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Abstract

We consider a model for the risk-based design @ibad protection dike, and use probability
distributions to represent aleatory uncertainty passibility distributions to describe the epistemi
uncertainty associated to the poorly known parara@tiesuch probability distributions.

A hybrid method is introduced to hierarchically pagate the two types of uncertainty, and the
results are compared with those of a Monte CarketiaDempster-Shafer approach employing
independent random sets and a purely probabilistio;level Monte Carlo approach: the risk
estimates produced are similar to those of the Béen®hafer method and more conservative than

those of the two-level Monte Carlo approach.

Keywords: hierarchical uncertainty, possibility distributgnfuzzy interval analysis, two-level

Monte Carlo method, dependences, flood protectike. d



1. Introduction

In risk analysis, uncertainty is typically distinghed into two types: randomness due to inherent
variability in the system behavior and imprecisdure to lack of knowledge and information on the
system. The former type of uncertainty is ofterenefd to as objective, aleatory, stochastic whereas

the latter is often referred to as subjective,tepisc, state of knowledge [1], [2].

We are interested in the framework of two hierarahlevels of uncertainty, referred to as “two-
level” setting [3]: the models of the aleatory etgefe.g., the failure of a mechanical component or
the variation of its geometrical dimensions and enat properties) contain parameters (e.g.,
probabilities, failure rates,...) that are epistertycancertain because known with poor precision
by the analyst.

Both the aleatory and epistemic uncertainties intthelevel framework can be represented by
probability distributions, and propagated by tweedke (or double loop) Monte Carlo (MC)
simulation [4]: in the outer simulation loop, thalwes of the parameters affected by epistemic
uncertainty are sampled and fed onto the probghdistributions of the inner loop where the
aleatory variables are sampled [5], [6].

In some cases, the imprecise knowledge, incompldtamation and scarce data impair the
probabilistic representation of epistemic uncertaiPh number of alternative representation
frameworks have been proposed to handle such ¢@kes.g., fuzzy set theory [8], Dempster-
Shafer theory of evidence [9]-[14], possibility tmg [15]-[18] and interval analysis [19]-[21].

In this paper, we use probability distributionsdescribe the first level aleatory uncertainty and
possibility distributions to describe the secontleepistemic uncertainty in the parameters of such
probability distributions [15]-[18].

For the propagation of the hybrid (probabilistidguossibilistic) uncertainty representation, the MC

technique [22], [23] is combined with the extensprimciple of fuzzy set theory [24]-[33], within a



“two-level” hierarchical setting [16], [34]-[39]. Ais is done by i) fuzzy interval analysis to praces
the uncertainty described by possibility distribas, ii) repeated MC sampling of the random
variables to process aleatory uncertainty [16]],[[2B].

The joint hierarchical propagation of probabilisticd possibilistic representations of uncertaisty i
applied to a model for the risk-based design ofoad protection dike developed as a realistic
benchmark for uncertainty modeling [3]; the effeetiess of the propagation method is compared
to that of: i) a Monte Carlo (MC)-based Dempsteafgh (DS) approach employing Independent
Random Sets (IRSs) (i.e., where the epistemicalbertain parameters are representedibgrete
focal sets that areandomly andindependentlysampled by MC) [40]-[50], ii) a traditional two-
level MC approach [2], [4], [6]. To the best of thethors’ knowledge, this is the first time that th
above mentioned methods are systematically compgitbdeference taisk assessment problems
wherehybrid uncertainty is separated into thierarchicallevels.

The remainder of the paper is organized as folldw&ection 2, the hybrid method for uncertainty
propagation is described; in Section 3, the floantiel is presented; in Section 4, the results of the
joint hierarchical propagation of aleatory and &pisc uncertainties through the model of Section
3, and the comparison with the MC-based DS-IRStamdlevel MC approaches are reported and
commented; in Section 5, conclusions are providée details about the hybrid, MC-based DS-

IRS and two-level MC computational procedures avergin Appendices A, B and C, respectively.

2. Joint hierarchical propagation of aleatory and episemic

uncertainties in a “two-level” framework

In all generality, we consider a model whose outpat functionZ = f(Y1 Y, ,...,Yn) of n uncertain

variables Y;,i=1---,n, ordered in such a way that the first, Y Y, .Y .Y, are

! In the following, this method will be referredas “MC-based DS-IRS approach” for brevity.



“probabilistic”, i.e., their uncertainty is describe by probability distributions
By (%1160, By, (Y2160, )eees By, (Y110 )renes B (Vi 16,) » Where 0, =16,,,6, .16, |, ] = 12,01, K,
are the vectors of the corresponding internal patars, and the lasi—k, Y,,,,Y oY 50 Y,
are “purely possibilistic”, i.e., their uncertainty epistemic and represented by the possibility
distributions 77 (Y., ), 1% (Yisp )reeer (Y, )oeen T (Y,,) -

In a “two-level” framework, the parametefs, | =12,---,k, are themselves affected by epistemic
uncertainty. We describe these uncertainties by sipiisy distributions
x"(0;) :{nﬂ“(ﬁjl),nﬂ“ (ijz),...,ngj'm' (vam])}, j =12+, k. For clarification by way of example,
we may considerY ~N(u,c)=N(0)=N(6,,6,), where the parameter=6, has a triangular
possibility distribution with core @ and support §,b], and parameteioc =68, has a triangular

possibility distribution with coref} and support ¢,d].
The propagation of the hybrid uncertainty can bdgomed by combining the Monte Carlo (MC)
technique [22], [23] with the extension principlé fazzy set theory [24]-[33] by means of the
following two main steps [16], [34]-[39]:

I.  fuzzy interval analysis to process epistemic uacety;

ii. repeated MC sampling of the random variables togs® aleatory uncertainty.

Technical details about the operative steps optbeedure are given in Appendix A.

The method produces possibility distributions7z’ £ )i = 1, 2, ...,m, for the output variable
z=1(Y,,...Y,) (wheremis the number of random samples of the aleatoriates drawn by
MC). Then, for each sef contained in the universe of discoutde of Z, it is possible to obtain

the possibility measuré7,” A( 3nd the necessity measub&’ A (from 7z’ (z),i=1, 2, ...m, by:

1'(A) = I‘T;j&/}){ﬂi'f (z)} (1)



f _ o f —1_rr (A
N (R =intll- 7' (2}=1-771(A)  DADU, )
The m different realizations of possibility and necessign then be combined to obtain the belief

Bel(A) and the plausibilityPl(A Yor any sefA, respectively [15]:

Bel(A) = zm: pN' (A 3)
PIA =3 /7, (A @

where p, is the probability of sampling the—th realization of the random variable vector

(Yl,Y2-~-,Yk): if m realizations are generated by plain random samptiren p, is simplyl/m.
For each setA, this technique thus computes the probability-lwesd average of the possibility

measures associated with each output fuzzy interval

The likelihood of the vaIuef(Y) passing a given threshold can then be computed by considering
the belief and the plausibility of the se‘X:(—oo,z]; in this respect,BeI(f(Y)D(—oo,z]) and
PI(f(Y)O(-,z]) can be interpreted as bounding, average cumulatilistributions
E(2)=Bel(f(Y)O(-,2]), F(2) = PI(f (Y)O(~,2]) [15].
Let thecore and thesupportof a possibilistic distributioniz’ Z Yoe the crisp sets of all points of
U, such thatr' # Js equal to 1 and nonzero, respectively. Considesigeneric valug of f(Y),
it is PI(f(Y)O(-e,2])=1 if and only if /7,/(f(Y)O(-w,2])=1, Oi=1---,m, that is, for
z> 7" =max {inf (core(ﬂif ))} Similarly, ~ PI(f(Y)O(-w,2)=0 if and only if
7 (f(Y)O(~w,2])=0 0i =1---,m, thatis, forz< z' = min{inf (suppor{rz’ )}
Finally, one way to estimate the total uncertaiory f(Y) is to provide a confidence interval at a
given level of confidence, taking the lower and epmounds fromPI(f(Y)O(-w,z]) and
Bel(f (Y)O(~,z]), respectively [15]. On the other hand,Bel(f(Y)O(-w,z])and
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Pl(f (Y) D(—oo,z]) cannot convey any information on the predictioalttHi(Y) lies within a given
interval [z,,2,], since neitheBel(f (Y)O[z,2,]) nor PI(f(Y)O[z,2]) can be expressed in terms

of Bel(f (Y)D(—oo,z]) and PI(f (Y)D(—oo,z]), respectively.

