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In general, two types of dependence need to be considered when estimating the probability of the Top Event (TE) of a Fault Tree (FT): 'objective' dependence between the (random) occurrences of different Basic Events (BEs) in the FT and 'state-of-knowledge' (epistemic) dependence between estimates of the epistemically-uncertain probabilities of some BEs of the FT model.

In this paper, we study the effects on the TE probability of objective and epistemic dependences. The well-known Frèchet bounds and the Distribution Envelope Determination (DEnv) method are used to model all kinds of (possibly unknown) objective and epistemic dependences, respectively.

For exemplification, the analyses are carried out on a FT with six BEs. Results show that both types of dependence significantly affect the TE probability; however, the effects of epistemic dependence are likely to be overwhelmed by those of objective dependence (if present).

INTRODUCTION

In Fault Tree Analysis (FTA) [START_REF] Henley | Probabilistic risk assessment[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF]Risk-Informed Decision Making Handbook[END_REF][START_REF] Epstein | Can we trust PRA? Reliability Engineering & System Safety[END_REF][START_REF] Cepin | Analysis of truncation limit in probabilistic safety assessment[END_REF] , limiting relative frequency probabilities are typically used to describe aleatory uncertainty and subjective probabilities to describe epistemic uncertainty 1 (2, 6-14) . Recently, it has been argued that a probabilistic representation of epistemic uncertainty is difficult to justify in those cases in which the analysis is carried out based on insufficient knowledge, information and data. To overcome this hurdle, a number of alternative nonprobabilistic representation frameworks have been proposed [START_REF] Aven | On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability[END_REF][START_REF] Aven | Interpretations of alternative uncertainty representations in a reliability and risk analysis context[END_REF][START_REF] Aven | The concept of ignorance in a risk assessment and risk management context[END_REF][START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF][START_REF] Ferson | Whereof one cannot speak: when input distributions are unknown[END_REF] , e.g., fuzzy set theory [START_REF] Klir | Fuzzy Sets and Fuzzy Logic: Theory and Applications[END_REF][START_REF] Tanaka | Fault tree analysis by fuzzy probability[END_REF][START_REF] Liang | Fuzzy fault tree analysis using failure possibility[END_REF][START_REF] Huang | Posbist fault tree analysis of coherent systems[END_REF][START_REF] Yuhua | Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis[END_REF][START_REF] Ferdous | Methodology for computer aided fuzzy fault tree analysis[END_REF][START_REF] Misra | A new method for fuzzy fault tree analysis[END_REF][START_REF] Soman | Fuzzy fault tree analysis using resolution identity and extension principle[END_REF][START_REF] Suresh | Uncertainty in fault tree analysis: A fuzzy approach[END_REF] , possibility theory [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Possibility theory and statistical reasoning[END_REF][START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF] , hybrid combinations of probability and possibility theories [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baraldi | A Combined Monte Carlo and Possibilistic Approach to Uncertainty Propagation in Event Tree Analysis[END_REF][START_REF] Flage | Handling epistemic uncertainties in fault tree analysis by probabilistic and possibilistic approaches[END_REF][START_REF] Flage | Possibility-probability transformation in comparing different approaches to the treatment of epistemic uncertainties in a fault tree analysis[END_REF] , Dempster-Shafer (DS) theory of evidence [START_REF] Limbourg | Fault tree analysis in an early design stage using the Dempster-Shafer theory of evidence[END_REF][START_REF] Limbourg | Modelling uncertainty in fault tree analyses using evidence theory[END_REF][START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Helton | A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[END_REF][START_REF] Helton | Representation of Analysis Results Involving Aleatory and Epistemic Uncertainty[END_REF][START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] and interval analysis [START_REF] Ferson | Arithmetic with uncertain numbers: rigorous and (often) best possible answers[END_REF][START_REF] Ferson | Sensitivity in risk analyses with uncertain numbers[END_REF][START_REF] Ferson | Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty[END_REF][START_REF] Ferson | Bounding uncertainty analyses[END_REF][START_REF] Moore | Methods and Applications of Interval Analysis[END_REF] .

To describe the epistemic uncertainty in the probabilities (chances) of the Basic Events (BEs) of a Fault Tree (FT) model, here we use possibility distributions and DS structures, together with probability distributions. The epistemic uncertainties are then propagated onto the probability (chance) of the Top Event (TE) by resorting to the general and comprehensive framework of DS theory of evidence [START_REF] Limbourg | Fault tree analysis in an early design stage using the Dempster-Shafer theory of evidence[END_REF][START_REF] Limbourg | Modelling uncertainty in fault tree analyses using evidence theory[END_REF][START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Helton | A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[END_REF][START_REF] Helton | Representation of Analysis Results Involving Aleatory and Epistemic Uncertainty[END_REF][START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] .

Dependence may exist among some BEs of the FT model [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] . In particular, two types of dependence need to be considered. The first type relates to the (dependent) occurrence of different (random) BEs (in the following, this kind of dependence will be referred to as 'objective' or 'aleatory'). An example of this objective (aleatory) dependence may be represented by the occurrence of multiple failures which result directly from a common or shared root cause (e.g., extreme environmental conditions, failure of a piece of hardware external to the system, or a human error): they are termed Common Cause Failures (CCFs) and frequently affect, e.g., identical components in redundant trains of a safety system [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Usnrc | Procedure for analysis of common-cause failures in probabilistic safety analysis[END_REF][START_REF] Usnrc | Common-cause failure database and analysis system: event data collection, Classification, and coding[END_REF][START_REF] Zio | Computational Methods for Reliability and Risk Analysis[END_REF] ; another example is that of cascading failures, i.e., multiple failures initiated by the failure of one component in the system, as a sort of chain reaction or domino effect [START_REF] Zio | Computational Methods for Reliability and Risk Analysis[END_REF][START_REF] Watts | [END_REF][START_REF] Guimerà | Dynamical Properties of Model Communication Networks[END_REF][START_REF] Sansavini | A deterministic representation of cascade spreading in complex networks[END_REF][START_REF] Zio | Modeling interdependent network systems for identifying cascadesafe operating margins[END_REF][START_REF] Zio | Component Criticality in Failure Cascade Processes of Network Systems[END_REF] . The second type refers to the dependence possibly existing between the estimates of the epistemicallyuncertain probabilities (chances) of some BEs of the FT model (in the following, this kind of dependence will be referred to as 'state-of-knowledge' or 'epistemic'). This state-ofknowledge (epistemic) dependence exists when the probabilities (chances) of some BEs are estimated by resorting to dependent information sources (e.g., to the same experts/observers or to correlated data sets) [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Apostolakis | Pitfalls in risk calculations[END_REF] .

In this context, the aim of the present paper is to systematically analyze and quantify the effects of objective (aleatory) and state-of-knowledge (epistemic) dependences between the BEs on the TE probability (chance). In more details, the following analyses are performed:

1. the study of the effects of different states of objective dependence between the BEs when the state of epistemic dependence between the BE probabilities (chances) is defined. In this analysis the well-known Frèchet bounds [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Fréchet | Généralisations du théorème des probabilités totales[END_REF][START_REF] Frank | Best-possible bounds for the distribution of a sum-a problem of Kolmogorov[END_REF][START_REF] Sadiq | Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis[END_REF] are used to model the full range of objective dependences here of interest;

2. the study of the effects of different states of epistemic dependence between the BE probabilities (chances) when the state of objective dependence between the BEs is given. In this analysis the Distribution Envelope Determination (DEnv) method [START_REF] Berleant | Bounding the results of arithmetic operations on random variables of unknown dependency using intervals[END_REF][START_REF] Berleant | Representation and problem solving with Distribution Envelope Determination (DEnv)[END_REF][START_REF] Berleant | Using Pearson correlation to improve envelopes around the distributions of functions[END_REF][START_REF] Berleant | Statool: a tool for distribution envelope determination (DEnv), an interval-based algorithm for arithmetic on random variables[END_REF][START_REF] Berleant | Arithmetic on Bounded Families of Distributions: A DEnv Algorithm Tutorial[END_REF] is undertaken in order to account for all kinds of (possibly unknown) epistemic dependences between the BE probabilities (chances).

To keep the analysis simple and thus retain a clear view of each step, the investigations are carried out with respect to an example involving a FT with six BEs; different numerical indicators are considered to perform a fair and quantitative comparison between different states of objective and epistemic dependence and evaluate their effects on the TE probability (chance).

The work benefits from the efforts that have already been done to address objective and stateof-knowledge dependences in FTA. In [START_REF] Vaurio | Treatment of General Dependencies in System Fault-Tree and Risk Analysis[END_REF][START_REF] Vaurio | Consistent mapping of common cause failure rates and alpha factors[END_REF][START_REF] Karanki | Quantification of uncertainty in fault tree analysis with correlated basic events[END_REF] objective dependencies between BEs are treated by means of alpha factor models within the traditional framework of Common Cause Failure (CCF) analysis. In [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] and [START_REF] Sadiq | Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis[END_REF] the use of Frank copula and Pearson correlation coefficient is proposed to describe a wide range of objective dependences between the BEs. In [START_REF] Li | Hierarchical Risk Assessment of Water Supply Systems[END_REF] and [START_REF] Ferdous | Fault and Event Tree Analyses for Process Systems Risk Analysis: Uncertainty Handling Formulations[END_REF] (fuzzy) dependency factors are employed to model dependent BEs. In [START_REF] Zhang | A general method dealing with correlations in uncertainty propagation in fault trees[END_REF][START_REF] Zhang | A method dealing with correlations in uncertainty propagation by using traditional correlation coefficients[END_REF][START_REF] Rushdi | Uncertainty propagation in fault tree analyses using an exact method of moments[END_REF][START_REF] Kafrawy | Uncertainty analysis of fault tree with statistically correlated failure data[END_REF] state-ofknowledge dependences between the BE probabilities (chances) are described by traditional correlation coefficients and propagated by the method of moments. In [START_REF] Karanki | Quantification of uncertainty in fault tree analysis with correlated basic events[END_REF] and [START_REF] Karanki | Uncertainty analysis in PSA with correlated input parameters[END_REF] statistical epistemic correlations are modeled by resorting to the Nataf transformation [START_REF] Huang | A robust design method using variable transformation and Gauss-Hermite integration[END_REF] within a traditional Monte Carlo Simulation (MCS) framework [START_REF] Kalos | Monte Carlo methods. Volume I: Basics[END_REF][START_REF] Marseguerra | Basics of the Monte Carlo Method with Application to System Reliability[END_REF] . Finally, in [START_REF] Karanki | Uncertainty Analysis Based on Probability Bounds (P-Box) Approach in Probabilistic Safety Assessment[END_REF] the Dependency Bound Convolution (DBC) approach is undertaken to account for all kinds of (possibly unknown) epistemic dependences between the probabilities (chances) of correlated BEs.

