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Measurements of some Relaxed Properties

of Simulated Point Processes
Bernard Picinbono,Life Fellow, IEEE,

Abstract

This paper presents an algorithmic method for measurementsof relaxed statistical properties of point

processes (PP). In particular it makes it possible to determine the probability density function of the

residual waiting time, which is the distance between an arbitrary origin and the first point of the PP

posterior to this origin and also the probabilities of counting n points of the PP in an interval open by

an instant independent of the PP. These quantities are rarely accessible from a theoretical calculation.

However, in the cases where this is possible, various experiments show quite good agreement with the

theory.

Index Terms

Point processes, Simulation, Poisson processes, Time interval measurements, Counting, Simulations

of point processes.

I. INTRODUCTION

Time point processes (PP) are used in numerous domains of Science, Engineering and Economics.

There are especially appropriate to describe sequence of events arriving randomly in time appearing at

a microscopic scale for example in the description of the emission of electrons or photons and also at

a macroscopic scale in problems such as traffic congestion, random risks in insurances prediction and

finance.

The mathematical theory of PPs is a well established field of Probability Theory and there exists an

extensive literature on this subject going from very abstract and rigorous mathematical theory to more
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applied approaches where practical problems are presented.In the first category we refer to [1] and in

the latter to [2], [3], [4]. In this paper devoted to simulation and measurement problems we use more

frequently the methods appearing in this second category.

In order to represent random physical events number of statistical models have been presented in

the literature and a rather extensive presentation of thesemodels appear in [2]. Among them the most

important are certainly the stationary Poisson PPs defined by the fact that the time intervals between

successive points, calledlifetimes, are positive IID random variables (RV) with an exponential probability

density function (PDF). Renewal PPs introduce also a large class of models important for the applications.

They are defined by the fact that the lifetimes are positive RVsthat are IID but with arbitrary PDFs. It is

obvious that stationary Poisson PPs are also renewal processes. For various applications it is necessary to

delete the assumption of stationarity and non stationary (or non homogeneous) Poisson PPs are the most

important examples. Finallydoubly stochastic Poisson PPs, or Poisson processes with a random density

play a central role in Statistical Optics in order to describethe fluctuations of the electromagnetic field

and various theoretical or experimental papers have been published on their properties. A good summary

of this field of research can been found in [5], [6] and their use in Quantum Optics is summarized in

[7], [8].

But PPs appearing in physical phenomena are sometimes too complicated to make it possible a clear

mathematical analysis. It is then often much easier to work with simpler PPs obtained bycomputer

simulations and we shall now present the most significant methods for this purpose. The simplest

simulation procedures concern the renewal PPs. Indeed since a random distribution of pointsTi is

completely determined by the sequence of lifetimesXi defined byXi = Ti − Ti−1, and since for a

renewal PP these RVsXi are IID, the simulation of such a PP is equivalent to that of a sequence of IID

RVs of a given PDF. This is a classical problem well described in [9].

The simulation of non stationary and doubly stochastic Poisson processes is a much more difficult

problem non still completely solved. The first attempt in this direction appeared in the fundamental paper

[10] by using the so called thinning method well known for the simulation of RVs (see also [9]). This

method was enlarged in [11]. But various other procedures have been proposed and applied in Statistical

Optics [12], Biology [13] or in management problems [14], [15], [16]. Models of heartbeat PPs and their

simulation have been presented in [17].

It is worth pointing out that the simulation procedures are not always limited to the generation of

simulated PPs but can also be used for the simulation of some physical operations on such processes.

One of the best examples is that of thedead time effect on PPs. This effect appears practically in every
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physical system and means that if the time interval between points is too small, some of these points

are deleted. There are various different possible mechanisms of dead time effects. A rather elementary

treatment of the two most important was presented in [2]. Their theoretical analysis is rather complicated

and an approach where the PPs and the dead time effect are simulated is presented in [18], [19] for

the so called output or input dead time effects which are quitedifferent. Similarly the use of adaptive

filtering for PPs models of heartbeat is presented in [20].

