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ABSTRACT

In general, two types of dependence need to bedmed when estimating the probability of
the Top Event (TE) of a Fault Tree (FT): ‘objectivependence between the (random)
occurrences of different Basic Events (BEs) in Rfleand ‘state-of-knowledge’ (epistemic)
dependence between estimates of the epistemicaigrtam probabilities of some BEs of the
FT model.

In this paper, we study the effects on the TE puoiy of objective and epistemic
dependences. The well-known Fréchet bounds anDidiebution Envelope Determination
(DEnv) method are used to model all kinds of (gagsiunknown) objective and epistemic
dependences, respectively.

For exemplification, the analyses are carried outeoRT with six BEs. Results show that both
types of dependence significantly affect the TBbaiodity; however, the effects of epistemic

dependence are likely to be overwhelmed by thosbjettive dependence (if present).

KEYWORDS: fault tree; epistemically-uncertain probabilitiesbjective and epistemic

dependences.



1 INTRODUCTION

In Fault Tree Analysis (FTA}™), limiting relative frequency probabilities are typlly used

to describe aleatory uncertainty and subjectivéabdities to describe epistemic uncertainty
(2619 Recently, it has been argued that a probabilispicesentation of epistemic uncertainty
is difficult to justify in those cases in which tla@alysis is carried out based on insufficient
knowledge, information and data. To overcome thisdle, a number of alternative non-
probabilistic representation frameworks have beepgsed>*®) e.g., fuzzy set theof§’?®),
possibility theory®®3® hybrid combinations of probability and possilyiltheories®® 349
Dempster-Shafer (DS) theory of evideffté¥ and interval analysi§>*°)

To describe the epistemic uncertainty in the prdliedsi (chances) of the Basic Events (BES)
of a Fault Tree (FT) model, here we use possibdistributions and DS structures, together
with probability distributions. The epistemic urtzenties are then propagated onto the
probability (chance) of the Top Event (TE) by résm to the general and comprehensive

framework of DS theory of eviden&&*%),

Dependence may exist among some BEs of the FT nideln particular, two types of
dependence need to be considered. The first typteseto the (dependenbrcurrenceof
different (random) BEs (in the following, this kinaf dependence will be referred to as
‘Oobjective’ or ‘aleatory’). An example of this olgeve (aleatory) dependence may be
represented by the occurrence of multiple failubsch result directly from a common or
shared root cause (e.g., extreme environmental tonsli failure of a piece of hardware

external to the system, or a human error): theytemaed Common Cause Failures (CCFs)

! In the following, ‘probability’ refers to the lirting relative frequency concept whenever followgtdte word
‘chance’ in parenthesis, and to the epistemic coinafienever used alone.



and frequently affect, e.g., identical componentselundant trains of a safety systém?>2
another example is that of cascading failures, melltiple failures initiated by the failure of
one component in the system, as a sort of chaitiogaor domino effecf*”. The second
type refers to the dependence possibly existing/det theestimatesof the epistemically-
uncertainprobabilities (chances) of some BEs of the FT model (in theofaihg, this kind of
dependence will be referred to as ‘state-of-knowdédgr ‘epistemic’). This state-of-
knowledge (epistemic) dependence exists when tbleapilities (chances) of some BEs are
estimated by resorting to dependerfbrmation sourcege.g., to the same experts/observers

or to correlated data sefé)'?,

In this context, the aim of the present paper isystematically analyze and quantify the
effects of objective (aleatory) and state-of-knalgie (epistemic) dependences between the
BEs on the TE probability (chance). In more detafie following analyses are performed:

1. the study of theeffectsof different states obbjective dependendsetween the BEs
when the state oépistemic dependendeetween the BE probabilities (chances) is
defined In this analysis the well-known Fréchet bouff8s®*?are used to model the
full range of objective dependences here of interest;

2. the study of theeffectsof different states oépistemic dependendetween the BE
probabilities (chances) when the stateobjective dependendeetween the BEs is
given In this analysis the Distribution Envelope Deteration (DEnv) method**®®
is undertaken in order to account fall kinds of (possibly unknown epistemic
dependences between the BE probabilities (chances).

To keep the analysis simple and thus retain a oleav of each step, the investigations are
carried out with respect to an example involvingcR with six BEs; different numerical

indicators are considered to perform a fair andntjteiive comparison between different



states of objective and epistemic dependence ardateaheir effects on the TE probability

(chance).