The remainder of the paper is organized as follows. In Section 2, the methods employed in this study to model objective and state-of-knowledge dependences in FTA are described; in Section 3, the FT studied is presented; in Section 4, the results of the application of the methods of Section 2 to the FT of Section 3 are shown; finally, Section 5 offers some discussions and conclusions.
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where the symbols ' ind ∩ ' and ' ind ∪ ' denote the conjunction and disjunction of independent events, respectively.

If events B 1 and B 2 are perfectly dependent (i.e., B 1 ⊂ B 2 or B 2 ⊂ B 1 ), the occurrence of one event (e.g., failure of Component 1 in Figure 1) implies the occurrence of the other (e.g., failure of Component 2 in Figure 1) (i.e., ( )
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where the symbols ' perf ∩ ' and ' perf ∪ ' denote the conjunction and disjunction of perfectly dependent events, respectively. Examples of perfect dependence can be found in many engineered systems. For example, some components may be subject to the same maintenance strategy and suffer a common mistake in the procedure, or may experience the same history of environmental conditions leading to failure. Such shared life conditions may make failures of components close to be perfectly dependent events [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Usnrc | Procedure for analysis of common-cause failures in probabilistic safety analysis[END_REF][START_REF] Usnrc | Common-cause failure database and analysis system: event data collection, Classification, and coding[END_REF] . The importance of this state of dependence can be understood with reference to the simple parallel system of Figure 1, left: if Components 1 and 2 were perfectly dependent, the failure of only one component would lead to the failure of the entire parallel system.

Finally, if events B 1 and B 2 are oppositely dependent, the occurrence of one event minimizes the likelihood of occurrence of the other. In this case, ( ) given by ( 5) and (6), respectively [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Sadiq | Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis[END_REF] :
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where the symbols ' opp ∩ ' and ' opp ∪ ' denote the conjunction and disjunction of oppositely dependent events, respectively. An example of opposite dependence may be represented by the series of a fuse wire (e.g., Component 1 in Figure 1, right) and an electronic device (e.g., Component 2 in Figure 1, right). In case of overcurrent, failure of the fuse wire (event B 1 )

prevents failure of the electronic component (event B 2 ); thus, the joint failure of both components might be better modeled by events that are oppositely dependent than independent.

When no information at all about the state of objective dependence between events B 1 and B 2 is available, precise estimates for ( ) (  )
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respectively, can be obtained by means of the classical Frèchet inequalities [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Fréchet | Généralisations du théorème des probabilités totales[END_REF][START_REF] Frank | Best-possible bounds for the distribution of a sum-a problem of Kolmogorov[END_REF][START_REF] Sadiq | Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis[END_REF] : 
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where functions

2 1 B B perf g ∩ , 2 1 B B perf g ∪ , 2 1 B B opp g ∩ and 2 1 B B opp g ∪
are defined in (3)-( 6) and the symbols ' ukn ∩ ' and ' ukn ∪ ' denote the conjunction and disjunction of events whose state of objective dependence is completely unknown, respectively. As stated in [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] , it is worth mentioning that i) ( ) and( ) 8) are "bounds on all possible cases of objective dependence" (because they include by construction dependences ranging from opposite to perfect) and ii) they represent the "best possible bounds in the absence of information about objective dependence, i.e., they could not be any tighter without excluding some possible objective dependences" [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] .
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Finally, if the analyst is able to say something about the sign of objective dependence, then

Frèchet bounds ( 7) and ( 8) can be tightened. In particular, if B 1 and B 2 are positively dependent, i.e., the occurrence of one event favors the occurrence of the other, then ( ) ( ) (  )
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are obtained by ( 9) and (10), respectively [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Sadiq | Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis[END_REF] :
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On the contrary, if B 1 and B 2 are negatively dependent, then bounds ( )
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Modeling state-of-knowledge (epistemic) dependences between the probabilities (chances) of the basic events

In all generality, let us assume that:

i. events B 1 and B 2 are linked to an event Z of interest by the generic logical connection '1' (e.g., '1' may stand for ' ∩ ', ' ∪ ', …);

ii. the state of objective dependence between events B 1 and B 2 is defined and indicated as '1 obj ': for example, if there is positive objective dependence between B 1 and B 2 , then the subscript 'obj' stands for 'pos' (see the previous Section 2.1);

iii. the probability (chance) P(Z) of the event Z = (B 1 1 obj B 2 ) of interest is obtained as for P(B 1 ) and P(B 2 ), respectively: in particular, ( ) ( )
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; in the same way, ( ) ( ) can be easily transformed into a DS structure: approaches for transforming probability distributions can be found in [START_REF] Regan | Equivalence of five methods for bounding uncertainty[END_REF] and [START_REF] Tonon | Using random set theory to propagate epistemic uncertainty through a mechanical system[END_REF] , whereas techniques for transforming possibility distributions can be found in [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF] . 
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n . For illustration purposes, again let B 1 and B 2 be the events of failure of Components 1 and 2, respectively, of the simple parallel system of Figure 1 left, and P(B 1 ) and P(B 2 ) the corresponding probabilities (chances): then, the probability (chance) P(Z) of failure of the parallel system of Figure 1 left is the probability (chance) of the conjunction

Z = (B 1 2 obj B 2 ) of B 1 and B 2 .
For the sake of simplicity, we also suppose that B 1 and B 2 are (objectively) independent events (i.e., 'obj' = 'ind'): in such a case, P(Z) is given by the product of P(B 1 ) and P(B 2 ), i.e., P(Z) = ( ) ( ) ( ) 

( ) ij Z P A , i = 1, 2, …, 1 B n , j = 1, 2, …, 2 B
n , thereby obtained have to be determined based on the state of epistemic dependence between the estimates of ( )

1 B P and ( ) 2 B P
. Three conditions of epistemic dependence are often encountered in risk assessment problems and, thus, considered in this paper: i) independence (Section 2.2.1), ii) total (perfect) dependence (Section 2.2.2) and iii) unknown dependence3 (Section 2.2.3).

Independence

If the distributions describing the epistemic uncertainty associated to ( ) 

ij Z P A m = ( ) ( ) i B P A m 1 • ( ) ( ) j B P A m 2 , i = 1, 2, …, 1 B n , j = 1, 2, …, 2 B
n . Thus, referring again to the example above, it is found that under the assumption of random set independence ('epi' = 'ind') the probability masses of the focal sets ( ) , of the probability (chance) P(Z) of Z = (B 1 2 ind B 2 ) ind are shown in Figure 3, top left.

Total (perfect) dependence

When the same information source is employed to construct the uncertainty distributions for ( )

1 B P and ( ) 2 B P
, then total (perfect) dependence (item ii. above, 'epi' = 'perf') exists between the estimates of ( ) (2, 11) . By way of example, consider the case of a system containing a number of physically distinct, but similar/nominally identical components whose failure probabilities (chances) are estimated by means of the same data set: in such situation, the state of knowledge about these failure probabilities (chances) is exactly the same and, thus, the distributions describing the epistemic uncertainty associated to such failure probabilities (chances) have to be considered totally (perfectly) dependent 4 (2, 11) .

1 B P and ( ) 2 B P
In this paper, such condition is straightforwardly modeled by imposing maximal correlation between the distributions of ( ) (2, 11) . In practice, assuming that the distributions of ( )

1 B P and ( ) 2 B P
1 B P and ( ) 2 B P
are totally (perfectly) correlated implies that when one uncertain parameter (e.g., P(B 1 )) is large with reference to its statistical distribution, then also the other uncertain parameter (e.g., P(B 2 )) is large "to the same degree with respect to its own statistical distribution" [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] . This "empirical" definition suggests the computational strategy for simulating total (perfect) correlation between the distributions of the uncertain parameters ( )

1 B P and ( ) 2 B P : i) choose a set of n B (equally spaced) values 1 i , i = 1, 2, …, n B , within [0, 1)
(e.g., 1 1 = 0, 12 = 0.01, …, 1 nB-1 = 0.99, 1 nB = 1); ii) identify the corresponding focal sets
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respectively (notice that using the same values 1 i for the identification of the focal sets of both ( )
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implies total (perfect) dependence between them) [START_REF] Apostolakis | Pitfalls in risk calculations[END_REF] ; iii) calculate the focal elements
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Referring again to the example above, it is found that under the assumption of total (perfect) epistemic dependence the probability masses of the focal sets ( )

11 Z P A = [0.02, 0.175],
( )

12 Z P A = [0.06, 0.225],
( )

21 Z P A = [0.04, 0.210] and
( ) 

22 Z P A = [0.120, 0.270] obtained by performing steps i)-iv) above are ( ) ( ) 
11 Z P A m = 0.35, ( ) ( ) 12 Z P A m = 0, ( ) ( ) 
21 Z P A m = 0.

