(2) Processes

Let U and V be two IID random variables defined by their common expomaéRDF p(x) =
aexp(—az) and X be the sumX = U + V. Its PDF is f(z) = a?vexp(—ax) and the corresponding
mean value i2/a. An Erlang(2) PP is a renewal PP (lifetimes are a sequencédoRWs) in which the
PDF of the lifetimes iz (x) = f(x). Its density\ is clearly A = a/2. It is rather simple to calculate
the PDFpriwr(z) of the RWT and the results expressed with the densigre

pr(x) = 4AX2z exp(—2Az) , prwr(z) = A1 + 2\z) exp(—2Az). (3)
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Furthermore a more complicated calculation yields thexedlacounting probabilities given by, =

(1+ pu/2)exp(—p) and fork > 1,
2k+1 2

a 1+ B (4)

pr = (1/2) eXp(_M)m ko 2k(2k+1)|°

wherepy = 2AT.

It is clear that it is very easy to simulate an Erlang(2) PPalse it only requires the generation of
two 11D positive exponential RVs. In other words the comptgxaf its simulation is on the same order
as that of a Poisson process.

In the following experiments we have generated samples of Em@R) process of density = 1,
which yieldsa = 2. As previously these samples are used for time or countingsunements.

In Fig. 2 we present results of measurements of the PDFs offdigrne and of the RWT of Erlang(2)
PPs. As in the previous figure, the continuous curves correspo the theoretical values while the
points are coming from experimental normalized histogralhg the great difference with the case of
the Poisson process is that the PQiz$x) andpryr(z) of the lifetime and the RVWT respectively are
quite different. This clearly appears in Fig. 2 in which we atdserve that the experimental points are
located with quite a good degree of precision on the the@ietiarve. So, in this case where calculations
are also possible, these results confirm the validity of tle@saurements method.

Let us now present the results of counting probabilities suemments. They are listed in Table 2,
presented in the same manner as Table 1. For three valuestohhduratioril” we present the theoretical
and measured values of the counting probabilities. We ebdshiat the results are quite similar, which

again confirms the validity of the measurement procedursemted above.

TABLE 2. RELAXED COUNTING PROBABILITIES FOR ERLANG(2) PROCESSES

Po p1 D2 p3 D4 P5 Dé D7 D8 Sum  Mean
T=05
TH 0.5518 0.3985 0.0475 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.5000
EXP 0.5522 0.3981 0.0476 0.0021 0.0000 0 0 0 0 1.0000 0.4996
T=1
TH 0.2707 0.4962 0.1985 0.0318 0.0027 0.0001 0.0000 0.0000 0.0000 1.0000 0.9993
EXP 0.2708 0.4967 0.1979 0.0316 0.0028 0.0001 0.0000 0 0 1.0000 1.0000
T=2

TH 0.0549 0.2808 0.3712 0.2121 0.0662 0.0129 0.0017 0.0002 0.0000 1.0000 2.0000
EXP 0.0554 0.2809 0.3715 0.2111 0.0663 0.0130 0.0017 0.0002 0.0000 1.0000 1.9986
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D. Erlang(3) Processes

These PPs are natural extensions of those presented inaghieys section. Instead of starting from
two RVs U and V, we add a third ondV independent of the others and with the same exponential
distribution and we consider the sum = U + V + W. An Erlang(3) PP is a renewal PP in which the
distances between successive points are IID random vasiabith the distribution ofX. It is easy to
find the PDFpy(z) of the lifetime and a little less easy to obtaigyyr(z), PDSF of the RWT. The
results are

pr(x) = (27/2)232%e 732 | prr(x) = M1 + 3 z + (9/2)A\2z2)e 3N, (5)

where, as in (3)\ is the density of the PP. In order to obtain an Erlang(3) PPenisdy A = 1 from
simulations of three sequences of 1ID exponential RVs with BDB = aexp(—azx), it suffices to take
a = 3. Experimental results presented on the same manner as @¢hésg. 2 appear on Fig. 3. As in
the previous figures, the position of the experimental oot the theoretical curves deduced from (5)
shows an excellent agreement between experiment and theory.

Let us now consider counting experiments. After rather cempllgebra we obtain the values of the

relaxed counting probabilities,, of a Erlang(3) PP given by, = (1/3)e=™[3 + 2m + m?/2] and for

n>0
P = (1/3)e™"m*"~*T,, (m), (6)
wherem = 3\T and
1 2m 3m? 2m3 m?
T, (m) = . 7
) = =i T G TG T B T Brto) 0

Experimental results for an Erlag(3) PP of density= 1 compared with theoretical values given by

these equations appear in Table 3.