The work benefits from the efforts that have algebden done to address objective and state-
of-knowledge dependences in FTA.$fi®® objective dependencies between BEs are treated
by means of alpha factor models within the tradaldnamework of Common Cause Failure
(CCF) analysis. 11" and®® the use of Frank copula and Pearson correlatiofficieet is
proposed to describe a wide range of objective nitgreces between the BEs.4H and™®
(fuzzy) dependency factors are employed to modeled@ent BEs. In*"* state-of-
knowledge dependences between the BE probabi(itieances) are described by traditional
correlation coefficients and propagated by the wetbf moments. 11°® and"® statistical
epistemic correlations are modeled by resortingh® Nataf transformatiof® within a
traditional Monte Carlo Simulation (MCS) framewdfk “®. Finally, in "® the Dependency
Bound Convolution (DBC) approach is undertaken ¢ooant for all kinds of (possibly

unknown) epistemic dependences between the praieb(chances) of correlated BEs.

The remainder of the paper is organized as folldwsSection 2, the methods employed in
this study to model objective and state-of-knowledgpendences in FTA are described; in
Section 3, the FT studied is presented; in Sedfipthe results of the application of the
methods of Section 2 to the FT of Section 3 arewshdinally, Section 5 offers some

discussions and conclusions.



2 METHODS EMPLOYED IN THIS STUDY FOR MODELING
DEPENDENCES IN FAULT TREE ANALYSIS

In this Section, the computational strategies rerployed for modeling dependences in
Fault Tree Analysis (FTA) are described in deteilparticular, Section 2.1 deals with the
representation abbjective(aleatory) dependences between (iwecurrenceof) Basic Events
(BEs); instead, Section 2.2 concerns the treatnwntstate-of-knowledge(epistemi¢
dependences between gh@babilities(chances) of the BEs.

Other approaches for modeling objective dependenewgeen (random) events can be found

i (40, 60, 66-70)

2.1 Modeling objective (aleatory) dependences betweehd basic events

Let B, andB, be two BEs with probabilities (chanceBB,) and P(B,), respectively; with
reference to the simple parallel and series syst#rRgyure 1 (left and right, respectivel,

and B, may represent the events of failure of Componérasd 2, respectively, angl(B,)
and P(Bz) the corresponding probabilities (chances).Bif and B, are independentthe

occurrence of one event (e.g., failure of Comporigrdoesnot affectthe occurrence of the

other (e.g., failure of Component 2), i.€(B, |B,)=P(B,) and P(B, |B,)=P(B,). Then, the
probabilities (chancesp(B, n,, B,) and P(B,J,, B,) of the conjunction B, n,, B,) and
disjunction B, U, 4 B,) of eventsB; andB; (i.e., the probabilities-chances of failure of the
parallel and series systems of Figure 1, left agttrrespectively) are given by the well-
known deterministic functionsgBmmde (P(Bl), P(Bz)) (1) and Js,0,.5, (P(Bl), P(Bz)) (2),
respectively*® ¢

P(B, N ing B) = 90,5, (P(BL). P(B,)) = P(B,) P(B,) (1)
P(B, Ovg B,) = 95,5,,.5, (P(BL). P(B,)) =1~ (1- P(B,)) t1- P(B,)) )



where the symbolsr,,” and ‘0, " denote the conjunction and disjunction of indepesrtd

events, respectively.
If eventsB; andB;, areperfectlydependenti.e.,B; LI B, or B, LI B;), the occurrence of one
event (e.g., failure of Component 1 in Figureirhplies the occurrence of the other (e.g.,

failure of Component 2 in Figure 1) (i.eF?(B2 | Bl):l or P(Bl | BZ):l, respectively). In this

case,P(B, n . B,) and P(B, 0 .,; B,) are given by (3) and (4), respectivéfy *:
P(By N pert B.)= a0, (P(B,). P(B,)) = min(P(8,). P(B,)) 3)
P(Bl U pert Bz): 98,0,..8, (P(Bl)’ P(Bz)) = ma><P(Bl)’ P(Bz)) (4)

where the symbolsd ;" and ‘00 " denote the conjunction and disjunction of petfect

perf
dependent events, respectively. Examples of pedependence can be found in many
engineered systems. For example, some componegtbensubject to theamemaintenance
strategy and suffer@ammormistake in the procedure, or may experiencestmehistory of
environmental conditions leading to failure. Sublared life conditions may make failures of
components close to be perfectly dependent eVedls®® Y The importance of this state of
dependence can be understood with reference wirthpe parallel system of Figure 1, left: if
Components 1 and 2 were perfectly dependent, thedaf only onecomponent would lead
to the failure of thentire parallel system.