Unknown dependence

When the state of dependence between the information sources used to build the distributions of ( )

1 B P and ( ) 2 B P
cannot be defined precisely by the analyst (item iii. above, 'epi' = 'ukn'),

for the sake of conservatism all kinds of (possibly unknown) epistemic dependences between the estimates of ( )

1 B P and ( ) 2 B P
have to be accounted for. In this paper, the Distribution Envelope Determination (DEnv) method [START_REF] Berleant | Bounding the results of arithmetic operations on random variables of unknown dependency using intervals[END_REF][START_REF] Berleant | Representation and problem solving with Distribution Envelope Determination (DEnv)[END_REF][START_REF] Berleant | Using Pearson correlation to improve envelopes around the distributions of functions[END_REF][START_REF] Berleant | Statool: a tool for distribution envelope determination (DEnv), an interval-based algorithm for arithmetic on random variables[END_REF][START_REF] Berleant | Arithmetic on Bounded Families of Distributions: A DEnv Algorithm Tutorial[END_REF] is adopted to this aim. The DEnv method allows computing extreme upper and lower Cumulative Distribution Functions (CDFs) ; these bounds are also the "pointwise best possible, which means they could not be any tighter without excluding some possible dependences" [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] . In practice, the aim of the DEnv approach is to identify the
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for the focal elements
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Z Z P DEnv p F = ( ) ( ) { } Z Z P p F max
) and the lower CDF on P(Z) is the minimal possible (

( ) ( ) Z Z P DEnv p F = ( ) ( ) { } Z Z P p F min
) provided that a precise set of constraints is satisfied (61-65) . In more detail, ( ) ( )

Z Z P DEnv p F and ( ) ( ) Z Z P DEnv p F
are found by solving the following linear maximization (13) and minimization ( 14) problems, respectively:

( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( ) [ ] Z p A A g A ij Z P Z Z P Z Z P DEnv B B ij Z P p A m p F p F n j n i A m Z j B P i B P Z ij Z P ∀ 8 9 8 A B 8 C 8 D E = = = = 1 ≠ ∩ = , max max : ..., , 2 , 1 , ..., , 2 , 1 , Find 0 , 0 , 2 1 2 1 (13) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( ) [ ] 
Z p A A g A ij Z P Z Z P Z Z P DEnv B B ij Z P p A m p F p F n j n i A m Z j B P i B P Z ij Z P ∀ 8 9 8 A B 8 C 8 D E = = = = 1 ⊂ = , min min : ..., , 2 , 1 , ..., , 2 , 1 , Find , 0 , 2 1 2 1 (14) 
subject to the constraints that i) the probability masses

( ) ( ) i B P A m 1 and ( ) ( ) j B P A m 2 are conserved (i.e., ( ) ( ) ( ) ( ) j B P n i ij Z P A m A m B 2 1 1 = 1 = , j = 1, 2, …, 2 B
n , and

( ) ( ) ( ) ( ) i B P n j ij Z P A m A m B 1 2 1 = 1 = , i = 1, 2, …, 1 B n )
and ii) the probability masses

( ) ( ) ij Z P A m
are larger than or equal to zero. For illustration purposes, the values of ( ) ( )

Z Z P DEnv p F = ( ) ( ) 08 . 0 Z P DEnv F and ( ) ( ) Z Z P DEnv p F = ( ) ( ) 22 . 0 Z P DEnv F
are calculated with reference to the example above. In order to calculate

( ) ( ) 08 . 0 Z P DEnv F
by solving maximization problem (13), those focal sets among 

( ) ij Z P A , i = 1, 2, .j = 1, 2, that intersect interval [0, p Z ] = [0, 0.
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( ) { 
A m A m A m F F A m A m A m A m + + = = (15) 
subject to the constraints that i)

( ) ( ) ( ) ( ) 12 11 Z P Z P A m A m + = ( ) ( ) 1 1 B P A m = 0.35, ( ) ( ) ( ) ( 
)

22 21 Z P Z P A m A m + = ( ) ( ) 2 1 B P A m = 0.65, ( ) ( ) ( ) ( 
)

21 11 Z P Z P A m A m + = ( ) ( ) 1 2 B P A m = 0.45, ( ) ( ) ( ) ( 
) 

22 12 Z P Z P A m A m + = ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) { }
A m A m F F A m A m A m A m + = = ( 16 
)
subject to the same constraints as (15). The optimization process leads to ( ) ( ) 

22 Z P A m = 0.35.
Finally, it is worth noting that in order to construct the entire CDFs , of the probability (chance) P(Z) of the conjunction of two (objectively) independent events B 1 and B 2 with probabilities (chances) P(B 1 ) and P(B 2 ) distributed as in Figure 2, under the assumptions of independence (top left), total (top right) and unknown (bottom) epistemic dependence

CASE STUDY

In this Section, we present the example FT used for reference. In Section 3.1, the FT structure and BEs uncertainties are described; in Section 3.2, the different states of (objective and epistemic) dependence between the BEs are summarized; in Section 3.3, the numerical indicators used to quantify the effects of such dependences are provided.

Fault tree structure and basic events uncertainties

A simple FT comprised of n BE = 6 BEs {B i : i = 1, 2, …, n BE = 6} is considered (Figure 4).

BEs B 1 , B 2 and B 3 are linked to event E 1 by junction J 1 (an OR-gate) and BEs B 4 , B 5 and B 6 are linked to event E 2 by junction J 2 (also an OR-gate); finally, events E 1 and E 2 are linked to the Top Event (TE) X by junction J 3 (an AND-gate):

( ) ( ) n BE = 6}, the probability (chance) P(X) of the TE X is expressed in all generality as follows:

6 5 4 3 2 1 2 1 B B B B B B E E X ∪ ∪ ∩ ∪ ∪ = ∩ = (17)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 6 5 4 3 2 1 , , , , , B P B P B P B P B P B P g X P X = , (18) 
where g X (3) is a deterministic function of i) the FT structure (i.e., the logical connections between the BEs) (see Figure 4) and ii) the (possible) objective dependences existing between the BEs (see Sections 2 and 3.2).

It is assumed that ( ) { } I. As an example, B 4 could denote failure of an item (e.g., a protective or automation system, a digital instrumentation and control system, a recently-developed technology, …) for which only sparse pieces of data exist: in such cases, the available information is much more valuable than purely subjective (and often vague) expert judgment, but it is not sufficient for building a precise probability distribution.

( ) ( ) ( ) { } 6 , 1 : , = = i LN p f i i B B P i i σ µ with parameter values {(3 i , 4 i ): i = 1, 6}
( ) ( ) ( ) { } 5 , 3 , 2 : , , , = = i d c b a TRAP p i i i i B B P i i π , with supports {[a i , d i ]: i = 2,
Two different cases are considered: 'large' (Case A) and 'small' (Case B) BE probabilities (chances). In Case A, ( ) { }

6 ..., , 2 , 1 : = = BE i n i B P
are of the order of 10 -1 , whereas in Case B they are of the order of 10 -3 (Table I). For illustration purposes, Figure 5 shows the distributions of ( ) { }

6 ..., , 2 , 1 : = = BE i n i B P
, with reference only to Case B.

( )

B P

Epistemic uncertainty description Probability distribution

Distribution shape

Lognormal, ( ) ( )

1 1 B B P p f = LN(3 1 , 4 1 )

Distribution parameters

Case A 3 1 = -1.6094, 4 1 = 0.3226 Case B 3 1 = -5.8091, 4 1 = 0.6678 ( )

B P

Epistemic uncertainty description Possibility distribution

Distribution shape

Trapezoidal, 

( ) ( ) 2 2 B B P p π = TRAP(a 2 , b 2 , c 2 , d 2 ) Distribution parameters Case A a 2 = 1•10 -1 , b 2 = 1.5•10 -1 , c 2 = 2.5•10 -1 , d 2 = 4•10 -1 Case B a 2 = 2•10 -3 , b 2 = 3•10 -3 , c 2 = 5•10 -3 , d 2 = 8•10 -3 ( )

States of dependence considered

The following states of objective dependence between the BEs of Section 3.1 are considered in the analysis (Section 2.1): a) independence (see ( 1) and ( 2)), b) perfect (see ( 3) and ( 4)), c) opposite (see ( 5) and ( 6)), d) positive (see ( 9) and ( 10)), e) negative (see (11) and ( 12)) and f) unknown dependence (see (7) and ( 8)). In addition, the following states of epistemic dependence between the probabilities (chances) of the BEs of Section 3.1 are considered in the analysis (Section 2.2): i) independence, ii) perfect and iii) unknown dependence.

Two classes of analyses are performed (Section 4):

1. assuming unknown epistemic dependence (iii. above) between the probabilities (chances) of the BEs, the effects of different states (a.-f. above) of objective dependence between the BEs are analyzed;

2. assuming objective independence (a. above) between the BEs, the effects of different states (i.-iii. above) of epistemic dependence between the probabilities (chances) of the BEs are analyzed. objective dependence is assumed between BE B 4 (i.e., an event representing the failure of a protective or automation system) and BE B 5 (i.e., an event dominated by a human error): in real systems, this situation may occur, e.g., when an operator turns off a protection system (event B 4 ) after failing to correctly diagnose the conditions of a plant (event B 5 ).

Finally, in Analysis 2 only 'extreme' situations are considered: in particular, in Configurations T1, T2 and T3 states of independence, total (perfect) dependence and unknown epistemic dependence, respectively, are assumed between all the probabilities (chances) of all the BEs of the FT.

Analysis 1 -Unknown (ukn) epistemic dependence between the probabilities (chances) of the BEs Configuration Events and corresponding states of objective (obj) dependence Cases

Simple configurations: pairs of Basic Events (BEs)

C1 Z = (B 1 ∩ obj B 6 ) ukn obj = ind, perf, opp, ukn (see Section 2.1) A, B C2 Z = (B 1 ∩ obj B 5 ) ukn C3 Z = (B 2 ∩ obj B 5 ) ukn C4 Z = (B 4 ∪ obj B 5 ) ukn C5 Z = (B 2 ∪ obj B 3 ) ukn Top Event (TE) X T1 X = [(B 1 ∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ind B 5 ∪ ind B 6 )] ukn B T2
Positive (pos) objective dependence between B 1 and B 6 T3

X = [(B 1 ∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ukn B 5 ∪ ind B 6 )] ukn T4 X = [(B 1 ∪ ukn B 2 ∪ ukn B 3 ) ∩ ukn (B 4 ∪ ukn B 5 ∪ ukn B 6 )] ukn

Analysis 2 -Objective independence (ind) between the BEs Configuration Events and corresponding states of epistemic (epi) dependence Cases

Simple configurations: pairs of Basic Events (BEs)

C1 Z = (B 1 ∩ ind B 6 ) epi epi = ind, perf, ukn (see Section 2.2) A, B C2 Z = (B 1 ∩ ind B 5 ) epi C3 Z = (B 2 ∩ ind B 5 ) epi C4 Z = (B 4 ∪ ind B 5 ) epi C5 Z = (B 2 ∪ ind B 3 ) epi Top Event (TE) X T1 X = [(B 1 ∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ind B 5 ∪ ind B 6 )] ind B T2 X = [(B 1 ∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ind B 5 ∪ ind B 6 )] perf T3 X = [(B 1 ∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ind B 5 ∪ ind B 6 )] ukn Table III.