3. Case study: flood protection risk-based design

The case study deals with the design of a protedtika in a residential area closely located to a
river with potential risk of floods. Two issues obncern are: i) high construction and annual
maintenance costs of the dike; ii) uncertainty e hatural phenomenon of flooding. Then, the
different design options must be evaluated withiloading risk analysis framework accounting for

uncertainty.

In Section 3.1, a short description of the modelfimod protection dike design is given; in Section

3.2, the uncertain variables of the model are desdr

3.1. The model

The maximal water level of the river (i.e., the mutt variable of the modelZ,) is given as a

function of several (and some uncertain) paramétexs the input variables of the model) [3]:

3/5
Z.=Z,+ Q (5)
K, 0B/(Z,-2,)/L

where:

— Q is the yearly maximal water discharge’(s);
— Z.,and Z, are the riverbed levels (m asl) at the upstreamdmwehstream part of the river

under investigation, respectively;

— K, is the Strickler friction coefficient;



— B andL are the width and length of the river part (m)pexgively.
The input variableare classified as follows:
— ConstantsB =300m, L = 5000m.

— Uncertain variablesQ, Z_,Z,,K..

3.2. The input variables: physical description and reprsentation of the

associated uncertainty

The input variables are affected by aleatory andteic uncertainties. The aleatory part of the
uncertainty is described by probability distribuisoof defined shape (e.g., normal, exponential, ...).
The parameters of the probability distributionsaliésng the aleatory uncertainty are themselves
affected by epistemic uncertainty representedrimseof possibility distributions.

In this Section, a detailed description of the utaie input variables is given together with the

explanation of the reasons underlying the choidebheir description by probability and possibility

distributions. In particular, in Section 3.2.1, thearly maximal water flonQ is discussed; in
Section 3.2.2, the upstream and downstream rivelegls Z . and Z, are presented; finally, in

Section 3.2.3, the Strickler friction coefficieKt, is described.

3.2.1. The yearly maximal water flow, Q

The Gumbel distributionGun’(q|a,,8) is a well-established probabilistic (aleatory) rabdor
maximal flows [3]:

Gun(q|a,,[>’):%ex;{— ex;{ql_gaﬂ ex;{a;q} (6)

The extreme physical bounds on variaQleare [3]:




- Q. =10m¥s;
- Q,, =10000m%s.
The parametere and £ in (6) are affected by epistemic uncertainty; heere a large amount of

data (i.e., 149 annual maximal flow values) is E@de for performing statistical inference on them.

In particular, the point estimatgg, and iz, and the corresponding standard deviatiopsand &,

have been obtained for the parametersand S of the Gumbel distribution (6) by performing
maximum likelihood estimations with the 149 dataaitable: the method has provided

f, =1013m%s, j1, = 558m%s, &, = 48m°/s and G, = 3@n%s [3]. Since a large amount of data
(i.e., 149) has been used for performing statistickerence ona and S, then the epistemic
uncertainty associated to them is mainly of “stai#d nature”. As a consequence, a probabilistic
treatment of this epistemic uncertainty has beepgsed in the original paper [3]: in particular,
4,)=N(101348) and

and B have been chosen to be normally distributed, ae: p“ (a) = N(,[/

B~p’(B)=N(f;,6,)= N(55836) [3].

In the present paper, the Gumbel shape of theoajeptobability distributions (6) is retained but
the epistemic uncertainty on the parameters iesgmted in possibilistic terms: this allows deftnin

a family of probability distributions (properly boded by plausibility and belief functions) that
guantifies the expert’'s lack of knowledge about treameters themselves and, thus, his/her

inability to select a single probability distribomti for them. To do so, the normal probability

distributions p?(a )and p? (B ) used in [3] are transformed into the possibiliitsytltibutionsn"(a)

and 77°() by normalization, i.e.ﬂ”(a):%, ﬂﬁ(ﬁ):% [16]. The supports of

the possibility distributions7®(ar) and 77°(B) are set to[i1, -&,, i1, +5,]=[965 1061 and



|, -6, i1, +6,|=[523594], respectively, according to the suggestions by T3ie possibility

distributions 777 (@) and 77°(/3) are shown in Figure 1, left and right, respectivel

Figure 1

Notice that in the present paper, the choice afisfiming probability density functions into
possibility distribution bynormalization has been made arbitrarily, for the sake of sintglic
accepting that the resulting possibility distrilom$ do not in general adhere to the probability-
possibility consistency principle [51]; other teajunres of transformation of probability density
functions into possibility distributions exist, e.the principle of maximum specificity [52] andeth

principle of minimal commitment [53].

3.2.2. The upstream and downstream riverbed levelsZ,, and Z,

The minimum and maximum physical bounds on varabfe, and Z, are Z_ ... = 535m,

m,min

Z, . =48m, Z =57mandZz, . = 5In, respectively [3].

v,min m max vV max

Normal distributions truncated at the minimum anaximum physical bounds have been selected

in [3] to represent the aleatory part of the uraiety, i.e.,Z, ~ N(i,,,,0,,) andZ,~ N(u,,,0,,).

An amount of 29 data has been used in the referpaper [3] to provide the point estimates
[, = 5503m, i, = 5019m, J,,, = 045m, J,, = 038m for parametergy,,., i, , O,, andg,,,
respectively, by means of the maximum likelihootinestion method. However, according to [3]
there is large uncertainty about the shape of todgbility distributions ofZ  and Z,: as a

consequence the authors embrace a conservativelétweti framework, using the maximum

likelihood estimation method to provide also stadd#eviations as a measure of the uncertainty on



A

the point estimateg,,, i,,, 0,, and d,,: in particular,&, =008, 6, = 007, J,

Oz

=006
and 5% = 005 Using this information, the authors in [3] moddle epistemic uncertainty

associated to the parameters,,, M, 0,, and o, Dby normal distributions, i.e.,

m

A A

Hzm™ N(ﬂZmﬁﬁZm)’ Hzy~ N(ﬂZV’OA-/}Z\/)’ Ozm™ N(UZm’UﬁZm) and g, ~ N(OA-ZV’OA-&D/)'

In this paper, the shapes of the aleatory proltghistributions forZ , and Z,, i.e., N(,uZm,aZm)
and N(/JZV,JZV), are kept unaltered with respect to those of ¢§8j;the contrary, the information
produced by the maximum likelihood estimation metlom parametergs, ., i, 0., ando,, ,
i.e., the point estimateg,,,, i, J,,, 0, and the corresponding standard deviations , J,_,

0. ,0

Ozm Oz’

is used to build possibility distributions fay,, i, 0,, and g,, by means of the

Chebyshev inequality [54], [55]. The classical Cysdtev inequality [54], [55] defines a bracketing

approximation on the confidence intervals arounel known meanu of a random variablé,

knowing its standard deviatiom . The Chebyshev inequality can be written as fadliow
P(Y - 1/ <ko)21-L for k=1 7
,u‘ <ko|z P ork=1. (7)

Formula (7) can be thus used to define a possildigtribution 7 that dominates any probability

density function with given mearnu and standard deviatioro by considering intervals

1

[-ko, u+ko| as a-cuts of n and letting 7r{u - ko) = m{u + ko) = o

=qa . This possibility

distribution defines a probability familg"“(71) which has been proven to contain all probability
distributions with mearu and standard deviatioo, whether the unknown probability distribution
function is symmetric or not, unimodal or not [54].

In this case, the point estimatés, ., i, 0,, and d,, produced by the maximum likelihood
estimation method, are used in (7) as the meatisegéarametergs,,,, ., , 05, and g,,, whereas

0'52

the errorsﬁﬁ , O
Zm

2,0 05, andd, —associated to the estimatgs,,, [;,, 0,, and g, are used in

10



(7) as the standard deviations of the parametgfrs (., 0,, and g,, in order to build the

corresponding possibility distributiong”~, >, m’~and °~; the supports of the possibility

A

distributions are obtained by extending two tintes standard deviatioc“rﬁzm, o

Bz O

Oz

~andg;

in both directions with respect to the estimaigs, i, 0, andd,, (Figures 2 and 3).

Figure 2

Figure 3

3.2.3. The Strickler friction coefficient, Ks

The Strickler friction coefficienK is the most critical source of uncertainty becatigeusually a
simplification of a complex hydraulic model. Thesatute physical limits oK are [a, b] = [5, 60]

3].