Finally, if eventsB; andB, areoppositelydependentthe occurrence of one eveninimizes

the likelihood of occurrence of the other. In thise, P(B1 N opp B ) and P(Bl Uopp B ) are
given by (5) and (6), respectivéfy) ¢

P(B, Ny B;) = Gs,1.,5, (P(B). P(B,)) = max{P(B,) + P(B,) - 1.0) 5)

OPP

P(B, Dogy B;) = U1, (P(BL). P(B,)) = min(P(8) + P(8;).1) (6)

opp



where the symbolsr,,’ and ‘0, denote the conjunction and disjunction of oppalgit

dependent events, respectively. An example of afgpdependence may be represented by
the seriesof a fuse wire (e.g., Component 1 in Figure 1htignd an electronic device (e.g.,
Component 2 in Figure 1, right). In case of overent, failure of the fuse wire (eveBt)
preventsfailure of the electronic component (evesi); thus, the joint failure of both
components might be better modeled by events that appositely dependent than

independent.

Whenno informationat all about the state of objective dependenocedest event8; andB;

is available preciseestimates forP(B, n B,) and P(B, 0 B,) cannot be computed. Instead,
extremebounds P(B, n,,B,) (7) and P(B,0,,B,) (8) on P(B,nB,) and P(B,0B,),
respectively, can be obtained by means of theickl$aréchet inequalitieé® °°)

P(B. N un B) =195, 95,1 = [MaX{P(B,) + P(B,) - 1,0). min(P(B,). P(B,)) W)

opp

P(B, Dyr B,) =[9s,5,.,5, Bsy5,,,5,] = [MaX{P(B,). P(B,)), min(P(B,) + P(B,) 1] ®)

opp

where functionsgg, s 9s0_.6, 98,8 and ggn s are defined in (3)-(6) and the

symbols ‘n .’ and ‘O, denote the conjunction and disjunction of event®se state of

objective dependence is completelpknown respectively. As stated iff?, it is worth

mentioning that i)P(B, n ., B,) (7) and P(B, 0, B,) (8) are “bounds oall possiblecases

of objective dependence” (because they include dnsttuction dependences ranging from
opposite to perfect) and ii) they represent thest possiblebounds in the absence of
information about objective dependence, i.e., ttmyld not be any tighter without excluding

some possible objective dependencéd”



Finally, if the analyst is able to say somethinguaththesign of objective dependence, then
Fréchet bounds (7) and (8) can be tightened. Iticpéar, if By and B, are positively
dependent, i.e., the occurrence of one event fatloes occurrence of the other, then

P(B,|B,)>P(B,) and P(B,|B)>P(B,), from which it follows that

(
P(BlmpOS )>PBlm|nd 2). In this case,bounds P(Bln Bz) and P(BIDpOS ) on

P(B, n B,) and P(B, 0 B,) are obtained by (9) and (10), respectivély’®
P(B, 1 pos B,) =955, Us,0..,5,] = [P(B) P(B,). min(P(B,), P(B,)) €)
P(Bl U pos Bz) = [gBlee,f 8, Jg,0,,8,] = [ma)<P(Bl)' P(Bz))’l_ (1_ P(Bl))[ﬁl_ P(Bz))]- (10)

On the contrary, ifB; and B, are negativelydependent, then boundQ(B1 N peg B ) and

P(B,0,., B,) on P(B,n B,) and P(B, 0 B,) are obtained using (11) and (12), respectively

(40, 60)

P(B, N e B.) =055, U505, =[max{P(B,)+ P(B,) - 1,0), P(B,) (P(B,)] (11)

P(B, Uoes B;)=[0s.5,,5, 95,5, =[1- (1= P(B)) i~ P(B,)) min(P(B) + P(B,) 1)) (12)

Component 1, P(B))
—{ }7 —1 Component 1, P(B|) — Component 2, P(B,) [—

Component 2, P(8,)

Figure 1. Simple parallel (left) and series (rigt)stems of two components whose failure

probabilities (chances) are P(Band P(B), respectively

2.2 Modeling state-of-knowledge (epistemic) dependencesetween the
probabilities (chances) of the basic events

In all generality, let us assume that:
I. eventsB; andB; are linked to an eve of interest by thgenericlogical connection