Details of the computations performed in Analyses 1 and 2 (Table II). 'Obj' = 'objective'; 'epi' = 'epistemic'; 'ind' = 'independence'; 'perf' = 'perfect'; 'opp' = 'opposite'; 'ukn' = 'unknown'

Quantitative indicators

Two quantitative indicators are here introduced to evaluate the effects that different states of (objective and state-of-knowledge) dependence between the BEs (Section 3. 

[ ] ( ) ( ) ( ) ( ) ( ) ( )] 95 . 0 , 95 . 0 [ , 1 1 95 . 0 95 . 0 - - = Z P Z P Z Z F F p p , (19) where ( ) [ ] 1 
( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] INS Z P Z P INS Z Z Z P E d F F Z P E d d d F F - - - = = 1 0 1 1 1 0 β β β β β , (20) 
where 

( ) [ ] 1 - Z P F and ( ) [ ] 1 - Z P F are defined above; ( ) ( ) ( ) ( ) ( ) ( ) ( ) β β β 1 1 - - - = Z P Z P Z F F d

F

of P(Z) according to the principle of insufficient reason [START_REF] Dubois | On possibility/probability transformations[END_REF] . The sampling procedure for estimating Other methods for transforming the upper and lower CDFs of P(Z) into a (unique) probability distribution are available in [START_REF] Flage | Possibility-probability transformation in comparing different approaches to the treatment of epistemic uncertainties in a fault tree analysis[END_REF][START_REF] Dubois | On possibility/probability transformations[END_REF][START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF][START_REF] Dubois | A definition of subjective possibility[END_REF] .

) ( ) ( ) ( ) ( ) ( )] , [ 1 1 k Z P k Z P u F u F - - , k = 1, 2, …, N INS ; b. sample a random realization INS k Z p , for P(Z) INS from a uniform probability distribution on each interval ( ) ( ) ( ) ( ) ( ) ( )] , [ 1 1 k Z P k Z P u F u F - - , k = 1,
It is worth noting that the quantity Z d (20) provides a measure of the average distance (i.e., separation) between the upper and lower CDFs Finally, notice that the expected value 

( ) ] [ INS Z P E in ( 
( ) ( ) ( ) ( ) ( ) [ ] F - - - 1 0 1 1 β β β d F F Z P Z P
, whose magnitude is obviously dependent on the magnitude of P(Z) and, thus, on the magnitude of the BE probabilities (chances). In this way, such normalization factor allows a fair comparison between values of the distance Z d (20) computed in Cases A and B (Section 3.1), where the BE probabilities (chances) differ by several orders of magnitude.

APPLICATION

In this Section, the methods described in Section 2 for handling dependences in FTA are applied to the example of Section 3. In particular, Section 4.1 contains the results of Analysis (see (7) and ( 8)): however, only for clarity of illustration the corresponding lines in Figure 6 are not overlapped.

Studying the effects of objective (aleatory) dependences between the basic events

We start by analyzing those cases where the BEs are linked by AND-gates, i.e., Z = (B 1 2 obj B 6 ) ukn , (B 1 2 obj B 5 ) ukn , (B 2 2 obj B 5 ) ukn (Configurations C1-C3 in Table III). It can be seen that in Case A the upper bounds ( of the order of 10 -n , then ( )

5 1 B B P ind ∩
is of the order of 10 -2n . Instead, if no assumption at all about the state of objective dependence between B 1 and B 5 can be made, only (extreme and best possible) lower and upper bounds on ( )

5 1 B B P ∩
can be computed as ( )

5 1 B B P ukn ∩ = ( ) ( ) [ ] 5 1 5 1 , B B P B B P ukn ukn ∩ ∩ = ( ) ( ) [ ] 5 1 5 1 , B B P B B P perf opp ∩ ∩ = ( ) ( ) { } ( ) ( ) { } [ ] 5 1 5 1 , min , 0 , 1 max B P B P B P B P - +
(see (7)). In this case, if ( ) III).

Analysis 1 -Unknown (ukn) epistemic dependence between the probabilities (chances) of the

These results confirm the considerations drawn by the analysis of the simple Configurations C1-C5 in Table III III). The value P(X) = 0 is represented out of scale at about 1610 -5 125 times and 136-164 times, respectively, with respect to the assumption of unknown objective dependence. Thus, the effects of objective dependences between BEs linked by AND-gates becomes more and more dramatic as the BE probabilities (chances) decrease: this poses serious concerns in the risk assessment of complex systems where the components are highly reliable and, thus, characterized by very small failure probabilities (chances).

Instead, it has been shown that the assumption of objective independence between BEs linked by OR-gates leads to a slight underestimation of both risk and uncertainty. In particular, it can be seen that when the BE probabilities (chances) are of the order of 10 -1 (like in the present Case A), the assumption of objective independence leads to underestimating risk and uncertainty by 1.26-1.28 times and 1.45-1.85 times, respectively, with respect to the assumption of unknown objective dependence. Instead, if the BE probabilities (chances) are of the order of 10 -2 -10 -3 (like in the present Case B), the assumption of objective independence does not lead to a remarkable underestimation of risk, whereas it causes a non negligible underestimation of uncertainty (i.e., by 1.14-1.27 times with respect to the assumption of unknown objective dependence). Based on these considerations, it can be concluded that i) the assumption of objective independence between BEs linked by OR-gates leads to a slight underestimation of risk only when the BE probabilities (chances) are relatively large (e.g., of the order of 10 -1 ) and ii) the relevance of the underestimation of uncertainty does not change dramatically as the BE probabilities (chances) change. These considerations makes the treatment of dependences between BEs linked by OR-gates much less critical than for AND-gates. No significant differences can be found here between the results obtained in Cases A and B.

Studying the effects of state-of-knowledge (epistemic) dependences between the probabilities (chances) of the basic events

For example, in Case B, the assumption of epistemic independence leads to underestimating the upper bounds of the 95-th quantiles (and, thus, the risk associated to the system) by 1.287 and 1.290 times with respect to the assumptions of total and unknown epistemic dependence, respectively; in addition, the estimates produced by the assumptions of total and unknown epistemic dependence are almost identical as before.

Very similar considerations (and results) can be drawn by the analysis of those cases where ) in the region where the cumulative probability is very close to the 'extreme' upper bound 1 (resp., lower bound 0). In other words, the CDFs produced under assumptions of perfect and unknown epistemic dependence are almost identical in the range of extreme probabilities-chances (i.e., extreme quantiles) that are of particular interest in the risk assessment of complex, highly reliable systems.

Analysis 2 -Objective independence (ind) between the BEs

Case A Similar analyses performed on P(X). III).

It can be seen that the values of the upper bound dependence and unknown dependence, respectively. Thus, the assumption of independence would lead to underestimating the upper bound of the 95-th quantile (and, thus, the risk associated to the system) by 1.456 and 1.641 times with respect to the assumptions of total and unknown dependence, respectively. This is reflected by the analysis of the indicator d X :

the assumption of epistemic independence leads to underestimating d X by 1.02 and 2.56 times, with respect to the assumptions of total and unknown epistemic dependence.

Analysis 2 -Objective independence (ind) between the BEs Case B Indicators

Top Event (TE) X (configuration, Table III and extreme quantiles have to be estimated); however, their effects are likely to be overwhelmed by those of objective dependences (if present).

DISCUSSION AND CONCLUSIONS

In this paper, the effects of objective and state-of-knowledge dependences between the BEs of a FT have been quantified. Two types of analyses have been carried out on a FT with six BEs:

1. assuming unknown epistemic dependence between the probabilities (chances) of the BEs, the effects of different states of objective dependence between the BEs have been quantified;

2. assuming objective independence between the BEs, the effects of different states of epistemic dependence between the probabilities (chances) of the BEs have been studied.

With respect to analysis 1. above, it has been shown that:

• the assumption of objective independence between the BEs linked by AND-gates always leads to a serious underestimation of i) the risk associated to the system (here represented by the upper bound of the 95-th quantile of the TE probability-chance)

and ii) the uncertainty (imprecision) 'contained' in the (distribution of the) TE probability-chance (here represented by the relative average distance between the upper and lower CDFs of the TE probability-chance) with respect to the assumptions of perfect and unknown objective dependence: actually, the corresponding estimates may differ even by several orders of magnitude;

• this underestimation becomes more and more dramatic as the BE probabilities (chances) get smaller: this poses serious concerns in the risk assessment of complex systems where the components are highly reliable and, thus, characterized by very small failure probabilities (chances);

• the assumption of objective independence between BEs linked by OR-gates may lead to a slight underestimation of both risk and the uncertainty. In particular:

1 the assumption of objective independence between BEs leads to a slight underestimation of risk only when the BE probabilities (chances) are relatively large (e.g., of the order of 10 -1 ); otherwise, when the BE probabilities (chances) are quite small (e.g., of the order of 10 -2 -10 -3 ), the assumption of independence produces risk estimates that are comparable even to those provided by the assumption of unknown dependence;

1 the assumption of objective independence between BEs always leads to a slight underestimation of the uncertainty (imprecision) 'contained' in the distribution of the TE probability (chance);

1 the effects of objective dependence between BEs linked by OR-gates are not influenced dramatically by the magnitude of the BE probabilities (chances).

Based on the considerations above, it can be concluded that:

• the treatment of objective dependences between BEs linked by AND-gates is much more critical than for OR-gates;

• unknown (or, at least, perfect) objective dependence should be assumed between BEs linked by AND-gates, in particular if the corresponding probabilities (chances) are very small (e.g., of the order of 10 -3 -10 -2 ): this leads to obtaining conservative risk estimates;

• objective dependences between BEs linked by OR-gates can be in general neglected if the corresponding probabilities (chances) are very small (e.g., around 10 -3 -10 -2 ).