There are number of kinds ofmeasurements in order to determine or to use the statistical properties

of simulated PPs. For example in insurance or risks problemsone is interested to the use of the methods

of estimation or prediction well established in Signal Processing. Their transposition to PPs require

some specific analysis [21]. In some applications in Physicsor Astronomy direct measurements of some

properties of PPs have a direct interpretation. This is for example the case in Statistical Optics where

the measurements of the variance of the number of points of the PP measured in some time intervals

is a practical mean to make a difference between classical or quantum optical fields [7], [8]. Indeed for

the classical fields this variance is necessarily greater than the mean value, which justifies the precise

measurements of this mean value and this variance. Measurements of moments or cumulants of order

higher than two is also used in Astronomy [22]. Finally the importance of second order analysis with its

consequences concerning the spectral properties of PPs justifies a specific interest in their measurements

[23], [24].

But the most fundamental measurements concerning the statistical properties of PPs are those of

counting probabilities and of time intervals distributions because they appear, as seen later, in the

mathematical definition of these processes. In physical andengineering literature the basic devices for

such measurements are counters and time to amplitude converters (TAC). A counter is a linear filter with

an impulse responseh(t) equal to 1 in the interval[0, T ] and to 0 otherwise. If its input is a sequence

of pulses at random time instantsTi, its output is the signals(t) =
∑

h(t − Ti) sometimes called shot

noise of the PP (see p. 321 of [25]) and it results from the specific value ofh(t) that s(t) is equal to the

numberN(t, T ) of random pointsTi appearing in the interval[t − T, t]. From the processing of a great

number of values ofN(t, T ) we can deduce the counting probabilities. On the other hand by using a

TAC system we can convert time intervals in pulses and the statistical analysis of these pulses can yield

their probability density function which appears in the mathematical definition of PPs. A great number

of such results obtained some time ago in Statistical Optics are reported in [5].

The purpose of this paper is to transpose these methods in thecase of simulated PPs in which the input

data on the process is the sequence of distancesXi between successive points. Because of the structure
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of these inputs the use of the shot noise signal is no longer the simplest way to reach the counting

probabilities and a quite different approach appears necessary. For this purpose let us first recall some

fundamental definitions and notations on PPs.

A point process (PP) is a random distribution of points in some space. In everything that follows this

space is the time axis, which introduces the expression of of time PP. There exist two main ways to

describe the statistical properties of PPs. Consider a PPP and let us noteTi its random points, that

are time instants classed in an increasing order (Ti < Ti+1). The intervalsXi between successive points

(Xi = Ti − Ti−1) are called the lifetimes, or sometimes interevents times.These quantities are positive

random variables (RV) and it is clear thatP is described as well by the sequences ofTi or by the

sequences ofXi. This implies that the statistical properties ofP are entirely described by those of the

Xis which can be considered as the values of a positive discrete time signal. For this description we can

apply all the standard methods used in random signal theory.In this case we use the expression of of

time intervals description of a PP.

The second approach is called counting description. Consider M arbitrary non-overlapping time in-

tervals∆k and letNk be the random number of pointsTi of P appearing in∆k. If for any M and for

eachM for any set on intervals∆k we know the statistical properties of the set of RVsNk, we also

have a complete description of the statistical properties of P. In this case we use the term of counting

approach which comes from the fact that the random numbersNk are physically obtained by a counting

procedure.

The simplest, and probably the most important, example of PPis the stationary Poisson process. In

this case the RVsXi are positive IID random variables with an exponential distribution and theNks are

independent RVs with a Poisson distribution.

The relation between these two approaches to the descriptionof a PP is a well documented question.

It appears in the books indicated above and in [26], [27] and in the references herein.

Let us now introduce the concept ofrelaxed properties. Consider an arbitrary timeθ which is not a

point of P. Let T (θ) be the first point ofP posterior toθ. The positive time intervalT (θ)− θ is called

the residual lifetime, or also the residual waiting time (RWT). It is obviously an RV and in principle

its statistical properties can be deduced from those defining the PP but the calculations are often very

complicated. It is clear, however, that ifP is stationary, these properties do not depend onθ. The residual

waiting time is the simplest example of a relaxed property inwhich a time instantθ that does not have

any relation with the PPP is introduced. In contrast, the lifetime, which is the interval between two

successive points of the PP, is called a triggered property.It is clear that for practical application the

DRAFT July 30, 2012



PICINBONO 5

relaxed properties have the same importance as the triggered ones. For example, in the analysis of the

behaviour of a switching system for telephone calls, the customer is more interested in his waiting time

than in the interval between successive calls, even if these two properties are closely interconnected.