The friction coefficientK, is affected by random events modifying the riviatiss (e.g., erosion):
the corresponding variability is typically descibley a normal distribution, i.eK ~ N(,UKS,UKS)
[3]. However, the mean valug,. of this normal distribution is difficult to measubecause data

can only be obtained through “indirect calibratwraracterized by significant uncertainty”: in [3]

this is reflected in a “very small set of five dateailable with + 15% noise”. The sample mean

and standard deviatiod,, of these five pieces of data equal 27.8 and Jea#vely. In order to

reflect the imprecision generated by the indireeasurement process, the “minimal sample mean

., = 2363 and the “maximal sample mean = 319@re also calculated under the

max

conservative hypothesis that all measurementsiasedin the same direction [3]. Moreover, since

the small sample size adds a non-negligible “stetisepistemic uncertainty” to the valugs,

11



and /..., as described in [3] the 70% confidence boundszgn and . are also computed as

A A

I -9 =223 and I - ks = 333, respectively. In [3], these considerations resulthe

V5 V5

following uncertainty quantification foK,:

K~ N(/'IKS'UKS)'

A

~ Ogs

: - - 0,
with o, =d,, =3 and 1, D{U- -k =
S S S min \/g max \/g

} =[ 223333]. 8)

In this paper, the shape of the aleatory probagbdistribution of K, i.e., N(,UKS,JKS) in (8) is
retained; however, differently from the originalpea, a possibility distribution is associatedug .
In particular, a trapezoidal possibility distribwti is here proposed: the support is chosen to be

A

JKS Iy JKS

’ max+_
5 Hm s

information is provided concerning the most likeblues of . exploiting the available data set:

[a,b]:{ﬂmm— }:[223,33.3] as in (8): however, in this paper additional

in particular, since the core of the trapezoidaltrhution contains the most likely values of the

parametery,, in this case it is set IEE d] = {ﬂmin _%n&max +%} = [26.5, 29.1], l.e., the interval

obtained by adding/subtracting to the sample mgan=27. (wl8ch isassumedo be themost
likely value for y,.) the “statistical” epistemic uncertainty due to e sample size (i.e., the

quantity%) (Figure 4).

Figure 4

A final remark is in order with respect to the aggwhes considered in this work for constructing

possibility distributions. The construction of tpessibility distribution obviously depends on the

12



information available on the uncertain parametenemnv a probability distribution is originally
available a corresponding possibility distributicen be generated by resorting to the probability-
possibility transformations available in the opéarature, e.g., the normalization method (like in
the present case), the principle of maximum spsgifor that of minimal commitment [29], [52],
[53]; when the mean and the standard deviatioh@fpiarameter distribution can be estimated, e.g.,
by means of empirical data, the Chebyshev inequakin be used; finally, when the absolute
physical limits and the most likely value(s) of tlparameter are available, a triangular or

trapezoidal possibility distribution can be constedl.

4. Application

In this Section, the hybrid method described inti8a2 is applied with the procedure in Appendix
A to hierarchically propagate probabilistic and fib8istic uncertainties through the model of
Section 3.1, in a “two-level” framework. The resultbtained by the hybrid approach are compared
to those produced by i) a traditional one-levelepprobabilistic approach, where the parameters of
the aleatory probability distributions are fixedokvn values (only for illustration purposes, Section
4.1), ii) a MC-based DS-IRS approach, where thesipddy distributions are encoded into discrete
sets that are randomly and independently sampletM@yand iii) a two-level (or double loop)
Monte Carlo (MC) approach, where the parameterthefaleatory probability distributions are

uncertain and themselves described by probabilstyidutions (Section 4.2).

4.1. Comparison of the “two-level” hybrid Monte Carlo and possibilistic

approach with a one-level pure probabilistic approah

Only for illustration purposes, the following orevl pure probabilistic model has been considered

for comparison:

13



Q~Gun(f,, ;) = Gun{1013558), (9)

Z. ~N(it,,,, 6,,, )= N( 5503 045), (10)
Z,~N(i1,,, 6,,)=N(5019,038), (11)
Ko~ N (s, ;) =N(2783), (12)

where the parameters of the probability distribngicare defined in Sections 3.2.1 — 3.2.3: in

particular, the parameters fQ, Z,, and Z, correspond to their maximum likelihood estimated a

the parametery, . of K, is the sample mean of the five available pieceslaih obtained by

neglecting measurement uncertainty.
Figure 5 shows the comparison of the cumulativ&idigion functions of the maximal water level

of the river (i.e., the output variable of the mbdé,) obtained by the one-level pure probabilistic

approach (solid line) with the belief (lower dashmdve) and plausibility (upper dashed curve)
functions obtained by the hybrid Monte Carlo andgoilistic approach in a “two-level” setting
(Section 2 and Appendix A).
It can be seen that:
= the hybrid approach propagates the uncertainty dparaiting the aleatory and epistemic
components; this separation is visible in the outfstributions of the maximal water level
of the river where theeparationbetween the belief and plausibility functions eets the
imprecision in the knowledge of the possibilistarameters of the probability distributions;
= the uncertainty in the output distribution of the&rep probabilistic approach is givemly by
theslopeof the cumulative distribution;
= as expected, the cumulative distribution of the imax water level of the river obtained by
the pure probabilistic method is within the bebefd plausibility functions obtained by the
hybrid approach.

Figure 5

14



4.2. Comparison of the “two-level” hybrid Monte Carlo and possibilistic
approach with the MC-based DS-IRS and two-level (dable loop) MC

approaches

In this Section, the following approaches are aderg@d and compared in the task of hierarchically
propagating aleatory and epistemic uncertaintiesimwo-level” framework:
i.  the hybrid Monte Carlo (MC) and possibilistic apgeb of Section 2 and Appendix A;
ii. the Monte Carlo (MC)-based Dempster-Shafer appr@awploying Independent Random
Sets (IRSs) (Appendix B);
iii. atwo-level (double loop) MC approach (Appendix C):

a. assuming independence between the epistemicalleriame parameters of the
aleatory probability distributions. This choice hbhsen made to perform a fair
comparison with the MC-based DS-IRS approach, wkisBumes independence
between the epistemically uncertain parametersApeendix B);

b. assuming total dependence between the epistemigatigrtain parameters of the
aleatory probability distributions. This choice hbhsen made to perform a fair
comparison with the hybrid MC and possibilistic egach, which implicitly assumes
by construction total dependence between the episadly uncertain parameters
(see Section 2 and Appendix®A)

It is worth noting that the representation of egnsic uncertainty here used in the MC-based DS-

IRS approach entirely relies on thpossibilistic representation described in Section 3.2 and

2|t is important to note that the condition of {a¢pistemic (or state-of-knowledge) dependence eetwparameters of
risk models is far from unlikely. For example, cinles the case of a system containing a numbghgsically distingt
but similar/ nominally identicacomponents whose failure rates are estimated ansef thesame data sein such
situation, the distributions describing the undetia associated to the failure rates have to besidenedtotally
dependenf56], [57].

15



employed by the hybrid MC and possibilistic approdwwever, in order to tailor this possibilistic
representation to the DS framework, the possibdistributions of Section 3.2 adBscretizedinto
focal sets (or intervals), each of which is assignedabability mass: the reader is referred to
Appendix B for some details.

In addition, notice that the probability distributis here used in the two-level MC approach@qr

Z_ and Z, and for the corresponding epistemically uncerf@anameters are the same as those

proposed in the original paper by [3] (and recaite&ection 3.2.1 and 3.2.2); the only exception is

represented by the probability distribution fpy,, which for consistency and coherence of the

comparison is here obtained by normalization ofttapezoidal possibility distribution described in

Section 3.2.3 and shown in Figure 4, g% (£4) = ¢ 7 (M) .
[ (pa,) ity
Table 1 summarizes the characteristics of the agbes i. — iii. used in the following to propagate

aleatory and epistemic uncertainties in a “two-leframework.

Table 1

The following comparisons are considered: approathat represent in tlrsameway the epistemic
uncertainty (i.e., in terms of probability or pdsbity distributions) but assumadlifferent
relationships (i.e., dependence or independendejela the epistemically uncertain parameters are
compared in Section 4.2.1 (in particular, comparssare performed between approaches iii.a and
iii.b above and between approaches i. and ii. aheueh comparisons are made to study the effect
of the state of dependencbetween the epistemically uncertain parametershef aleatory
probability distributions when a probabilistic/nprebabilistic representation of epistemic

uncertainty is givenn approaches assuming theame dependence relationship between the

16



epistemically uncertain parameters but employihifferent representations of the epistemic
uncertainty are compared in Section 4.2.2 (in paldr, comparisons are performed between
approaches ii. and iii.a above and between appesacland iii.b above): such comparison are made
to study the effect of the probabilistic/non-proltisbc representationsof the epistemically
uncertain parameters of the aleatory probabilisgrdiutions when thetate of dependendetween

the epistemically uncertain parametergiigen Table 2 summarizes the comparisons carried out in

the present paper together with the correspondapecbves.