With respect to analysis 2. above, it has been shown that:

• the assumption of epistemic independence between the probabilities (chances) of the BEs leads to a non negligible underestimation of the risk associated to the system (here represented by the upper bound of the 95-th quantile of the TE probabilitychance) with respect to the assumptions of perfect and unknown epistemic dependence: this is particularly evident in the estimation of small probabilities (chances) and extreme quantiles that are of paramount importance in the risk assessment of complex, highly reliable systems;

• the estimates for the upper bound of the 95-th quantile of the TE probability (chance)

produced by the assumptions of perfect and unknown epistemic dependence are comparable;

• the effects of epistemic dependence between the BE probabilities (chances) are quantitatively less relevant and critical than those of objective dependence between the BEs: they may differ by several orders of magnitude;

• the effects of epistemic dependence are not modified significantly by the magnitude of the BE probabilities (chances);

• the effects of epistemic dependence are not influenced dramatically by the type of logical connection existing between the BEs.

Based on the considerations above, it can be concluded that:

• the conditions of epistemic dependence between some BE probabilities (chances)

should not be neglected when small probabilities (chances) and extreme quantiles have to be estimated: with respect to that, unknown (or, at least, perfect) epistemic dependences should be assumed in order to obtain conservative risk estimates;

• if objective dependences are also present (e.g., between BEs linked by AND-gates and characterized by very small probabilities-chances), the effects of epistemic dependence are likely to be overwhelmed by those of objective dependence.
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 5 (C2), (B 2 2 B 5 ) (C3), (B 4 ∪ B 5 ) (C4) and (B 2 ∪ B 3 ) (C5) are considered in both Analyses 1 and 2 to study whether (and how) the effects of different states of (objective and epistemic) dependence are influenced by the particular logical connection existing between the BEs. Moreover, such analyses are performed in both Case A (namely, 'large' BE probabilities-chances) and Case B (namely, 'small' BE probabilities-chances) to study whether (and how) the effects of different states of (objective and epistemic) dependence are influenced by the magnitude of the BE probabilities (chances).Then, the more realistic case involving the FT of Figure4is considered to analyze the effects that (objective and epistemic) dependences between BEs {B i : i = 1, 2, …, n BE = 6} have on the probability (chance) P(X) of the TE X (TableIII, Configurations T1-T4 of Analysis 1 and T1-T3 of Analysis 2). These computations are performed only in Case B (namely, 'small' BE probabilities-chances) because in realistic safety-critical engineered systems the basic components are usually highly reliable and, thus, the corresponding failure probabilities (chances) are typically very small. In Analysis 1, Configuration T1 represents the reference, baseline case where all the BEs are considered independent. On the opposite, Configuration T4 represents the extreme (most conservative) case where no assumptions about the states of objective dependence between all the BEs are made. Instead, Configurations T2 and T3 represent 'intermediate' (and more realistic) cases. In particular, in Configuration T2 positive objective dependence is assumed between BEs B 1 and B 6 (i.e., those events representing failures of mechanical components): this situation is far from unlikely in real systems and may be due to several causes, e.g., i) shared pieces of equipment (e.g., components in different systems are fed from the same electrical bus) or ii) physical interactions (e.g., failures of some component create extreme environmental stresses, which increase the probability-chance of multiple-component failures). Instead, in Configuration T3 unknown
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  of P(Z), computed along the real 'horizontal' axis. In this sense, it is also an indicator of the uncertainty (i.e., imprecision) 'contained' in the distribution of P(Z): the larger the average distance Z d(20), the larger the uncertainty (imprecision) associated to P(Z).
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 4 'obj' = 'ind'), perfect ('obj' = 'perf'), opposite ('obj' = 'opp') and unknown ('obj' = 'ukn') objective dependence, with reference to Cases A and B (Section 3.1); the estimates of for completeness. In addition, only for illustration purposes Figure6depicts the upper and lower Cumulative Distribution Functions (CDFs) obtained for events (B 1 2 obj B 5 ) ukn (top) and (B obj B 5 ) ukn (bottom), respectively, under the assumptions of independence (solid lines), perfect (dashed lines), opposite (dotted lines) and unknown (dot-dashed lines) objective dependence, with reference to Cases A (left) and B (right). Notice that by construction

  , respectively, under the assumption of independence, whereas they are 0.3461, 0.3462 and 0.3941, respectively, under the assumption of unknown dependence. Thus, the assumption of independence would lead to underestimating the upper bounds of the 95-th quantiles (and, thus, the risk associated to the system) by 2.27, 2.22 and 2.24 times, respectively. These considerations are reflected also by the analysis of the relative average distances ( , as before the assumption of independence leads to underestimating the uncertainty (imprecision) 'contained' in the distributions of the probabilities 25, 2.61 and 2.65 times, respectively.This underestimation is much more significant in Case B. Actually, the values of ( ) 2078•10 -5 , 6.9995•10 -5 and 7.0080•10 -5 , respectively, under the assumption of independence, whereas they are 8.1876•10 -3 , 8.8002•10 -3 and 7.8810•10 -3 , respectively, under the assumption of unknown dependence. Thus, the assumption of independence leads to underestimating the upper bounds of the 95-th quantiles (and, thus, the risk associated to the system) by 89.02, 125.70 and 112.60 times, respectively. Again, these considerations are reflected by the analysis of the relative average distances ( as before the assumption of independence leads to underestimating the uncertainty (imprecision) associated to the distributions of 89, 164.80 and 140.99 times, respectively. A visual representation of these results is given in Figure6, top: actually, it can be seen that the upper and lower CDFs ) in both Cases A (left) and B (right).The facts that i) the assumption of objective independence leads to a consistent underestimation of risk and ii) such underestimation is more dramatic in Case B than in Case A are explained as follows. The probability (chance) of the conjunction of two independent events, say B 1 and B 5 , is given by the product of the corresponding probabilities (chances)

is underestimated by about 1 .( 5 [

 15 conservative estimate of risk) is still of the order of 10 -n . As a consequence, n is approximately n orders of magnitude larger than 2n , which explains also why the difference between () .e., as n increases).Different situations arise in the cases where the BEs are linked by OR-gates, i.e., Z = (B 4 ∪ obj B 5 ) ukn and (B 2 ∪ obj B 3 ) ukn (Configurations C4 and C5 in TableIII). It can be seen that in CaseA the values of ( 6670 and 0.6970, respectively, under the assumption of independence, whereas they are 0.8401 and 0.8941, respectively, under the assumption of unknown dependence. Thus, the assumption of independence leads to underestimating the upper bounds of the 95-th quantiles (and, thus, the risk associated to the system) by about 1.26 and 1.28 times, respectively. These considerations are reflected also by the values of the relative average distances ( before, the assumption of independence leads to underestimating the uncertainty (imprecision) 'contained' in the distributions of ( ) and 1.85 times. Notice that the magnitude of such underestimations is not negligible, but it is much less relevant than for the cases where BEs are linked by AND-gates.In Case B, the values of ( ) 6685•10 -2 and 1.7772•10 -2 , respectively, under the assumption of independence, whereas they are 1.6763•10 -2 and 1.7881•10 -2 , respectively, under the assumption of unknown dependence. Thus, in this case the assumption of independence leads to a very slight underestimation of the upper bounds of the 95-th quantiles (and, thus, of the risk associated to the system), i.e., only by about 1.01 and 1.02 times, respectively. Instead, the values of the relative average distances ( 0216 and 0.6381, respectively, under the assumption of independence, whereas they are 1.1676 and 0.8076, respectively, under the assumption of unknown dependence: in other words, the uncertainty (imprecision) associated to distributions of 14 and 1.27 times.Thus, although the risk estimates are comparable, the underestimation of the uncertainty (imprecision) associated to the distributions of ( ) visual representation of these results is given in Figure6, bottom right. Actually, it can be seen that the lower CDFs solid line) (i.e., the CDFs used to estimate the upper bounds of the 95-th quantiles of ( ) 10 -n , 2•10 -n ] 'completely envelops' the estimate ( )

Figure 6 .

 6 Figure 6. Upper and lower CDFs

Figure 4 .F

 4 Figure 4.Table V reports the values of the indicators ] , [ 95 . 0 95 . 0 X X p p (19) and d X (20) obtained

F 1 (

 1 for clarity of illustration Some considerations are in order with respect to the results obtained. It has been shown that the assumption of objective independence between BEs linked by AND-gates very often leads to a significant underestimation of i) the risk associated to the system (here represented by the upper bound 95 . 0 X p of the 95-th quantile ( ) 95 . 0 X P of P(X)) and ii) the uncertainty (imprecision) 'contained' in the distribution of P(X) (here represented by the relative average distance d Xbetween the upper and lower CDFs of the TE probability-chance P(X)). In more detail, it can be seen that when the BE probabilities (chances) are of the order of 10 -like in the present Case A), the assumption of objective independence leads to underestimating risk and uncertainty by 2.22-2.27 times and 2.61-4.21 times, respectively, with respect to the assumption of unknown objective dependence. Instead, if the BE probabilities (chances) are of the order of 10 -2 -10 -3 (like in the present Case B), the assumption of objective independence leads to underestimating risk and uncertainty by 89-

(.by about 1 .

 1 'epi' = 'ind'), perfect ('epi' = 'perf') and unknown ('epi' = 'ukn') epistemic dependence, with reference to Cases A and B; the estimates for completeness. In addition, only for illustration purposes, Figure8shows the upper and lower Cumulative Distribution Functions (CDFs) obtained for events (B 1 2 ind B 5 ) epi (top) and (B 4 ∪ ind B 5 ) epi (bottom), respectively, under the assumptions of independence (solid lines), perfect (dashed lines) and unknown (dot-dashed lines) epistemic dependence, with reference to Cases A (left) and B (right).We start by analyzing the cases where the BEs are linked by AND-gates and we refer only to event Z = (B 1 2 ind B 5 ) epi (C2) for brevity sake. It can be seen that in Case A the values of the upper bound ( ) under the assumptions of independence, total (perfect) and unknown epistemic dependence, respectively. Thus, the assumption of epistemic independence would lead to underestimating the upper bound of the 95-th quantile (and, thus, the risk associated to the system) by 1.21 and 1.28 times with respect to the assumptions of total and unknown epistemic dependence, respectively; in addition, notice that the assumption of perfect dependence produces estimates of the upper bound of the 95-th quantile that are comparable to those obtained under the assumption of unknown dependence. These considerations are reflected also by the analysis of the values of the relative average distance ( Actually, as before the assumption of epistemic independence leads to underestimating the uncertainty (imprecision) 'contained' 04 and 1.92 times with respect to the assumptions of perfect and unknown epistemic dependence, respectively. Similar considerations can be drawn from the analyses of events (B 1 2 ind B 6 ) epi and (B 2 2 ind B 5 ) epi .

the

  BEs are linked by OR-gates, i.e., Z = (B 4 ∪ ind B 5 ) epi and (B 2 ∪ ind B 3 ) epi (Configurations C4 and C5 in TableIII) in both Cases A and B: thus, we analyze only event (B 4 ∪ ind B 5 ) epi with reference to Case A for brevity. It can be seen that the assumption of independence leads to underestimating the upper bounds of the 95-th quantiles (and, thus, the risk associated to the system) by 1.03 and 1.04 times with respect to the assumptions of total and unknown dependence, respectively. These results are pictorially confirmed by Figure8: actually, it can be seen that the upper and lower CDFs of P[(B 1 2 ind B 5 ) epi ] (top) and P[(B 4 ∪ ind B 5 ) epi ] (bottom) obtained under the assumption of unknown epistemic dependence (dot-dashed lines) completely envelop those obtained under the assumptions of independence (solid lines) and perfect dependence (dashed lines) in both Cases A (left) and B (right) (i.e., they obviously represent more conservative estimates of the bounding distributions). In addition, it is worth noting that the lower (resp., upper) CDFs obtained under the assumption of perfect epistemic dependence, i.e., very close to those produced by the assumption of unknown epistemic dependence, i.e.,

Figure 8 .