The same distinction can be introduced in the case of counting properties. If the intervals∆k introduced

above have no relation with the PPP we talk about relaxed counting. On the other hand, if these intervals

have, for example, the form[Ti, Ti + T ], which means that the beginning of the interval is a point of

P, we talk about triggered counting. In the case whereP is stationary, the statistical properties of the

number of pointsN recorded in[θ, θ + T ] does not depend onθ, but it is clear, and we shall verify this

point below, that for the same value of the lengthT these statistical properties ofN have no reason to

be the same ifθ = Ti or not, i.e. in the triggered or the relaxed cases. The best example appears for

PPs with dead-time effects. If all the points ofP belonging to the intervals[Ti, Ti + D], whereD is the

dead-time constant, are erased, we obtain a new PP in which no point can appear in intervals such as

[Ti, Ti + D] while this property has no reason to be true for intervals such[θ, θ + D], whereθ is not a

point of the PP, (see [18], [19] and references herein).

There is, however, a case where this distinction between relaxed and triggered properties disappears.

This is the case of stationary Poisson processes mentioned above. Indeed one of the characteristic

properties of such processes is the fact that they have no memory, which suppresses the difference

between triggered and relaxed properties.

Measurements of relaxed properties are in general more complicated than those of triggered ones.

This appears clearly in the case ofrenewal processes, which, after the Poisson processes, are the most

important for practical applications. Such PPs are defined by the fact that the intervals between successive

points (lifetimes) are IID positive RVs. Consequently the statistical properties of these PPs are entirely

defined by the distribution function (DF) of all the lifetimes. It is clear that the triggered properties of

such processes result from certain properties of the sums ofIID random variables, which is a rather

classic problem of probabilities. On the other hand, measurement and calculation of relaxed properties

such as the residual waiting times are in general much more complicated and, in some cases, almost

impossible. It is the purpose of this paper to present some measurement methods for these properties

and when calculations are affordable to compare their results with those obtained with our measurement

methods in order to evaluate their performances.
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II. PRINCIPLES OF THEALGORITHMS

Let PS be a stationary PP, the indexS meaning that it is the signal that we want to analyze. Its ordered

sequence of instants is noted{si}. In order to obtain its relaxed properties it is necessary tohave at our

disposal another stationary and ordered sequence of time instantsti independent ofPS They are the

instants opening its analysis according to the procedure described below. These instants constitute the

analysis PP calledPA. The only property ofPA required at this step is to be independent ofPS and we

shall discuss below the relative interest of the various possible choices.

To each pointti of PA we associate the point ofPS notedsj(i) which is the last point ofPS anterior to

ti, which means that(ti−sj(i)) > 0 and(ti−sj(i)+1) < 0. It is then characterized by the fact that it is the

only point of the sequence{sj} such that the product(ti−sj)(ti−sj+1) is negative. This property can be

used for its calculation. Indeed for eachti we can calculate the products(ti−sj)(ti−sj+1), 1 ≤ j ≤ M ,

whereM is the number of possible values ofj and j(i) is the only value ofj among possibleM for

which this product is negative. This procedure however requires very long calculation times because there

are of the order ofM 2 products to calculate and ifM ∼ 106, as in most of our following experiments,

this can require more than one hundred hours of calculationsusing standard computers.

It is then more appropriate to introduce a recursive procedure which can significantly reduce the

calculation time. This results from the following principle. Suppose thatsj(i) is known and consider the

differencedn(i + 1) = ti+1 − sj(i)+n. It is clear thatj(i + 1) = j(i) + n if and only if dn(i + 1) > 0

anddn+1(i + 1) < 0. This yields the following:

j(i + 1) = j(i) +
∞
∑

n=1

nFn(i), (1)

with

Fn(i) = u[dn(i + 1)]v[dn+1(i + 1)], (2)

whereu(x) is the unit step function equal to 1 ifx > 0 and to−1 otherwise, andv(x) = u(−x). The

advantage of (1) seemsa priori weak, because of the presence of a series of an infinite number of terms.

It appears however that this number can in practice be very small. In particular when the densitiesλ

and ν of the PPsPS andPA respectively satisfyλ << ν, which is a very common situation, a short

calculation shows that there is practically only one term corresponding ton = 1 in the series of (1), and

for each set of experiments presented below we have introduced a procedure ensuring that replacing the

series by a sum of a finite number of terms does not introduce anerror in the calculation of (1).