Table 2

A final consideration is in order with respect he tanalyses performed in the present paper. Only
two extremestates of dependence between the epistemicallyrtantgarameters of the aleatory
Probability Distribution Functions (PDFs) are hetensidered: in particular, independence
(methods ii. and iii.a) and total dependence (mithio and iii.b) are assumed betweadh the
uncertain parameters of the PDFsadif the aleatory variables. On one side, the choicthese
extreme conditions serves the purposstodngly highlighting the effects of epistemic dependence
between the uncertain parameters, which allowsvidericlear indications and guidelines for the
application of the different approaches in riskeassnent problems. On the other side, such (strong)
assumptions of independence or total dependenceebetall the epistemically uncertain
parameters may not be realistic in cases of padinterest, like the one analyzed in the present
paper. Referring to the previous Section 3.2, i ¢& seen that the possibility distributions
describing the uncertainty in the parameters oRDE&s of the four aleatory variabl®s Z,, Z, and

Ks are estimated based on falistinct data sets (i.eqne data set foeachaleatory variable). This
has two implications: (1) when the PDF ofgaven aleatory variable containgiore than one

uncertain parameter (which is the casefZ, andZ,), such parameters atetally dependent
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between each other (for example, the location patar and the scale paramejenf the PDF of
variableQ are totally dependent between each other bechageauncertainty is estimated based on
the samedata set); (2) the uncertain parameters of the BDR given aleatory variable are
epistemicallyindependenwith respect to the parameters of the PDFs obther aleatory variables
(for example, the location parameterand the scale parametgrof the PDF of variabl&€) are
independent from the meas, and the standard deviatieg, of the PDF of variabl&,, because

their uncertainty is estimated basedan differentdata sets).

4.2.1. Studying the effect of the state of dependence beten the epistemically uncertain

parameters of the aleatory probability distributions

We start by comparing approaches iii.a and iiidowe, i.e., two-level MC assuming independence
and total dependence between the uncertain parmnetspectively: the upper and lower

cumulative distribution functions of the model outpi; obtained by approaches iii.a and iii.b are

shown in Figure 6.

Figure 6

In this case, assuming total dependence betweennbtertain parameters is shown to lead to a

smaller gap between the upper and lower cumulaisteibution functions of the model outpif,

than assuming independence. This can be easilpierpl by analyzing the input-output functional

relationship of the model (5): it can be seen tra of the input variables (i.eQ) appears at the
numerator, whereas others (i.&, and Z,,) appear at the denominator, and another one appear
both at the numerator and at the denominator €g). In such a case, the highest possible values

for the model outpuZ_ are obtained with aombinationof high values oboth Q and Z, (i.e.,
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high values of the corresponding uncertain pararsete S, i, ando,,) andlow values oboth
K, and Z_, (i.e., low values of the corresponding uncertanametersy,., 0., Uy, andog,,);
conversely, the lowest possible values for the rhodgput Z_ are obtained with a combination of
low values of bothQ and Z, and high values of botK  and Z . These extreme situations (which

give rise to the largest separation between thesiuppd lower cumulative distribution functions,
i.e., to the most “epistemically” uncertain and,ghconservative case), can be obtained only in case
iii.a above, i.e., assuming independence betweerpgstemically uncertain parameters. Actually,
if a pure random sampling is performed among inddpat uncertain parameteld] possible
combinationsof values can be in principle generated, sinceethtée ranges of variability of the
uncertain parameters can be explored independehtlg; in some random samples, high values of

Q and Z, may be combined by chance with low values of bthand Z_, whereas in other
random samples low values of bofh and Z, may be combined by chance with high values of
both K, and Z . Conversely, such “extreme” situations cannot odtthere is total dependence

between the uncertain parameters (i.e., casealiidve). Actually, in such a case high (low) values

of both Q and Z, canonly be combined with high (low) values of boky, and Z ,, giving rise to
values of outpuZ_ which are lower (higher) than the highest (lowesiysible: in other words, the

separation between the upper and lower cumulatistilalition functions produced in case iii.b is

always smallethan that produced by the “extreme” situationscdbed above (which are possible

onlyin case iii.a).

A final, straightforward remark is in order. The nstlerations made above about what
combinations of parameter values would lead tontlmst conservative results (i.e., to the largest
gap between the upper and lower cumulative digiohufunctions) are strictly dependent on the
input-output relationship considered: obviously, ddferent model (with different functional

relationships between inputs and outputs) wouldiireglifferent combination®f input values in
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order to obtain the most conservative results.@xample, for the hypothetical model=(x* y)/ z
the most conservative results (i.e., the largegarsgion between the upper and lower cumulative
distribution functions) would be obtained by impugtotal dependence betweex and y and

oppositedependence betweenand bothx andy.

We now move on to compare i. and ii.. Figure 7 shtlwe plausibility and belief functions of the

model outputZ, produced by the MC-based DS-IRS method (casand) by the hybrid MC and

possibilistic approach (case i.).

Figure 7

The results are very similar because, in the ptesase, the effect of the different dependence
relationships between the epistemically uncertaramenters is not evident. This may be explained
as follows. In general, the closer the shape opthesibility distribution of a parameter is to tloét

a rectangle, defined over a given support, thedrighe epistemic uncertainty associated to that
parameter (actually, if a parameter is represehyed rectangular possibility distribution, the only
information available about the parameter is ititerval where it is defined, i.e., we atetally
ignorantabout its distribution). It can be easily seert ththe state of knowledge of many of the
epistemically uncertain parameters is close to tifatotal ignorance, the state of dependence
between them becomes negligible. By way of exanmgler to the possibility distributions of the

parametersy,,, (Figure 8, left) and8 (Figure 8, right) described in Section 3.2. Sehecthe same

confidence levela =a/~ =af = 05for the two variables (i.e., imposing total depemck
between them) produces the same couple oo€uts than selecting different levels

al=05#a; =01. Notice that this holds for many other combinasioof a values: for

20



example, in this case all combinations wittf ranging between 0 and 0.6 amd“ ranging

between 0 and around 0.25 produce the same colugieuts.

Figure 8

Since, in the present case study the shape of wfatig possibility distributions are quite close to
that of a rectangle (see Figures 1-4), the statdepkendence between the uncertain parameters

scarcely affects the results.

A final consideration is in order with respect be tresults obtained. The first comparison (Figyre 6
shows that in the present case study the two-IB@l approach assuming dependence among
parameters gives rise to a smaller separation leetwes cumulative distribution functions than the
two-level MC approach assuming independence amargngeters: in other words, it can be
considered less conservative. The second compa(fsgure 7) shows that the results obtained by
the hybrid MC and possibilistic approach and the-b#Sed DS-IRS approach are very similar.
Therefore, the state of dependence between theeepially uncertain parameters of the aleatory
probability distributions is more likely to becoraecritical factor (e.g., in risk-informed decisipns

when the representation of the uncertain paramet@r®babilistic.

4.2.2. Studying the effect of the probabilistic/non-probalilistic representation of the

epistemically uncertain parameters of the aleatory pbability distributions

In this Section, we perform comparisons betweenagghes ii. and iii.a and between approaches i.
and iii.b above, i.e., approaches that represeistegpic uncertainty in radically different ways: in

particular, both in hybrid and in MC-based DS-IR8thods, possibility distributions are employed
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which identify afamily of probability distributions for the epistemicallycertain parametérson
the contrary, in the two-level MC approach, onlgiagle probability distribution is assigned to
represent the epistemic uncertainty associatduetparameters.

Figure 9 shows the upper and lower cumulative ibistion functions of the model outpuf,

obtained by the two-level MC approach assumingpedéeence between the uncertain parameters
(case iii.a) and the plausibility and belief functs produced by the MC-based DS-IRS approach

(case ii.).

Figure 9

The results are very similar, which is explainedalews. First of all, there is obviously a strong
similarity between the shapes of the probabilitgtrdbutions of the epistemically uncertain
parameters used in the two-level MC approach (¢éasg and the corresponding possibility
distributions used in the MC-based DS-IRS approgmse ii.f. For example, the ranges of
variability of the uncertain parameters are the esdor both the probability and the possibility
distributions considered (see Section 3.2.1-3.2r8xddition, some of the possibility distributions

employed in the MC-based DS-IRS approach (e.gsettad parametersr and S of the Gumbel
distribution for Q) are obtained by simple normalization of the ptolity distributions employed
in the two-level MC approach (Section 3.2.1); fipathe trapezoidal probability distribution used

in the two-level MC approach for the Strickler fran coefficient K, is also obtained by simple

® Remember that in the MC-based DS-IRS approachptesibility distributions are discretized into focsets
(Appendix B).
* As before, notice that this comparison is fairdaee both methods assume independence betweepisterécally

uncertain parameters.
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normalization of the trapezoidal possibility dibtrtion proposed in the present paper and shown in
Figure 4 of Section 3.2.3.