 8 Figure 8. Upper and lower CDFs

F

  . For illustration purposes, Figure9depicts the upper and lower CDFs obtained for P(X) assuming independence (solid lines), perfect (dashed lines) and unknown (dot-dashed lines) epistemic dependence between the probabilities (chances) of all the BEs (Configurations T1-T3 of Analysis 2 in Table

  •10 -4 , 6.4111•10 -4 and 7.2275•10 -4 under the assumptions of independence, total

  08] have to be identified. Since in this case ( )

	included in the function	F	P	( ) ( ) 08 . 0 Z	to be maximized. As a consequence, maximization
	problem (13) becomes:						
											11 P A	Z	= [0.02, 0.175], ( ) 12 Z P A
	= [0.06, 0.225],	( ) 21 Z P A	= [0.04, 0.210] and	( ) 22 Z P A	= [0.120, 0.270] (see above), only focal sets
	( ) 11 Z P A , ( ) 12 Z P A	and ( ) 21 Z P								11 P A , ( ) Z 12 Z P A	and ( ) 21 Z P A
	and the corresponding probability masses	m	( ) ( ) 11 Z P A	,	m	( ) ( ) 12 Z P A	and	m	( ) ( ) 21 Z P A	have to be

A

intersect interval [0, 0.08]; then, only focal sets ( )

  }

	Find	11 P	Z	,	12 P	Z	,		21 Z P	,	22 Z P	:		
		Z DEnv P	0	.	08	max	P	Z	0	.	08	max	11 P	Z	12 P	Z	21 Z P

  , i = 1, 2, .j = 1, 2, that are included in interval [0, p Z ] = [0, 0.22] have to be identified. Since in this case ( )

															m	2 P A	2 B	=
	0.55 and ii)	m	( ) ( ) 11 Z P A	,	m	( ) ( ) 12 Z P A	,	m	( ) ( ) 21 Z P A	,	m	( ) ( ) 22 Z P A	4 0. The optimization process leads to
	( ) ( ) 08 . 0 Z DEnv P F	= 0.8 with	m	( ) ( ) 11 Z P A	= 0,	m	( ) ( ) 12 Z P A	= 0.35,	m	( ) ( ) 21 Z P A	= 0.45 and	m	( ) ( ) 22 Z P A	= 0.2.
	Instead, in order to calculate	F	( ) ( ) 22 . 0 Z DEnv P	by solving minimization problem (14), those focal
	sets among ( ) ij Z P A 11 P A	Z	= [0.02, 0.175], ( ) 12 Z P A	= [0.06, 0.225], ( ) 21 Z P A	= [0.04, 0.210]
	and ( ) 22 Z P A	= [0.120, 0.270] (see above), only focal sets ( ) 11 Z P A	and ( ) 21 Z P A	are included in interval
	[0, 0.22]; then, only	( ) 11 Z P A	and	( ) 21 Z P A	and the corresponding probability masses	m	( ) ( ) 11 Z P A	and
	m	( ) ( ) 21 Z P A	have to be taken into account in the function	F	P	( ) ( ) 22 . 0 Z	to be minimized. Then,
	minimization problem (14) becomes:

Table I .

 I as specified in As an example, B 1 and B 6 could denote failure of an item (e.g., a mechanical component) for which a sufficient amount of informative (failure) data is available for

	statistical analysis and for accurate characterization of the corresponding epistemic
	uncertainty by a precise probability distribution. Differently, uncertainties about
	( ) B P i {	: = i	, 2	, 3	} 5	are represented using (trapezoidal) possibility distributions

Table I .

 I Characteristics and parameters of the distributions of ( ) { }

						Basic Event B 5 (Case B)						Basic Event B	6	(Case B)
			1														1
			0.9														0.9
	Possibility value, π P (B 5 )	0.2 0.3 0.4 0.5 0.6 0.7 0.8														Cumulative probability, F P (B 6 )	0.2 0.3 0.4 0.5 0.6 0.7 0.8
			0.1														0.1
			0														0
			0	0.002	0.004	0.006			0.008						0.01	0.012	0.014	0	0.002	0.004	0.006	0.008	0.01	0.012	0.014
					Probability of Basic Event B 5 , P(B 5 ) Figure 5. Distributions of ( ) { i B P	:	i	=	, 1	, 2	...,	n	Probability of Basic Event B } 6 = BE for Case B 6 , P(B ) 6
																	P	i B	:	i	=	, 1	, 2	...,	n	BE	=	6
						Basic Event B	1	(Case B)						Basic Event B 2 (Case B)
			1														1
		0.9														0.9
	)	0.8														0.8
	1															
	Cumulative probability, F P (B	0.3 0.4 0.5 0.6 0.7														Possibility value, π P (B 2 )	0.3 0.4 0.5 0.6 0.7
		0.2														0.2
		0.1														0.1
			0														0
			0	0.002	0.004	0.006			0.008		0.01	0.012	0.014	0	0.002	0.004	0.006	0.008	0.01	0.012	0.014
					Probability of Basic Event B	1	, P(B	1	)		Probability of Basic Event B 2 , P(B 2 )
						Basic Event B	3	(Case B)						Basic Event B 4 (Case B)
			1														1
		0.9														0.9
		0.8														4 )	0.8
	Possibility value, π P (B 3 )	0.2 0.3 0.4 0.5 0.6 0.7														Cumulative probability, F P (B	0.2 0.3 0.4 0.5 0.6 0.7
		0.1														0.1	Upper CDF
			0														0	Lower CDF
			0	0.002	0.004	0.006			0.008		0.01	0.012	0.014	0	0.002	0.004	0.006	0.008	0.01	0.012	0.014
					Probability of Basic Event B	3	, P(B	3	)		Probability of Basic Event B 4 , P(B 4 )

Table II

 II 

	summarizes the analyses carried out in the present paper (Section 4) together with the
	corresponding objectives.

States of dependence between the BEs Objective (Section 2.1) Epistemic (Section 2.2) Aim of the analysis Analysis 1 (Table III

  

	and Section	c) opposite dependence		of epistemic dependence between the probabilities
	4.1)	d) positive dependence		(chances) of the BEs is given (in particular, unknown
		e) negative dependence		epistemic dependence is assumed in the present
		f) unknown dependence		analysis)
	Analysis 2 (Table III and Section 4.2)	a) independence	i) independence ii) total (perfect) dependence iii) unknown dependence	-study the effects of different states of epistemic dependence between the probabilities (chances) of the BEs of the FT when the state of objective dependence between the BEs is given (in particular, objective independence is assumed in the present analysis)
		a) independence b) perfect dependence	iii) unknown dependence	-study the effects of different states of objective dependence between the BEs of the FT when the state

Table II .

 II Analyses performed in Section 4, and their relative objectivesFor clarity, TableIIIreports the details of Analyses 1 and 2 (TableII). First, only for illustration purposes the effects of different states of (objective and epistemic) dependences between BEs {B i : i = 1, 2, …, n BE = 6} are demonstrated with reference to very simple configurations (referred to as C1-C5 in TableIII). In particular, events Z = (B 1 2 B 6 ) (C1), (B 1

  = (B 1 2 obj B 6 ) ukn , (B 1 2 obj B 5 ) ukn , (B 2 2 obj B 5 ) ukn , (B 4 ∪ obj B 5 ) ukn and (B 2 ∪ obj B 3 ) ukn (Configurations C1-C5 of Analysis 1 in TableIII) under the assumptions of independence

	Table IV reports the values of the indicators	[	p	95 . 0 Z	,	p	. 0 Z	95	]	(19) and d Z (20) obtained for the
	events Z									

B 4 ∪ obj B 5 ) ukn (C4)

  