Once the sequencej(i) is known, it can be used for the measurements of some relaxed properties of

the PPPS . Let us begin by the analysis of the residual waiting time (RWT).
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The RWT associated with each instantti of the PPPA is, from the definition of the sequencesj(i),

the quantitysj(i)+1 − ti. It is a positive random variable (RV), and if the sequence of the tis contains

MA values, there are alsoMA values of this RV. Assuming that the PPsPS andPA are stationary and

ergodic, we can deduce from the normalized histogram of thesevalues the probability density function

(PDF) of the RWT which is in general rather difficult to obtain from a theoretical calculation, except for

some cases discussed below. For a less extensive analysis itis possible to limit the measurements to the

determination of the mean and the variance of the RWT.

Consider now thecounting analysis. The problem is to determine the statistics of the number of points

of PS in time intervals of durationT and open by the pointsti of PA.

Let Dn(i) be the time interval betweenti and thenth point of PS posterior toti. It results from

the definition ofsj(i) that Dn(i) = sj(i)+n − ti, in such a way that the intervalsDn(i) are known

as soon as thesj(i)s are known. It is clear that there aren points of PS in the interval [ti, ti + T ]

(relaxed counting) if and only ifDn(i) < T and Dn+1(i) > T . This leads to introduce the function

Gn(i) = u[Dn+1(i) − T ]v[Dn(i) − T ], whereu(.) and v(.) have been defined after (2). We note then

that Gn(i) takes only the values 0 or 1, and furthermore thatGn(i) = 1 if and only if there aren points

in [ti, ti +T ]. As the expected value of a RV taking only the values 0 or 1 is equal to the probability that

this RV is equal to 1, we deduce that the probabilitypn that there aren relaxed points in the interval

[ti, ti + T ] is the expected valueE[Gn(i)]. Finally it results from our assumptions of stationarity and

ergodicity that this expected value is the time average, or(1/MA)
∑MA

1 Gn(i), whereMA is the number

of time instantsti introduced for the analysis. Finally it is clear that ifn = 0, the corresponding relaxed

probability p0 is simply the ensemble, or time, mean value ofu[D1(i) − T ].

Note finally that if the instantsti are chosen among thesi the previous algorithms yield either the

lifetime statistics or the triggered counting probabilities.

III. E XPERIMENTAL RESULTS

A. Principles of the Experiments

We shall now present various experimental results for the analysis of PPs obtained by applying the

previous algorithms. The starting point is the definition ofthe PPPS subject of this analysis. As indicated

in the introduction,PS can be defined by the sequenceXi of the distances between successive points

which are positive RVs, or constitute a positive discrete timesignal. This signal is obtained either from

a physical experiment or from a computer simulation. We use this second procedure exclusively in
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everything that follows. In other words we realize computer measurements on simulated data, but the

computer measurements can also be carried out with real physical data.

Our purpose is to measure some properties ofPS from a sequence ofM realizationssi of its lifetimes

Si. In order to use the algorithms discussed in the previous section we must introduce an analysis

stationary PPPA. The only requirement concerning this PP is the relation introduced above between its

densityν and the densityλ of PS . In all the experiments presented below we have chosenν = 10λ.

On the other hand we have verified that the statistical properties of PA do not play any role in the

results of the analysis, in such a way that we have chosen the simplest PP possible defined by the fact

that the lifetimes are constant and equal to1/ν. The other important point to define is the numberMA

of values ofPA chosen for the experiment. We must adapt this number to the number M of values

of PS . Indeed it results clearly from the structure of the calculation of j(i) that if MA is too small a

large number of values ofPS are not taken into account, and on the contrary ifMA is too high many

values ofPA are useless. Since the mean duration of the sequence ofPS andPA areM/λ andMA/ν

respectively, we have chosen the compromiseMA = (ν/λ)M . Finally it is appropriate to choose values

of M sufficiently large to obtain a fairly good statistical precision when measuring time averaging. In

most of our experiment,M is of the order of106. Greater values are sometimes necessary, but at the

expense of much longer experiment time.