In addition to the similarity between the probalgiland possibility distributions considered, the
second motivation for the similarity between theutes lies in the assumption of independence
between the epistemically uncertain parametersratite characteristics of the two algorithms used
to propagate the uncertainties. In the two-level &proach, a plain random sampling is performed
from the probability distribution of the epistemgauncertain parameters, which are considered
independent: as a consequence of this independang&jnciple all possiblecombinationsof
values of the parameters can be sampled, sincentire ranges of variability of the parameters are
exploredrandomlyandindependentlyln the MC-based DS-IRS approach, the focal setegated

by the discretization of the possibility distribaris are selectagindomlyandindependentiyoy MC
(step 2. of the procedure in Appendix B); in adufitiall the focal sets selected are exhaustively

searched to maximize/minimize the model output.

As a final comparison, Figure 10 shows the upper lawer cumulative distribution functions of

the model outpuZ_ obtained by the two-level MC approach assumingl tdependence between

parameters (case iii.b) and the hybrid MC appro@ase i.) (which assumes total dependence

between parameters).

Figure 10

From the consideration made above it is clear wiey dap is smaller between the cumulative

distributions in the two-level MC approach assumintpl dependence between the uncertain

parameters (case iii.b) than between the plausikaind belief functions produced by the hybrid
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approach (case 1.)Actually, in case iii.b only a limited set of cbimations of uncertain parameter
values can be randomly explored, whereas in cageisame confidence level is chosen to build
thea-cuts for all the possibility distributions of thkacertain parameters (step 3. of the procedure in

Appendix A). Then, the minimum and maximum valuestted model outputZ, are identified

letting the uncertain parameters ramggependentlyvithin the corresponding-cuts (step 3. of the
procedure in Appendix A): thus, contrary to theecaisb, once a possibility level is selectedall
possiblecombinationsof parameter values can be explored, sincextbets of all the parameters

are exhaustivelysearched to maximize/minimize the model out@it (giving rise to a larger

separation between the plausibility and belief fioms).

A final remark is in order with respect to the lswbtained. Since in this case the hybrid MC and
possibilistic approach gives rise to a larger sa&fjp@mn between the plausibility and belief functions
than the two-level MC approach (assuming total ddpace between the epistemically uncertain
parameters), it can be considemadre conservativeAs a consequence, embracing one method
instead of the other may significantly change thecame of a decision making process in a risk
assessment problem involving uncertainties: thisfiparamount importance in systems that are
critical from the safety view point, e.g., in thectear, aerospace, chemical and environmental
fields. On the contrary, since the results obtaibgdthe two-level MC approach (assuming
independence among the epistemically uncertainnpetears) and the MC-based DS-IRS are very
similar, embracing one method instead of the oteuld not change significantly the final
decision.

In conclusion, it is worth highlighting that whemete is total dependence between the epistemically

uncertain parameters, a probabilistic representaifoapistemic uncertainty may fail to produce

> As before, notice that this comparison is fair daee both methods assume total dependence between t

epistemically uncertain parameters.
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reliable and conservative results, which raises @ws from the point of view of safety. A

guantitative demonstration of this statement i€giin what follows.

The final goal of the uncertainty propagation igletermine i) the dike level necessary to guarantee
a given flood return period or ii) the flood risirfa given dike level.

With respect to issue i) above, the quantity oérest that is most relevant to the decision maker i
the 99% quantile oZ_, i.e., Z>*, taken as the annual maximal flood level. Thigegponds to the

level of a “centennial” flood, the yearly maximahter level with a 100 year-return period. With
respect to issue ii) above, the quantity of intetieat is most relevant to the decision maker & th

probability that the maximal water level of theaivZ, exceeds a given threshole®*, i.e.,

P(ZC > z*); in the present reporz* = 55.5 m as in [3]. Table 3 reports the Iowérflfv’ver) and

upper @2~.) 99" percentiles obtained from the two limiting cumivlatdistributions and the

corresponding LowerBounc{Zczz*) and UpperBouncﬁZczz*). In addition, as synthetic

mathematical indicators of the imprecision in tm®kledge ofZ_ (i.e., of the separation between

the lower and upper cumulative distribution funesy the following percentage widths have been

reported:
7099 _ 7099
. W, = c,up;;;ro.gg clower f the interval [Zc?fjgver’zc?t?gper] with respect to the percentilzgﬁ?ob
c,prob

obtained by the pure probabilistic approach of iBact.1;

_ UpperBoundZ, > z*) - LowerBoundZ, > z*)

o W*
P(z, = z*)

of the interval

prob

099

[LowerBoundz, = z*),UpperBoundZ, = z*)] with respect to the percentilez2%,

obtained by the pure probabilistic approach of iBact.1.

Table 3
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The considerations previously reported are confitntigere is a similarity between the values of the
indicators relative to the hybrid MC and possibitisapproach (case i.), to the MC-based DS-IRS
approach (case ii.) and to the two-level MC appnoassuming independence among the uncertain
parameters (case iii.a); on the contrary, theeesgnificant difference between these indicato a
those produced by the two-level MC approach assurutad dependence between the uncertain
parameters (case iii.b). In particular, as anttegabefore, one consideration concerning the
comparison between the hybrid approach and theléwal-MC considering total dependence is
worth to be done. Analyzing, for instance, the ambty that the maximal water level of the river

Z_ exceeds the thresholt¥ = 55.5 m,P[ZC >z = 555], it can be seen that the hybrid approach is

much more conservative than the two-level MC apghoassuming total dependence between

parameters: in fact, for instance, the upper boumid%[zc > z*] are 0.0241 and 0.0111 for cases i.

and ii.b, respectively. Thus, in this case the obkehe two-level MC approach would lead to

underestimating by about 54% the probability that tnaximal water level of the rivet, exceeds

the thresholdz* = 55.5 m: in other words, it would lead to undéreating by about 54% the
“failure probability” of the dike and, at the sartiime, the flood risk. The same consideration holds

for the dike level necessary to guarantee a 106rgdarn period represented by the 99% quantile
Z2>* of the water level of the river; for example, thgper bounds oZ>*° are 56.03m and 55.50m

for cases i. and ii.b, respectively. Thus, alsdhis case the use of the two-level MC approach
would lead to a slight underestimation of the dieel necessary to guarantee a 100 year flood
return period. Therefore, even if the two-level M@proach purposedly tries to separate variability
from imprecision, differently from the hybrid appah, it treats lack-of-knowledge in the same way
as it treats variability (i.e., using probabilitisttibutions): as a consequence, in some caseg\it

fail to produce reliable and conservative resuliijch can raise great concerns from the safety

point of view: in particular, in the present casedy, the two-level MC approach leads to less
26



conservative results when total dependence betwleenepistemically uncertain parameters is
assumed. This leads to conclude also that whest#ite of dependence between the parameters is
not knownto the analyst (which is far from unlikely in pt@e), a non-probabilistic representation

of epistemic uncertainty may represent the “safeistice.

5. Discussion of the results

The analyses performed in the previous Sectiomdeasummarized as follows:
1. a comparison between the hybrid method and thelews-pure probabilistic approach,
highlighting that:

 the hybrid method explicitly propagates the undetya by separating the
contributions coming from the aleatory and epistewvairiables;

» the uncertainty in the output distribution of thergp probabilistic approach is given
only by theslopeof the cumulative distribution;

* as expected, the cumulative distribution of the ehamltput obtained by the pure
probabilistic method is within the belief and plaoiigy functions obtained by the
hybrid approach,;

2. comparisons between the hybrid, MC-based DS-IRS\andevel MC approaches with the
following objectives:

a. the study of theffect of dependendetween the epistemically uncertain parameters
of the aleatory probability distributions when aolpabilistic/non-probabilistic
representatiorof epistemic uncertainty edopted

» the comparison between two-level MC approaches naiggu total
dependence and independence between the parametspectively, has

shown that in the case study considered assumipgndence between the
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parameters leads to a smaller gap between the @moefower cumulative
distributions of the model output, i.e., to lesssmmwative results;

* the comparison between the MC-based DS-IRS andichgpproaches has
shown that the plausibility and belief functionsogwmced by the two
approaches are similar: in other words, the hybradhod is not significantly
influenced by the total dependence between thetegpisally uncertain
parameters, due to the large uncertainty thatsscated to the parameters in
the case study considered.