TABLE 3. RELAXED COUNTING PROBABILITIES FOR ERLANG(3) PROCESSES

Po p1 P2 D3 P4 D5 D6 7 Sum  Mean
T=0.5

TH 0.5299 0.4405 0.0292 0.0004 0.0000 0.0000 0.0000 0.0000 1.0000 0.5000
EXP 0.5298 0.4404 0.0294 0.0004 0.0000 0 0 0 1.0000 0.4996

T=1
TH 0.2240 0.5688 0.1907 0.0159 0.0005 0.0000 0.0000 0.0000 1.0000 1.0000
EXP 0.2241 0.5682 0.1912 0.0160 0.0005 0.0000 0 0 1.0000 1.0007

T=2
TH 0.0273 0.2667 0.4385 0.2186 0.0443 0.0044 0.0002 0.0000 1.0000 2.0000
EXP 0.0280 0.2649 0.4384 0.2203 0.0440 0.0043 0.0002 0.0000 1.0000 2.0013
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As for the other examples presented above this table showdegpod correspondence between the
theoretical values of the counting probabilities and thaisiined from experiments using the algorithms
discussed in the previous sections. These results opensth®futhese algorithms in the cases where

theoretical calculations are almost impossible, as se¢heirexample discussed in the next section.

E. Renewal Processes with Triangular Distribution

As indicated above, a renewal PP is entirely defined by the PDium to all its lifetimes which
also are 1ID random variables. In this section we assume HistRDFp x (z) is triangular with mean
value equal to 1. This implies thaty (z) = u(z)v(x — 1)z + u(x — 1)v(z — 2)(2 — z), whereu andv

are defined after (2). Its distribution function (DF) (x) is then equal to
Fx(z) = u(z)v(z — D)a?/2 + u(z — Dv(z — 2)(1 — 2z + 22/2) + u(z — 2). (8)

It is shown in pps. 8 and 54 of [2] that for a renewal PP the PDF efrésidual waiting timeX is
given by
prwr(x) = (1/mx)[1 — Fx (z)]. ©)

The simulation of the renewal PP characterized by the DF (8pjgecially simple. Indeed it is obvious
that (8) is the DF of the sum of two IID random variables uniftyrdistributed in the intervalo, 1].
Applying our method of measurement to a sequence of such RVsmameasure the PDFs of the lifetime
and of the RWT. The results appear in Fig 4. The continuougesucorrespond to the theoretical PDFs
and the points to the experimental measurement of these REd-@bserve on this figure an excellent
correspondence between experimental and theoreticatgesul

The situation of the counting measurements is quite diffeft@deed it is almost impossible to obtain
in closed form the mathematical expression of the countimmbgbilities, as it was the case for the
other experiments displayed in this paper. This is the meagioy Table 4 presents only experimental

measurements realized in the same conditions as in the exiperiments.
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TABLE 4. RELAXED COUNTING PROBABILITIES FOR RENEWAL PPWITH TRIANGULAR PDF.

Po p1 P2 D3 pa D5 P6 7 ps Sum  Mean
T=0.5
EXP 0.5209 0.4587 0.0201 0.0003 0 0 0 0 0 1.0000 0.4997
T=1
EXP 0.1668 0.6752 0.1499 0.0079 0.0002 0.0000 0 0 0 1.0000 0.9994
T=2
EXP 0 0.2340 0.5578 0.1849 0.0220 0.0012 0.0000 0.0000 0O 1.0000 1.9987

It is finally interesting to compare the measured countingppbilitiesp,, of the four PPs discussed
above for the same valuE = 1 of the counting interval. Since these four PPs have the samesitgt
A = 1, they also introduce the same mean value of the relaxed nuailjgoints in this interval. The

results appear in Table 5.

TABLE 5. RELAXED COUNTING PROBABILITIES FOR THEPREVIOUSPPS FORT = 1.

Po p1 P2 p3 Pa D5 D6 D7 P8 Sum  Mean

Poisson 0.3688 0.3671 0.1831 0.0616 0.0157 0.0031 0.0005 0.0001 0.0000 1.0000 1.0000

Erlang(2) 0.2708 0.4967 0.1979 0.0316 0.0028 0.0001 0.0000 0 0 1.0000 1.0000

Erlang(3) 0.2241 0.5682 0.1912 0.0160 0.0005 0.0000 0 0 0 1.0000 1.0007

Triang. 0.1668 0.6752 0.1499 0.0079 0.0002 0.0000 0 0 0 1.0000 0.9994
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Fig. 1. Probability density functions(x) of the residual waiting time of a Poisson process. Pointsegments with simulated

data, continuous curves: theory pfx) = exp(—x).
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Fig. 2. Probability density functions of RWT and of lifetinfer an Erlang(2) PP. Points: experiment with simulated data,
continuous curve: theory girwr () = A(1 + 2Xz) exp(—2Xz), pr(z) = 4 2z exp(—2Az), A = 1.
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Fig. 3. Probability density functions of RWT and of lifetinfer an Erlang(3) PP. Points: experiment with simulated data,

continuous curve: theory given by (5)
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Fig. 4. Probability density functions of RWT and of lifetinfier a renewal PP with triangular lifetime. Points: experimeith

simulated data,
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continuous curve: theory given by (8) and (9
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