B. Poisson Processes

In order to verify the behaviour of our method we shall begin with the simplest and most common

example of PP which is the stationary Poisson process. Such a process is defined by the fact that the

positive RVsXi are IID and with an exponential distribution. There are various standard programs

for the generation of a sequence of such RVs, the most common consisting in realizing a specific

nonlinear transformation of a sequence of IID random variables uniformly distributed in the interval

[0, 1]. More precisely letWi be such a sequence. It is then easy to verify that the RVsXi defined by

Xi = −(1/a) ln(Wi) are IID and with the PDFp(x) = a exp(−ax). Their mean value and variance

are 1/a and 1/a2 respectively. It is well known that the PDFs of the RWT and of the lifetimes of a

stationary Poisson process are the same and equal top(x). In Fig. 1 we present experimental results

of measurements of these PDFs obtained from normalized histograms either of theXi or of the results

of the measurements of the RWT by using the algorithms described above. In this figure, as in all the

others that follow, the continuous curves correspond to thetheoretical PDF while the points represent the

values of the measurements of these PDS from a standard processing of experimental histograms. For
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this experiment the value chosen for the parametera of the DDP isa = 1. As expected the experimental

points are very well located on the continuous curve which with the choice of semilogarithmic coordinates

is simply a straight line. This figure clearly shows that the PDFof the RWT isexp(−x) which means,

as predicted by the theory, that the RWT and lifetime have thesame exponential PDF.

Let us now consider the case of relaxed counting experiments. They are realized for two values ofT ,

T = 0.5, andT = 1. The theory predicts that the random number of relaxed points in these intervals

are Poisson RVs with meanm = λT . Sinceλ = 1, which results from the choice of the valuea = 1

for the coefficient of the exponential distribution of the lifetimes, these mean values are0.5 or 1 for

the two experiments reported in Table 1. In this table we present the theoretical values of the counting

probabilitiespn given bypn = exp(−m)(mn/n!). The last two columns of the table indicate the values

of the sum of thepns appearing on the same line and the corresponding mean values. We observe a fairly

good agreement between the theoretical results and those measured with our algorithms, which indicates

a good performance of the method introduced above.

TABLE 1. RELAXED COUNTING PROBABILITIES FOR POISSONPROCESSES.

p0 p1 p2 p3 p4 p5 p6 p7 p8 Sum mean

T = 0.5

TH 0.6065 0.3033 0.0758 0.0126 0.0016 0.0002 0 0 0 1.0000 0.5000

EXP 0.6069 0.3030 0.0755 0.0128 0.0017 0.0002 0.0000 0 0 1.0000 0.5000

T = 1

TH 0.3679 0.3679 0.1839 0.0613 0.0153 0.0031 0.0005 0.0001 0.0000 1.0000 1.0000

EXP 0.3688 0.3671 0.1831 0.0616 0.0157 0.0031 0.0005 0.0001 0.0000 1.0000 1.0000

C. Erlang(2) Processes

Let U and V be two IID random variables defined by their common exponential PDF p(x) =

a exp(−ax) andX be the sumX = U + V . Its PDF isf(x) = a2x exp(−ax) and the corresponding

mean value is2/a. An Erlang(2) PP is a renewal PP (lifetimes are a sequence of IID RVs) in which the

PDF of the lifetimes ispL(x) = f(x). Its densityλ is clearlyλ = a/2. It is rather simple to calculate

the PDFpRWT (x) of the RWT and the results expressed with the densityλ are

pL(x) = 4λ2x exp(−2λx) , pRWT (x) = λ(1 + 2λx) exp(−2λx). (3)
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Furthermore a more complicated calculation yields the relaxed counting probabilities given byp0 =

(1 + µ/2)exp(−µ) and fork ≥ 1,

pk = (1/2) exp(−µ)
µ2k+1

(2k − 1)!

[

1 +
µ

k
+

µ2

2k(2k + 1)

]

, (4)

whereµ = 2λT .

It is clear that it is very easy to simulate an Erlang(2) PP because it only requires the generation of

two IID positive exponential RVs. In other words the complexity of its simulation is on the same order

as that of a Poisson process.

In the following experiments we have generated samples of an Erlang(2) process of densityλ = 1,

which yieldsa = 2. As previously these samples are used for time or counting measurements.

In Fig. 2 we present results of measurements of the PDFs of the lifetime and of the RWT of Erlang(2)

PPs. As in the previous figure, the continuous curves correspond to the theoretical values while the

points are coming from experimental normalized histograms. But the great difference with the case of

the Poisson process is that the PDFspL(x) andpRWT (x) of the lifetime and the RVWT respectively are

quite different. This clearly appears in Fig. 2 in which we alsoobserve that the experimental points are

located with quite a good degree of precision on the theoretical curve. So, in this case where calculations

are also possible, these results confirm the validity of the measurements method.