Based on the considerations above, it can be arthadthe state of dependence
between the epistemically uncertain parameters hod aleatory probability
distributions is more likely to become @itical factor (e.g., in risk-informed
decisions) when the representation of the uncep@iameters iprobabilistic

b. the study of theeffect of the probabilistic/non-probabilisticepresentation of
epistemic uncertainty when ttate of dependend®tween parametersdefined

» the comparison between the MC-based DS-IRS appraadhthe two-level
MC approach assuming independence between theemitstly uncertain
parameters has shown that in the case study coedidee upper and lower
cumulative distribution functions of the model outguwoduced by the two
approaches are similar. This is due to i) the stremilarity between the
shapes of the possibility and probability distribns of the epistemically
uncertain parameters used in the MC-based DS-IRS tandevel MC
approaches, respectively, ii) the independenced®ivthe parameters and iii)
the similar characteristics of the two algorithmsedisto propagate the

uncertainties;
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» the comparison between the hybrid and the two-IM@lapproach assuming
total dependence between the parameters has shawihé gap between the
plausibility and belief functions of the model outguoduced by the hybrid
approach is larger than the gap between the upperl@ver cumulative
distribution functions produced by the two-level Mi@&thod. This is due to
both the different representations of epistemic emiainties and to the
characteristics of the two algorithms used to pgapa the uncertainties.
Actually, in the hybrid method the epistemic unaery on the parameters is
represented by possibility distributions definingfamily of probability
distributions; on the contrary, in the two-level Mdpproach only a&ingle
probability distribution is selected to represdrg epistemic uncertainty on a
parameter. As a result, the two algorithms promagtite uncertainty
differently: in the hybrid method, axhaustiventerval analysis is performed
for different a-cuts of the possibility distributions, whereastl® two-level
MC method a plainrandom sampling is performed from the probability
distribution of the uncertain parameters: the teisulhat the hybrid approach
is able to explore a larger set of combinationsirmtertain parameter values
than the two-level MC approach (assuming dependanteng parameters),
thus producing more conservative results. This haen quantitatively
confirmed by way of the risk model for the desigradlood protection dike
through the computation of i) the dike level neeeg$o guarantee a 100 year
flood return period and ii) the flood risk for avgn dike level. In fact, both
guantities have been underestimated by the twd-IBM@ approach with

respect to the hybrid approach.
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Based on the considerations above, it can be arghetl a probabilistic
representation of the epistemically uncertain patans of the aleatory probability
distributions mayail to produceaeliable andconservativeesults when there tstal
dependencéetween the uncertain parameters, which raisesecos from the point
of view of safety.
The findings gained by the comparisons performe8iantion 4 are summarized in Table 4 for the
sake of clarity.

Table 4

6. Conclusions

In the present paper, we performed the joint hodmaal propagation of hybrid probabilistic and
possibilistic uncertainty representations onto @dl risk-based design model in a “two-level”
framework. The results obtained have been compartd those produced by a one-level pure
probabilistic approach, a MC-based DS-IRS appr@aaha two-level (double loop) MC approach
with the objective of studying the effects of (in)dependencéetween the epistemically uncertain
parameters of the aleatory probability distributioaad (ii) probabilistic/non-probabilistic
representation®f epistemic uncertainty. To the best of the arghknowledge, this is the first time
that the above mentioned methods are systematicattypared with reference to risk assessment
problems where hybrid uncertainty is separatedtimtohierarchical levels.

The findings of the work show that adopting differanethods for jointly propagating hybrid
uncertainties may generate different results andsiblys different decisions in risk problems
involving uncertainties: this is of paramount imjaoce in systems that are critical from the safety
viewpoint, e.g., in the nuclear, aerospace, chdmitad environmental fields.

In particular, it seems advisable to suggest tifafothing is known about the dependence

relationship between the epistemically uncertairapeters, one should resort to the hybrid MC
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and possibilistic approach or to the MC-based DS-Hpproach because their risk estimates are
more conservative than (or at least comparableéhtmge obtained by the two-level MC approach
assuming dependence (or independence) betweemistergically uncertain parameters: thus, a
non-probabilistic representation of epistemic utaiety represents in general a “safer” choice than

a probabilistic one.
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Appendix A: operative procedure for the propagationof aleatory and

epistemic uncertainty in the hybrid MC and possibiistic approach

The operative steps for the propagation of hybnobgabilistic and possibilistic uncertainty in a

“two-level” framework are the following:
1. sample a matrix{u‘j}, 1=12--,m, j=212---,k, of random numbers from a uniform
distribution U[0,1);
2. seta =0 (outer loop processing epistemic uncertainty);

3. select the a-cuts A% A’ .. A’  of the possibility distributions

z" (0;) ={nﬂlvl(6?j,l), 7246, )t (ijmi)} of the parameter®, ={6,,,6,,,...,6, ., |, of

“im,
the “probabilistic” variablesY,,Y,,...Y,.....Y,, and thea-cuts AS™ Ay .. A} of the
possibility ~ distributions {775 (Y1), 77 (Yieug Joeer T (¥ )ren T (y,)}  OF the “purely

possibilistic”  variables, Y,.;,Y., .., ....,Y,, as intervals of possible values

le,a’Eiﬂ]:{le,l,aigi,lyaJ1[Qj,2,a151,2,aj ----- le,ml,mgi,mﬂa]}’ j=12--,k, and b/|’a1§/|,aj,
| =k+1Lk+2---,n, respectively;
4. seti = 1(inner loop processing aleatory uncertainty);

5. sample the —th random intervalsb/ija,?j’aj, j =12k, of the “probabilistic” variables

Y., =212k, corresponding to the a-cuts leya,E,-,a]=

]
{I.Qj‘lya,gj,l,aj, le,zva,é,-,z,aJ,.., le‘mﬂa,gj,mj,aJ} (found at step 3. above) and to theth

random vecto{u;, U ,...,U; ,...,u;} (generated at step 1. above). In particular, ith¢h
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random interval ij,?j’aJ for Y, =12k, IS calculated by

y. = inf_ FYfl(uij |0j) andy,, = sup FYJfl(u‘j 10,), where FYzl(EI}Hj) is the inverse

=J.a ﬂjD[fj‘aﬂj,a] ] 0jE[70jva,0,-,a]
of the cumulative distribution functiorcdf) ij (E]]Hj) of Py, (E]]b?j); by way of example,
Figure A.1 shows the procedure for sampling ithgh random intervalljj a,y}ya] for the

generic uncertain variablé .

. calculate the smallest and largest values t(f(l LAY AR A SV AP ,...,Yn),

denoted by f 'a and Ta respectively, letting variable¥; range within the intervals
Izij,a'yijﬂj’ j=112---,k, and letting variablesy,, | =k+L1k+2---,n range within
b’|,a’9l,a]’ | =k+1LKk+2:--,n; in particular,

£l = inf {\ 2 A7 ) and

T g o - i
YAy LYY, )

oY Yer Yers Y Y

n

= sup FY Y, Y Y Vg e Y, ).

a . B j
YO, Y YT, oYl

. take the valuesfa and ?a found in 6. above as the lower and upper limitshefa-cut of

f(Y1 Yo e e Yo Yians Yiag oeedY] Y) in correspondence of thei—-th random

n
realization of the aleatory uncertainty;

. if i#m, then set =i +1 and return to step 5. above; otherwise go to $té&elow;
. if a#1, then seta =a +4da (e.g.,4a = 005 and return to step 3. above; otherwise, stop

the algorithm: the fuzzy random realization (fuzayterval) 7z, i=122---,m of
Z = £(Y,Y,,....Y,) is constructed as the collection of the valtiéas and ?a, i=12---,m,
found at step 6. above (in other wordg, is defined by all its-cut intervalsliia,?aj).
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It is worth noting that performing an interval ays$ ona-cuts assumes total dependence between
the epistemically uncertain variables. Actuallyistprocedure implies strong dependence between
the information sources (e.g., the experts or ofess)y that supply the input possibility
distributions, because the same confidence levelis chosen to build the-cuts for all the

epistemically uncertain variables [15].