	(B 1 1 obj B 5 ) ukn (C2) (B 2 1 obj B 5 ) ukn (C3) (B 4 ∪ obj B 5 ) ukn (C4) (B 2 ∪ obj B 3 ) ukn (C5)	( ) Z Z d 0.95 [ P Z p , p E [ ( ) [ Z P E Z d [ 0.95 Z p , p ( ) [ Z P E Z d [ 0.95 Z p , p ( ) [ Z P E Z d [ 0.95 Z p , p	INS 0.95 Z INS 0.95 Z INS 0.95 Z INS 0.95 Z	] ] ] ] ] ] ] ]	0.0553 1.4779 [0.0243, 0.1557] 0.0715 1.6629 [0.0188, 0.1760] 0.3933 0.9325 [0.3100, 0.6670] 0.5272 0.5161 [0.4519, 0.6970]	0.1627 1.8426 [0.1564, 0.3462] 0.2068 3.0140 [0.1220, 0.3941] 0.2645 0.5493 [0.2500, 0.4401] 0.3873 0.2419 [0.3910, 0.4961]	0 / 0 0 / 0 0.4538 1.1871 [0.3302, 0.8401] 0.6251 0.7644 [0.4911, 0.8941]	0.1068 3.8630 [0, 0.3462] 0.1573 4.3991 [0, 0.3941] 0.4219 1.3495 [0.2500, 0.8401] 0.5750 0.9542 [0.3910, 0.8941]
						Case B		
						State of objective (obj) dependence	
	Event Z (B 1 1 obj B 6 ) ukn (C1) (B 1 1 obj B 5 ) ukn (C2) (B 2 1 obj B 5 ) ukn (C3) (( ) Indicators Independence (ind) ( ) [ INS Z P E 2.01310 -5 ] Z d 1.3339 [ ] 0.95 Z 0.95 Z p , p [1.41310 -5 , 9.21310 -5 ] ( ) [ INS Z P E 1.84310 -5 ] Z d 1.2028 [ ] 0.95 Z 0.95 Z p , p [8.75310 -6 , 7.85310 -5 ] ( ) [ INS Z P E 2.62310 -5 ] Z d 1.7034 [ ] 0.95 Z 0.95 Z p , p [5.68310 -6 , 7.01310 -5 ] [ ] INS Z P E 8.93310 -3 Z d 1.0216 [ ] 0.95 Z 0.95 Z p , p [6.59310 -3 , 1.67310 -2 ]	Perfect (perf) 3.00310 -3 67.0056 [3.43310 -3 , 8.19310 -3 ] 2.71310 -3 101.9268 [2.56310 -3 , 8.80310 -3 ] 4.14310 -3 164.6245 [2.44310 -3 , 7.88310 -3 ] 5.19310 -3 0.4700 [5.00310 -3 , 8.76310 -3 ]	Opposite (opp) 0 / 0 0 / 0 0 / 0 9.00310 -3 1.0325 [6.40310 -3 , 1.68310 -2 ]	Unknown (ukn) 1.84310 -3 182.6408 [0, 8.19310 -3 ] 1.83310 -3 198.2254 [0, 8.80310 -3 ] 3.15310 -3 240.1765 [0, 7.88310 -3 ] 8.33310 -3 1.1676 [5.00310 -3 , 1.68310 -2 ]
								BEs
						Case A		
						State of objective (obj) dependence	
	Event Z (B 1 1 obj B 6 ) ukn (C1)	Indicators Independence (ind) ( ) [ INS Z P E 0.0583 ] Z d 0.8634 [ ] 0.95 Z 0.95 Z p , p [0.0492, 0.1528]	Perfect (perf) 0.1954 0.6321 [0.2205, 0.3461]	Opposite (opp) 0 / 0	Unknown (ukn) 0.1069 3.6672 [0, 0.3461]

(B 2 ∪ obj B 3 ) ukn (C5)

  

	E	[ P	( ) Z	INS	]	1.25310 -2	7.74310 -3	1.25310 -2	1.15310 -2
	[	p	d 0.95 Z ,	Z	p	0.95 Z	]	0.6381 [9.83310 -3 , 1.78310 -2 ]	0.2047 [7.82310 -3 , 9.92310 -3 ]	0.6468 [9.82310 -3 , 1.79310 -2 ]	0.8076 [7.82310 -3 , 1.79310 -2 ]

Table IV .

 IV Values of the indicators [ ] obj B 6 ) ukn , (B 1 5 obj B 5 ) ukn , (B 2 5 obj B 5 ) ukn , (B 4 ∪ obj B 5 ) ukn and (B 2 ∪ obj B 3 ) ukn (Configurations C1-C5 of Analysis 1 in Table III) under the assumptions of independence, perfect, opposite and unknown objective dependence, with reference to Cases A and B; the estimates for

				Analysis 1 -Case A: event (B 1 ∩ ob j	B 5 ) ukn (Configuration C2)					Analysis 1 -Case B: event (B 1 ∩ obj	B 5 ) ukn (Configuration C2)
			1																	1	
			0.9																	0.9	
			0.8																	0.8	
	Cumulative probability	0.3 0.4 0.5 0.6 0.7											Obj = ind: up CDF Obj = ind: low CDF Obj = perf: up CDF	Cumulative probability	0.3 0.4 0.5 0.6 0.7	
			0.2											Obj = opp: up CDF Obj = perf: low CDF		0.2	
			0.1											Obj = opp: low CDF		0.1	
														Obj = uk n: up CDF			
			0											Obj = uk n: low CDF		0	
			0	0.05	0.1	0.15	0.2		0.25	0.3	0.35	0.4		0.45		0	10 -6 10 -6	10 -5	10 -4	10 -3	10 -2
							P(B	1 ∩ ob j	B	5 ) ukn										P(B 1 ∩ obj	B 5 ) ukn
				Analysis 1 -Case A: event (B 4 ∪ ob j	B 5 ) ukn (Configuration C4)					Analysis 1 -Case B: event (B 4 ∪ ob j	B 5 ) ukn (Configuration C4)
			1																	1	
		0.9																	0.9	
		0.8																	0.8	
	Cumulative probability	0.3 0.4 0.5 0.6 0.7																Cumulative probability	0.3 0.4 0.5 0.6 0.7	
		0.2																	0.2	
		0.1																	0.1	
			0																	0	
			0	0.1	0.2	0.3	0.4	0.5				0.6	0.7	0.8	0.9		1		0	0.002	0.004	0.006	0.008	0.01	0.012	0.014	0.016	0.018
							P(B 4 ∪ ob j	B 5 ) ukn										P(B 4 ∪ ob j	B 5 ) ukn
														p	0 0 , Z 95 . Z p	95 .	(19) and d Z (20) obtained for the simple events
			Z = (B 1 5 ( ) ] [ INS Z P E	are also reported for completeness

  . For example, it can be seen that the values of the upper bound -4 and 8.9766•10 -3 in Configurations T1 (where all the BEs are considered independent) and T2 (where BEs B 1 and B 6 are considered positively dependent). This means that neglecting an hypothetical state of positive dependence between only one pair of BEs linked by an AND-gate is sufficient for underestimating the upper bound On the contrary, in Configuration T3 (where no indication at all about the state of objective dependence between BEs B 4 and B 5 is available), the value of this case even assuming unknown objective dependence between a couple of BEs linked by an OR-gate leads to overestimating the risk associated to the system only by about 1.07 times with respect to the 'baseline' assumption of independence. Finally, Configuration T4 represents the 'extreme' case where unknown objective dependence is assumed between all the BEs of the FT: notice that since in the present Analysis 1 unknown epistemic dependence is also assumed between the probabilities (chances) of all the BEs, Configuration T4 provides the most 'uncertain' and, thus, conservative estimate for P(X).∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ind B 5 ∪ ind B 6 )] ukn (T1) 2.8725310 -4 ∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ukn B 5 ∪ ind B 6 )] ukn (T3) 2.8998310 -4 ∪ ukn B 2 ∪ ukn B 3 ) ∩ ukn (B 4 ∪ ukn B 5 ∪ ukn B 6 )] ukn (T4) 1.0463310-2 

															95 . 0 X p on the
	95-th quantile ( ) 95 . 0 X P are 7.2275•10 95 . 0 X p of the 95-th quantile ( ) 95 . 0 X P (and, thus, the risk associated to the system) by 12.42
	times. 95 . 0 X p	is 7.7580•10 -4 :
	thus, in Actually, the
	values of	p	95 . 0 X	and d X are 2.5923•10 -2 and 72.7040, respectively, i.e., 35.87 and 44.14 times
	larger than those obtained under the 'baseline' assumption of objective independence between
	all the BEs (Configuration T1).												
	Analysis 1 -Unknown epistemic dependence between the probabilities (chances) of the BEs
				Case B												
	Top Event (TE) X (configuration, Table III)	E	[ P	( ) X	INS	]	d	X	Indicators	[	p	0.95 X	,	p	0.95 X	]
	X = [(B 1 1.6472	[7.3617310 -5 , 7.2275310 -4 ]
	Positive (pos) objective dependence between B 1 and B 6 (T2)	2.2574310 -3	15.3945	[6.5629310 -5 , 8.9766310 -3 ]
	X = [(B 1 1.7324	[6.1237310 -5 , 7.7580310 -4 ]
	X = [(B 1 72.7040	[3.5735310 -5 , 2.5923310 -2 ]

Table V .

 V Values of the indicators

				[	p	95 . 0 X	,	p	. 0 X	95	]	(19) and d X (20) obtained for P(X) under
	different assumptions of objective dependence between the BEs (Configurations T1-T4 in Table III), with reference to Case B; the estimates for ( ) ] [ INS X P E are also reported
			Analysis 1 -Case B: Top Event (TE), X
		1							
		0.9							
		0.8							
	Cumulative probability	0.3 0.4 0.5 0.6 0.7				T1: up CDF T1: low CDF T2: up CDF T2: low CDF
		0.2				T3: up CDF T3: low CDF
		0.1				T4: up CDF
						T4: low CDF
		0							
		10 -5 0		10 -4				10 -3	10 -2
			Probability P(X) of the Top Event (TE) X
	Figure 7. Upper and lower CDFs	F	P	( ) X	and	F	P	( ) X	obtained for P(X), with reference to Case
	B under different assumptions of objective dependence between the BEs (Configurations T1-
	T4 in Table								

  = (B 1 2 ind B 6 ) epi , (B 1 2 ind B 5 ) epi , (B 2 2 ind B 5 ) epi , (B 4 ∪ ind B 5 ) epi and (B 2 ∪ ind B 3 ) epi (Configurations C1-C5 of Analysis 2 in TableIII) under the assumptions of independence

	Table VI reports the values of the indicators	[	p	95 . 0 Z	,	p	. 0 Z	95	]	(19) and d Z (20) obtained for the
	events Z									

2 1 ind B 5 ) epi (C3)

  

		State of epistemic (epi) dependence
	Event Z (B 1 1 ind B 6 ) epi (C1) (B 1 1 ind B 5 ) epi (C2) (B ( ) Indicators ( ) [ INS Z P E ] Z d [ ] 0.95 Z 0.95 Z p , p ( ) [ INS Z P E ] Z d [ ] 0.95 Z 0.95 Z p , p [ ] INS Z P E Z d [ ] 0.95 Z 0.95 Z p , p	Independence (ind) 0.0543 0 0.0974 0.0474 0.8993 [0.0503, 0.1216] 0.0609 1.4874 [0.0254, 0.1551]	Perfect (perf) 0.0576 0 0.1230 0.0510 0.9389 [0.0634, 0.1467] 0.0622 1.5152 [0.0283, 0.1717]	Unknown (ukn) 0.0583 0.9270 [0.0492, 0.1528] 0.0553 1.7242 [0.0243, 0.1557] 0.0715 1.9523 [0.0188, 0.1760]
	(			