Let us now present the results of counting probabilities measurements. They are listed in Table 2,

presented in the same manner as Table 1. For three values of the time durationT we present the theoretical

and measured values of the counting probabilities. We observe that the results are quite similar, which

again confirms the validity of the measurement procedure presented above.

TABLE 2. RELAXED COUNTING PROBABILITIES FOR ERLANG(2) PROCESSES.

p0 p1 p2 p3 p4 p5 p6 p7 p8 Sum Mean

T = 0.5

TH 0.5518 0.3985 0.0475 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.5000

EXP 0.5522 0.3981 0.0476 0.0021 0.0000 0 0 0 0 1.0000 0.4996

T = 1

TH 0.2707 0.4962 0.1985 0.0318 0.0027 0.0001 0.0000 0.0000 0.0000 1.0000 0.9993

EXP 0.2708 0.4967 0.1979 0.0316 0.0028 0.0001 0.0000 0 0 1.0000 1.0000

T = 2

TH 0.0549 0.2808 0.3712 0.2121 0.0662 0.0129 0.0017 0.0002 0.0000 1.0000 2.0000

EXP 0.0554 0.2809 0.3715 0.2111 0.0663 0.0130 0.0017 0.0002 0.0000 1.0000 1.9986
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D. Erlang(3) Processes

These PPs are natural extensions of those presented in the previous section. Instead of starting from

two RVs U and V , we add a third oneW independent of the others and with the same exponential

distribution and we consider the sumX = U + V + W . An Erlang(3) PP is a renewal PP in which the

distances between successive points are IID random variables with the distribution ofX. It is easy to

find the PDFpL(x) of the lifetime and a little less easy to obtainpRWT (x), PDSF of the RWT. The

results are

pL(x) = (27/2)λ3x2e−3λx , pRWT (x) = λ(1 + 3λx + (9/2)λ2x2)e−3λx, (5)

where, as in (3),λ is the density of the PP. In order to obtain an Erlang(3) PP of densityλ = 1 from

simulations of three sequences of IID exponential RVs with PDFp(x) = a exp(−ax), it suffices to take

a = 3. Experimental results presented on the same manner as thoseof Fig. 2 appear on Fig. 3. As in

the previous figures, the position of the experimental points on the theoretical curves deduced from (5)

shows an excellent agreement between experiment and theory.

Let us now consider counting experiments. After rather complex algebra we obtain the values of the

relaxed counting probabilitiespn of a Erlang(3) PP given bypo = (1/3)e−m[3 + 2m + m2/2] and for

n > 0

pn = (1/3)e−mm3n−2Tn(m), (6)

wherem = 3λT and

Tn(m) =
1

(3n − 2)!
+

2m

(3n − 1)!
+

3m2

(3n)!
+

2m3

(3n + 1)!
+

m4

(3n + 2)!
. (7)

Experimental results for an Erlag(3) PP of densityλ = 1 compared with theoretical values given by

these equations appear in Table 3.

TABLE 3. RELAXED COUNTING PROBABILITIES FOR ERLANG(3) PROCESSES.

p0 p1 p2 p3 p4 p5 p6 p7 p8 Sum Mean

T = 0.5

TH 0.5299 0.4405 0.0292 0.0004 0.0000 0.0000 0.0000 0.0000 0 1.0000 0.5000

EXP 0.5298 0.4404 0.0294 0.0004 0.0000 0 0 0 0 1.0000 0.4996

T = 1

TH 0.2240 0.5688 0.1907 0.0159 0.0005 0.0000 0.0000 0.0000 0 1.0000 1.0000

EXP 0.2241 0.5682 0.1912 0.0160 0.0005 0.0000 0 0 0 1.0000 1.0007

T = 2

TH 0.0273 0.2667 0.4385 0.2186 0.0443 0.0044 0.0002 0.0000 0 1.0000 2.0000

EXP 0.0280 0.2649 0.4384 0.2203 0.0440 0.0043 0.0002 0.0000 0 1.0000 2.0013
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As for the other examples presented above this table shows a quite good correspondence between the

theoretical values of the counting probabilities and thoseobtained from experiments using the algorithms

discussed in the previous sections. These results open the use of these algorithms in the cases where

theoretical calculations are almost impossible, as seen inthe example discussed in the next section.