Finally, by way of example and only for illustratiqourposes, in Figure A.1 the procedure for
sampling thei —th random intervalll/ij’a,y‘j’a] for the generic uncertain variab¥ is shown. Let
us suppose that the probability distribution¥ofis normal with paramete®, ={6, .6, .} ={x.0};

the meanu = 6,, is represented by a triangular possibility disttibn with corec = 5 and support
[a, b] = [4, 6] and the standard deviatian=¢, , is a fixed point-wise value=6, , = M With
reference to the operative procedure outlined abavmossibility valuea (e.g.,a = 0.3 in Figure

A.1, left) is selected and the correspondingut for 1= 6, , is found, i.e.,kla,ﬁaj= [Qj’m,é_?jym] =

[4.3, 5.7] (see step 3. of the procedure aboveg TGlmulative distribution functionsk:(,Y]J are

constructed using the upper and lower valuesuofie., 4 =86,,, =43 and £, :ﬁi’m =57
(Figure A.1, right); then, a random numbﬁr(e.g., ul = 0.7 in Figure A.1, right) is sampled from

a uniform distribution in [0,1) and the intervalll/ija,y‘j,a] is computed as

i, Flu1o,) S Rl 1o, )} = Lqipaf,%] R, (U 10), 3P o Iu)} -

inf  F(07|u), sup F*(07] ,u)} =[64,7.8 (see step 5. of the procedure above).
] J

| HO[4357] i {0[4357

Figure A.1
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Appendix B: operative procedure for the propagationof aleatory and
epistemic uncertainty in the Monte Carlo-based Demgter-Shafer

approach employing independent random sets

In the MC-based DS-IRS approach, the possibilistrdiutions employed in the hybrid MC and

possibilistic method (Appendix A) are encoded idiscrete (focal) sets as follows:

i.  determineq (nested) focal sets for the generic possibiligidable/parameteY as thea-

cuts A, :b/m,yalj, t=12, .., qwtha =1>a,>..>a,>a,, =0;

ii.  build the mass distribution of the focal sets bsigingm, =4a, =a, -a,,,.

In particular, in the case study of the work présénin this paper,q = 20 and
m, =4a, =4a = 005, for the sake of comparison with the hybrid MC gussibilistic approach
described in Section 2 and Appendix A and appire8ection 4.

The operative steps for the propagation of aleatorg epistemic uncertainty in a “two-level”

framework according to the MC-based DS-IRS appraaelthe following

1. seti, = 1(outer loop processing epistemic uncertainty);

“ajyip’t,ma”pv‘):t = 12,...,q=20}:“aj ,i,,,l’maw,l)'(aj ,ipyz,ma”pvz) ""’(aj,ip,qzzo'mai,‘,,,qm”

={(2,005) ( 095005) ,...(0,005)}; these sampled values represent thdevels of the
focal sets of the discretized possibility distribns
z (0].):{nﬂivl(ejll),n‘%f(H}.z),...,ﬂemi (6? )} of the parameter®), ={6,,,0,,,...0,,, } of

i T

the “probabilistic” variables Y,,Y,,....Y;,....Y,. Then sample the values{ali"},

® The reader is referred to Section 2 and AppendiarAhe notation used.
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l=k+1 k+2,..,n, from the discrete distribution
{ (a,,t,mau):t =12..,9=20={(a ., mam), (a,’z,mau )o@ gmzon ma‘w)}:{ (1,005),

( 095005) ,...(0,005)}; these sampled values represent thdevels of the focal sets of
the discretized possibility distributiong" (Y,,), 77 (Vs )see s 7T (Y ) 7T (Y,,) OF the
“purely possibilistic” variables,Y,,,, Y., ,..Y ,...,Y,. Notice that, differently from the

hybrid MC and possibilistic approach (Appendix A&)different valuea is randomlyand
independently sampled for each epistemically uncertain parameteable, i.e.,
independences assumed between the epistemically uncerta@npeters/variables;

. on the basis of thea levels sampled at step 2., select the random fcedb
2 1 9;‘2 gwm, H— —_

A A A 15120 k, for the parametersd, —{6?],1,9],2,...,9j’m]} and the

random focal sets Al'jijl,Al'jijz,...,A”iﬂ for the “purely possibilistic” variables

aﬂ

Yot Yers seeeY yees Yo as intervals of possible values

[Qi,a;".‘p ’Ei'ai‘?pJ:{le,la‘,‘fuéiMlﬂ]'[Qj,z,a‘,",z ’51’2*’1‘5J ’---’lgj,mﬂa‘ﬁmj 'gi’mw"‘ﬁm, J} j=12-k,
and Ilﬁ,a;a Y/m] | =k+1k+2---,n, respectively;

. perform the same steps 4. — 8. (inner loop proegsaieatory uncertainty) as in the
procedure of Appendix A to obtaifi'" and T, i=12--,m,i,=12--,m, as the
upper and lower limit off(Yl Y, ,...,Yn) in correspondence of the-th random realization

of the aleatory uncertainty and of the—th random realization of epistemic uncertainty;

. if i, #m,, then seti, =i, + land return to step 2.; otherwise, stop the algoritthe
random setsE"" :If‘i”,?'i”], i=12--,m, i,=12--,m, of Z=f(Y, Y,,..Y,) are

obtained with the collection of the valuds™ and T i=12,m, i, =12-,m,,
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found at step 5. above. A probability manéii'i”)z , IS associated at each random

m,*m
setE"" .

For each setA contained in the universe of discoutde of the output variabl& , it is possible to

obtain the belieBel(A) and the plausibilityPl(A Yor any sefd, respectively [14], [15]:

Bel(A) = Zm(E“a) (B.1)
PI(A)= > m(E"") (B.2)

Appendix C: two-level Monte Carlo method

Let us consider a model whose output is a functibr f(Y1 Yo Y Y,

] n

) of n uncertain
variablesY;, j =12.--,n, that are “probabilistic”, i.e., their uncertaingydescribed by probability
distributions Py, (Y1 10.), P, (Y2 16,),..., Py, (Y; 10; )i Py (Vi [64) with parameters
0,=16,,.6,, 6,0}, §=12,n; the parameter§g; : j = 12+, n} are themselves described
by probability distributionsp” ;) :{ ph: (Hj ,1), pfe (H]. 2) pg“”' (Hj,m,)}- By way of example, let

Y ~N(u,0)=N(0)=N(4,6,) and the paramete={ 6,,6,} ={ i, o} have a normal distribution

with known mean and variance, i.6,,= t/~ N(,uﬂ,aﬂ) and@, =0~ N(,ug,ag)7.

"1t is worth noting that in the following, for easd notation, the entire set of epistemically umaier parameters

{ej,l’ej,Z’""gj,ml}i j=12---,n, is “condensed” into a single vectof 2{91,6’2 O = A

Mo

{, with

n, = ij , and the corresponding probability distributions re a referred to as
j=1

{p*(8).0*(8,).0%(6,)..0" (6, )}
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In such a case, the propagation of uncertaintybeaperformed by a two-level Monte Carlo (MC)

technique, which is constitued by the following tmain steps [2], [4]:

MC sampling of the parameters affected by epistemmicertainty (outer loop processing
epistemic uncertainty);

repeated MC sampling of possible values of the “gbaistic” variables from the
corresponding probability distributions conditionatl the values of the epistemically

uncertain parameters sampled at step i. abover(ioop processing aleatory uncertainty).

In more detail, the operative steps of the procede:

1.

2.

seti, =1 (outer loop processing epistemic uncertainty);

sample a vecto{rki“} , k=12,---,n, of uniform random numbers in [0,1)( is the total

n
number of epistemically uncertain parameters, ngx ij );
j=1

identify the i, —th set of random realization@fj, k=212---,n_, of the epistemically

p!

using the random vectd,”,r,’ ,...,r" ,...,r"}

.y np

uncertain parameterg), k=12.---,n,

sampled at step 2. above. In particular, the vaffieis calculated byd’ :[ng]_l(rki”)

k=12---,n,, Where[F & ]_1 is the inverse of the cumulative distributiéf of p*;

seti =1 (inner loop processing aleatory uncertainty);

sample a vecto{uij}, j =12,---,n, of uniform random numbers in [0,1);
identify the i —th set of random realization:yij’i”, j=212:---,n, of the “probabilistic”
variablesY;, j =12---,n, using the random vectdu,,u, ,...,u; ,...,u,} sampled at step 5.

above and the random realizatiord%, k=122---,n , of the epistemically uncertain

p?

parameters sampled at step 3. above. In partictir, value 3/]’“’ is calculated by
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y." :FYJfl(uij |«9,l"), j=12---,n where FY]fl(EI]H,L") is the inverse of the cumulative
distribution F, (7167 ) of p, (@) (notice thatp, (767 ) is the probability distribution of

", i, _ . . .
Y, conditioned at the value§’, k=12,---,n_, of the epistemically uncertain parameters

6., k=212---,n , sampled at step 3. above;

p,
. calculate the valug™ of the model outpuZ as 2" = f(y",,",...¥," .., );

. if i #£m, then seti =i +1 and return to step 5.; otherwise, build the empircumulative

distribution function IfipZ for Z using them values of 2" = (yil’i”,yiz’i",...,yij‘i",...,yL'i”),
i=12---,m, obtained performing steps 5. - 7.: in other worég Is the empirical
cumulative distribution function of the model outpZi when the epistemically uncertain
parameterss,, k =12,---,n_, are set to the value&’ , k=12,---,n,.