B 4 ∪ ind B 5 ) epi (C4)

  5 ind B 6 ) epi , (B 1 5 ind B 5 ) epi , (B 2 5 ind B 5 ) epi , (B 4 ∪ ind B 5 ) epi and (B 2 ∪ ind B 3 ) epi (Configurations C1-C5 of Analysis 2 in Table III) under the assumptions of independence, perfect and unknown epistemic dependence, with reference to Cases A and B

		(B 2 1 ind B 5 ) epi (C3) (B 4 ∪ ind B 5 ) epi (C4) (B 2 ∪ ind B 3 ) epi (C5)		[ E p [ 0.95 Z ( ) p , Z P Z d [ 0.95 Z p , p ( ) [ Z P E Z d [ 0.95 Z p , p ( ) [ Z P E Z d [ 0.95 Z p , p	0.95 Z INS 0.95 Z INS 0.95 Z INS 0.95 Z	] ] ] ] ] ] ]		[2.38310 -5 , 6.09310 -5 ] 2.43310 -5 1.4878 [1.01310 -5 , 6.19310 -5 ] 8.69310 -3 0.7266 [8.38310 -3 , 1.59310 -2 ] 1.22310 -2 0.5289 [1.05310 -2 , 1.72310 -2 ]	[3.45310 -5 , 7.85310 -5 ] 2.49310 -5 1.5251 [1.13310 -5 , 6.87310 -5 ] 8.65310 -3 0.7237 [8.82310 -3 , 1.67310 -2 ] 1.22310 -2 0.5298 [1.07310 -2 , 1.76310 -2 ]	[8.75310 -6 , 7.88310 -5 ] 2.62310 -5 1.8371 [5.68310 -6 , 7.01310 -5 ] 8.93310 -3 1.0499 [6.59310 -3 , 1.67310 -2 ] 1.25310 -2 0.6502 [9.83310 -3 , 1.78310 -2 ]
	Table VI. Values of the indicators	[	p	95 . 0 Z	,	p	. 0 Z	95	]	(19) and d Z (20) obtained for events Z = (B 1
				Analysis 2 -Case A: event (B 1 ∩ ind	B 5 ) epi (Configuration C2)	Analysis 2 -Case B: event (B 1 ∩ ind	B 5 ) epi (Configuration C2)
			1												1
			0.9												0.9
	Cumulative probability	0.2 0.3 0.4 0.5 0.6 0.7 0.8												Epi = ind: up CDF Epi = perf: up CDF Epi = ind: low CDF	Cumulative probability	0.2 0.3 0.4 0.5 0.6 0.7 0.8
			0 0.1												Epi = uk n: low CDF Epi = uk n: up CDF Epi = perf: low CDF	0 0.1
			0	0.02	0.04	0.06	0.08	0.1		0.12	0.14	0.16	0.18	0.2	10 -6	10 -5	10 -4
							P(B 1 ∩ ind	B 5 ) epi			P(B 1 ∩ ind	B 5 ) epi
				Analysis 2 -Case A: event (B 4 ∪ ind	B 5 ) epi (Configuration C4)	Analysis 2 -Case B: event (B 4 ∪ ind	B 5 )
	Cumulative probability	1 0.9 (B 2 ∪ ind B 3 ) epi (C5) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8		( ) Z Z d 0.95 [ P Z p , p E [ ( ) [ Z P E Z d [ 0.95 Z p , p	INS 0.95 Z INS 0.95 Z	] ] ] ]		0.3817 0.6510 [0.3786, 0.6423] 0.5192 0.4239 [0.4707, 0.6798]	Cumulative probability	1 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.3740 0.6393 [0.3933, 0.6618] 0.5178 0.4229 [0.4813, 0.6932]	0.3933 0.9608 [0.3100, 0.6670] 0.5272 [0.4519, 0.6970] 0.5241
			0	0.1		0.2	0.3 P(B 4 ∪ ind 0.4 B 5 ) epi	0.5		0.6	0.7 Case B 0 State of epistemic (epi) dependence 0.002 0.004 0.006 0.008 0.01 P(B 4 ∪ ind B 5 ) epi	0.012	0.014	0.016	0.018
		Event Z (B 1 1 ind B 6 ) epi (C1) (B 1 1 ind B 5 ) epi		Indicators ( ) [ INS Z P E ] Z d [ ] 0.95 Z 0.95 Z p , p ( ) [ ] INS Z P E		Independence (ind) 1.62310 -5 0 4.36310 -5 1.69310 -5	Perfect (perf) 2.01310 -5 0 6.72310 -5 1.96310 -5	Unknown (ukn) 2.01310 -5 1.6603 [1.41310 -5 , 9.21310 -5 ] 1.85310 -5
				(C2)			d	Z							0.9112	0.9943	1.3109

epi (Configuration C4)

  Table VII reports the values of the indicators (20) obtained for P(X) under different assumptions of epistemic dependence between the probabilities (chances) of the BEs (Configurations T1-T3 of Analysis 2 in Table III), with reference to Case B; the estimates for

	[	p	95 . 0 X	,	p	. 0 X	95	]	(19) and d X

  ) X = [(B 1 ∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ind B 5 ∪ ind B 6 )] ind (T1) 2.1571310 -4 0.8576 [1.9821310 -4 , 4.4030310 -4 ] X = [(B 1 ∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ind B 5 ∪ ind B 6 )] perf (T2) 2.3119310 -4 0.8781 [3.1555310 -4 , 6.4111310 -4 ] X = [(B 1 ∪ ind B 2 ∪ ind B 3 ) ∩ ind (B 4 ∪ ind B 5 ∪ ind B 6 )] ukn (T3)2.8725310 -4 2.1935 [7.3617310 -5 , 7.2275310 -4 ]

										E	[ P	( ) X	INS	]	d	X	[	p	0.95 X	,	p	0.95 X	]
	Table VII. Values of the indicators	[	p	95 . 0 X	,	p	. 0 X	95	]	(19) and d X (20) obtained for P(X) under the
	assumptions of independence, perfect and unknown epistemic dependence (Configurations
	T1-T3 of Analysis 2 in Table III), with reference to Cases A and B

In the following, 'probability' refers to the limiting relative frequency concept whenever followed by the word 'chance' in parenthesis, and to the epistemic concept whenever used alone.

In the rest of the paper, the state of epistemic dependence between the probabilities (chances) P(B 1 ) and P(B 2 ) of events B 1 and B 2 linked to an event Z of interest by the logical connection '1 obj ' is indicated as (B 1 1 obj B 2 ) epi , where the superscript 'epi' stands for 'ind', 'perf' or 'ukn' in the cases of independence, total (perfect) or unknown epistemic dependence, respectively.

θ θ f must be regarded as being equal distributions and treated as completely dependent distributions".
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These results are explained as follows. The probability (chance) of the disjunction of two independent events, say B 4 and B 5 , is given by ( ) = 2•10 -n . In addition, it is evident that ( ) ( )

5

B P are quite small (i.e., if n >> 1), then the value of ( )

is comparable to that of ( ) 

F obtained for P(X) under the assumptions of independence (solid lines), perfect (dashed lines) and unknown (dot-dashed lines) epistemic dependence (Configurations T1-T3 of Analysis 2 in Table III), with reference to

Case B Some considerations are in order with respect to the results obtained. It has been shown that the assumption of epistemic independence between the probabilities (chances) of BEs linked by AND-gates very often leads to an underestimation of i) the risk associated to the system (here represented by the upper bound of the 95-th quantile of the TE probability-chance) and ii) the 'imprecision' contained in the distribution of the TE probability-chance (here represented by the relative average distance between the upper and lower CDFs of the TE probability-chance). In particular, in the analysis of Configurations C1-C5 it is shown that when the BE probabilities (chances) are of the order of 10 -1 (like in the present Case A), the assumption of epistemic independence leads to underestimating risk and uncertainty by 1.11-1.57 times and 1.02-1.92 times, respectively, with respect to the assumptions of total and unknown epistemic dependence. Similarly, if the BE probabilities (chances) are of the order of 10 -2 -10 -3 (like in the present Case B), the assumption of epistemic independence leads to underestimating risk and uncertainty by 1.11-2.10 times and 1.03-1.44 times, respectively, with respect to the assumptions of total and unknown epistemic dependence.

Similar results are obtained for BEs linked by OR-gates. In particular, it can be seen that when the BE probabilities (chances) are of the order of 10 -1 (like in the present Case A), the assumption of independence leads to underestimating risk and uncertainty by 1.02-1.04 times and 1.01-1.48 times, respectively, with respect to the assumptions of total and unknown epistemic dependence. If the BE probabilities (chances) are of the order of 10 -2 -10 -3 (like in the present Case B), the assumption of epistemic independence leads to underestimating risk and uncertainty by 1.025-1.05 times and 1.01-1.44 times, respectively, with respect to the assumptions of total and unknown epistemic dependence.

Finally, in the analysis of the probability (chance) of the TE of the FT in Figure 4 it is shown that assuming epistemic independence between the probabilities (chances) of all the BEs leads to underestimating risk and uncertainty by 1.456-1.641 and 1.02-2.56 times, respectively, with respect to the assumptions of total and unknown epistemic dependence. A final remark is in order with respect to the fact that in all the cases considered, the 95-th quantile estimates produced under the assumption of perfect dependence are comparable to those obtained under the hypothesis of unknown dependence.

On the basis of these considerations, it can be concluded that i) the effects of epistemic dependence are in general non negligible (in particular, in the estimation of small probabilities-chances and extreme quantiles), but they are quantitatively less relevant and critical than those of objective dependence (see the previous Section 4.1); ii) the effects of epistemic dependence are not influenced dramatically by the type of logical connection existing between the BEs, and iii) the effects of epistemic dependence are not modified significantly by the magnitude of the BE probabilities (chances). These considerations demonstrate that epistemic dependences cannot be neglected in the risk assessment of complex, safety-critical engineering systems (in particular, when small probabilities-chances