E. Renewal Processes with Triangular Distribution

As indicated above, a renewal PP is entirely defined by the PDF common to all its lifetimes which

also are IID random variables. In this section we assume that this PDFpX(x) is triangular with mean

value equal to 1. This implies thatpX(x) = u(x)v(x − 1)x + u(x − 1)v(x − 2)(2 − x), whereu andv

are defined after (2). Its distribution function (DF)FX(x) is then equal to

FX(x) = u(x)v(x − 1)x2/2 + u(x − 1)v(x − 2)(1 − 2x + x2/2) + u(x − 2). (8)

It is shown in pps. 8 and 54 of [2] that for a renewal PP the PDF of the residual waiting timeX is

given by

pRWT (x) = (1/mX )[1 − FX(x)]. (9)

The simulation of the renewal PP characterized by the DF (8) isespecially simple. Indeed it is obvious

that (8) is the DF of the sum of two IID random variables uniformly distributed in the interval[0, 1].

Applying our method of measurement to a sequence of such RVs we can measure the PDFs of the lifetime

and of the RWT. The results appear in Fig 4. The continuous curves correspond to the theoretical PDFs

and the points to the experimental measurement of these PDFs.We observe on this figure an excellent

correspondence between experimental and theoretical results.

The situation of the counting measurements is quite different. Indeed it is almost impossible to obtain

in closed form the mathematical expression of the counting probabilities, as it was the case for the

other experiments displayed in this paper. This is the reason why Table 4 presents only experimental

measurements realized in the same conditions as in the otherexperiments.
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TABLE 4. RELAXED COUNTING PROBABILITIES FOR RENEWAL PPWITH TRIANGULAR PDF.

p0 p1 p2 p3 p4 p5 p6 p7 p8 Sum Mean

T = 0.5

EXP 0.5209 0.4587 0.0201 0.0003 0 0 0 0 0 1.0000 0.4997

T = 1

EXP 0.1668 0.6752 0.1499 0.0079 0.0002 0.0000 0 0 0 1.0000 0.9994

T = 2

EXP 0 0.2340 0.5578 0.1849 0.0220 0.0012 0.0000 0.0000 0 1.0000 1.9987

It is finally interesting to compare the measured counting probabilitiespn of the four PPs discussed

above for the same valueT = 1 of the counting interval. Since these four PPs have the same density

λ = 1, they also introduce the same mean value of the relaxed number of points in this interval. The

results appear in Table 5.

TABLE 5. RELAXED COUNTING PROBABILITIES FOR THE PREVIOUS PPS FORT = 1 .

p0 p1 p2 p3 p4 p5 p6 p7 p8 Sum Mean

Poisson 0.3688 0.3671 0.1831 0.0616 0.0157 0.0031 0.0005 0.0001 0.0000 1.0000 1.0000

Erlang(2) 0.2708 0.4967 0.1979 0.0316 0.0028 0.0001 0.0000 0 0 1.0000 1.0000

Erlang(3) 0.2241 0.5682 0.1912 0.0160 0.0005 0.0000 0 0 0 1.0000 1.0007

Triang. 0.1668 0.6752 0.1499 0.0079 0.0002 0.0000 0 0 0 1.0000 0.9994
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Fig. 1. Probability density functionsp(x) of the residual waiting time of a Poisson process. Points: experiments with simulated

data, continuous curves: theory orp(x) = exp(−x).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Pr
ob

ab
ilit

y d
en

sit
y f

un
cti

on
s

Residual Waiting Time

Lifetime

Fig. 2. Probability density functions of RWT and of lifetimefor an Erlang(2) PP. Points: experiment with simulated data,

continuous curve: theory orpRWT (x) = λ(1 + 2λx) exp(−2λx), pL(x) = 4λ2x exp(−2λx), λ = 1.
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Fig. 3. Probability density functions of RWT and of lifetimefor an Erlang(3) PP. Points: experiment with simulated data,

continuous curve: theory given by (5)
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Fig. 4. Probability density functions of RWT and of lifetimefor a renewal PP with triangular lifetime. Points: experiment with

simulated data, continuous curve: theory given by (8) and (9).
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