. it iy #m,, then set, =i + Jand return to step 2.; otherwise, stop the algoritthe output

of the algorithm is a set ofm, empirical cumulative distribution functions

{If.z i = 12,...,mp} for the model outpuZ . This set{lfipZ iy = 12,...,mp} have to be

p
post-processed in order to obtain the upper an@d@umulative distribution functions for

Z: Figure C.1 shows an example mf, =  &0Omulative distribution functions (solid lines)

produced by the two-level MC approach together lih corresponding upper and lower

cumulative distribution functions (dashed lines).

Figure C.1
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The operative steps of the two-level MC method dieed above assume independence between the

epistemically uncertain parameters: actually, #wedom vectofr,”,r,’ ..., ,...,r.’} sampled at

step 2. above is such thgt #zry #...#1r* #...Zr"; on the contrary, in case of total dependence,

the conditionr,” =r, =...=r =...=1," have to be imposed (Figure C.2).

Figure C.2

45



FIGURE CAPTIONS

Figure 1.Possibility distributionsn"(a') (left) and nﬂ(ﬁ) (right) of the parameteks andf of the Gumbel probability

distribution (6) of the maximal water flo® [m%s], obtained by normalization of the probabilitgtdbutions p° (a)
and p”(pB) proposed in [3]

Figure 2 Left: possibility distribution/7“" of g, constructed using Chebyshev inequality (7) V\frgm= 55.03 and
O,

= 0.08. Right: possibility distributiomz™ of o, constructed using Chebyshev inequality (7) Wﬁ‘gm =0.45
andg,, =0.06

g,

Figure 3 Left: possibility distribution77> of ,, constructed using Chebyshev inequality (7) with = 50.19 and

,, = 0.07. Right: possibility distributiom” of o,, constructed using Chebyshev inequality (7) vﬁ‘QV: 0.38 and
g,,=0.05

Figure 4 Trapezoidal possibility distribution function ftire parametey, . with support §, b] = [22.3, 33.3] and core
[c,d] =[26.5, 29.1]

Figure 5.Comparison of the cumulative distribution functithe maximal water level of the riv&g obtained by a

one-level pure probabilistic approach (solid liméth the belief (lower dashed curve) and plausipilupper dashed

curve) functions obtained by the “two-level” hybibnte Carlo and possibilistic approach of Secflon

Figure 6.Comparison of the upper and lower cumulative iistion functions of the maximal water level of teer

Z. obtained by the two-level Monte Carlo approacmsidering both independence and total dependerieeée the
epistemically uncertain parameters

Figure 7.Comparison of the cumulative distribution funcsasf the maximal water level of the riv&yrobtained by the
Dempster-Shafer method and the hybrid method
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Figure 8.Left: possibility distribution,77°™(1s,,,) , of the parameters, of the probability distribution of the variable

Z_ (Section 3.2.2); right: possibility distributionz” (8) , of the parametef3 of the probability distribution of the

variable Q (Section 3.2.1)

Figure 9.Comparison of the cumulative distribution functiaighe maximal water level of the rivég obtained by the
Dempster-Shafer method and the two-level Monteddathod assuming independence between the epistigmi

uncertain parameters

Figure 10.Comparison of the cumulative distribution functiamithe maximal water level of the rivEg obtained by
the hybrid method and the two-level Monte Carlohodtassuming total dependence between the epistiymic

uncertain parameters

Figure A.1 Left: triangular possibility distribution of theeanu of the normal probability distribution &f ~N(u, 4) =

N(#); in evidence the-cut of levela = 0.3 [Q ém,]: M ,pa]=[4.3, 5.7]. Right: cumulative distribution functi®mof

jla?

Y; built in correspondence of the extreme valyes= 43 and 7z, = 57 of theo-cut |y ,z,| of p. The random interval

[X‘i a,y;,a] (corresponding to the uniform random num|n¢|= 0.7) is found using the inverse transform method

Figure C.1. m,=10 cumulative distribution functionEAipZ , 1, =12,...,m_, (solid lines) produced by a two-level MC

approach together with the corresponding uppefd@mdr empirical cumulative distribution functiorgaShed lines)

Figure C.2.Left: random sampling of realizations of the unair parameterg8, andé , assuming total dependence;

right: random sampling of realizations of the umaier parameterg;, andd, assuming independence
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TABLES

Epistemic uncertainty
representation

Method

Epistemic uncertainty
propagation

State of dependence
between the epistemically
uncertain parameters

Hybrid MC and

possibilistic (i) Possibility distributions

Fuzzy interval analysis

otdl dependence

Focal sets with associated
probability masses (discretizati
of possibility distributions)

MC-based DS-
IRS (ii.)

Random sampling (of

1=
>

discrete focal sets) by MC

Independence

Two-level MC

(ii.) Probability distributions

Random sampling (of
probability distributions)

by MC

Independence (iii.a) / Tota

dependence (iii.b)

Table 1.Characteristics of the approaches consideredojoagate aleatory and epistemic uncertainties twa-fevel”

framework
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State of dependence between the
epistemically uncertain parameters

Independence

Total dependenc

@D

Obijective

Representation
of epistemic
uncertainty

possibilistic (i.)

Study the effect of the stgte
Probabilistic TWO'!?VeI MC VS Two-_l_gvel MC = of dependence between the
(iii.a) (iii.b) epistemically uncertain
parameters of the aleatofy
VS VS probability distributions
when a probabilistic/non
& .
Non-probabilistic Mc_bazie()j DS'IR"vs Hybrid MC and = probabilistic representatign

of epistemic uncertainty i
given

UJ

4

4

Objective

Study the effect of the probabilistic/non
probabilistic representation of the
epistemically uncertain parameters of t
aleatory probability distributions when th

state of dependence between the
epistemically uncertain parameters is gi

ne
e

en

Table 2.Comparisons performed between the different ames and their relative objectives
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AR P[Z.>55.5]
Method (Pure probabilistic value = | (Pure probabilistic value =
55.34) 0.0076)
lz 099 099 I W [%] [LowerBound, W * [%]
c,lower » < c,upper Zc UpperBound]
Hybrid MC and possibilistic
(gé 4l depen denr::e) (case )| (5479, 56.03] 2.2 | [0.0024,0.0241] 286
MC-based DS-IRS
(independence) (case i, [54.82, 56.23] 2.6 [0.0014, 0.0334] 423
TWO"e"e'((':\gge('i'i‘idae)pe”dence [54.56, 56.06] 2.7 | [0.0013,0.0293] 368
Two-level MC (total
dependence) (Cése i b) [54.05, 55.50] 0.8 [0.0042, 0.0111] 91

Table 3.Comparison of the lower and upper valueZgbercentiles and threshold exceedance probabbiigined by
the three methods analyzed; the respective pegemiathsW of the intervals are also reported. All valuesiare

meters
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State of dependence between the
epistemically uncertain parameters

to a
DFsS

d

the

of

General:
-A probabilistic representation of the

probability distributions mafail to produce
reliable ancconservativeesults when there is
total dependencketween the uncertain
parameters, which raises concerns from the p

epistemically uncertain parameters of the aleator

Total -
Independence dependence Findings
Method (iii.a) vs (iii.b):
-In the case study considered, assuming
é\ o dependence between the parameters leads
'3 k7 smallergap between the upper and lower CI
5 = Two-level MC Vs Two-level MC > of the model output, i.e., tess conservative
2 S (iii.a) (iii.b) results
o | £ Method (i) vs (ii):
g -The plausibility and belief functions producs
% by the two approaches asenilar: in other
'GEJ. words, the hybrid method it significantly
5 VS VS influencedby the total dependence between
< epistemically uncertain parameters
S g General:
% § MC-based Hybrid MC and 5 -The state I(I)f depend_ence between tr}eh
5 | e DS-IRS (i) VSl possibilistic (i) epistemically uncertain parameters of the
& S aleatory probgplllty dlstnbutlon_s is more like
o to become aritical factor (e.g., in risk-
z informed decisions) when the representatior
the uncertain parameterspobabilistic
v v
IMethod (ii) vs (iii.a):
-In the cases study considered, the upper and
lower CDFs of the model output produced by the
two approaches asgmilar
[Method (i) vs (iii.b):
-The gap between the plausibility and belief
functions of the model output produced by the
" hybrid approach ifarger than the gap between
=) the upper and lower CDFs produced by the two-
'-g level MC method
[

0int

of view of safety

Table 4.Comparisons performed between the different ames and their relative findings
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure A.1
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Figure C.1
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Figure C.2
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