‘o’ (e.g., 'o’may stand for n’, ‘ L1, ...);



the state obbjectivedependence between eveBisandB; is definedand indicated as
‘oopj: for example, if there is positive objective depence betweeB; andB,, then
the subscriptobj stands for pos (see the previous Section 2.1);

the probability (chancefp(Z) of the evenZ = (B; oqpj By) Of interest is obtained as
P = g,(P(B,).P(B,)), where g,(P(B,),P(B,)) is a deterministic function which
provides a formal, mathematical description of #iate of objective dependence

between eventB; andB; (for examplegz(-, -) may be one of those reported in (1)-

(12)).

. the probabilities (chancesP(B,) and P(B,) of eventsB; and B, are considered

epistemically-uncertain. For ease of explanati@t,us suppose that the epistemic

uncertainty on P(Bl) and P(Bz) is represented by the Dempster-Shafer (DS)
structures {(Aye) MAe )i =12..ng} and {(Al) m(Ak,)): §=12....n },
respectively: in other words®(B,) and P(B,) are described by two sets of and

ng, intervals (focal eIements)AL(Bl):[EiBl,r)gl], i =1, 2, .., ng, and

B
A,i(Bz)=[£Jé2,|_3é2], j =1, 2 .. ng, respectively, each of which is assigned a
probability (or belief) massn(AL(Bl)), i=1,2,..,ng,and m(A,i(Bz)),j =1,2,...,n,
respectively (it is worth stressing thﬂ(A,L(Bl)) and m(A,i(Bz)) represent thdegrees of
beliefof membership oP(B,;) andP(B) in setsA,L(Bl) and A,L(BZ) only, but without any
specification of how these degrees of belief migatapportioned overAL(Bl) and

Al respectively; in other wordsn(Al, ) and m(Al ) express the proportion to
which all available and relevamvidencesupports the claim thd(B;) and P(B,),

whose characterization is incomplete, belong ts @égBl) and A,l(Bz), respectively).

10



By way of example, let {(Ae)mAg))ii=12.ng =2} =
{{ 020050],035), ([ 040060],065)} and {(Ake ) MAks))): =120 =2} =
{([ 0.10,035] ,045), ([ 030,0.45] ,055)} : for clarity, the corresponding DS structures are

pictorially shown in Figure 2, top left and righéspectively. Referring to probability

(chance)P(B,) of eventB; (Figure 2, top left), the corresponding DS struetcan be

interpreted as follows: probability (chand&B;) of eventB; lies within interval Aé(Bl)
= [0.20, 0.50] at least with probability(A,) = 0.35, whereas it lies within interval

A% = [0.40, 0.60] at least with probability(AZ,,) = 0.65. Notice that the DS
structures described above can be transformed upfer and lower Cumulative
Distribution Functions (CDFsf "®), FP®)  EP®) and EP®) for P(B,) andP(By),

respectively: in particular,lfp(Bl)(pBl) = P[P(B)<ps] = m(A:D(Bl)) and

Ab(ey) 00, g, [#0

Elpn) = EP@)<p) = Sl in the same way™(p,)
Ae(ey) U

0, pg;

PIP(B,)<ps] = ;m(Aé(Bz)) and E*™(p,) = PIP(B,)<py] =

Ab(s,)0 (0, Pe, 20

m(A,l(Bz)). The upper and lower CDFsE"(®), FPE)  EPB) gng pPE)

Al(e,)510. pey

respectively, corresponding to the illustrative BSuctures {(| 020050],035),
([ 040060],065)} and{([ 010035],045), ([ 030045],055}} of P(B;) andP(B,) are
pictorially shown in Figure 2, bottom left and riglrespectively. For example,
referring again to everB,, the upper and lower CDF< "®) and EP(BI), can be

interpreted as follows: the probabilify P(Bl)< Pg,] thatP(B,) is lower than or equal

to, e.9., ps = 0.30 lies within interval F "®/(030), F ®)(030)] = [0, 0.35] (referring

11



to the concept of Bayesian subjective probabilities the bounds
[F"®)(030), F "®)(030)] = [0, 0.35] reflect that the analyst is not abtendling to
precisely assign his/her probabilit)D[P(Bl)< Pg]). Further details about DS

structures (and DS theory of evidence) are notrgivere for brevity: the interested

reader is referred to the copious literature infidlel® ©"**)
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Figure 2. Top: illustrative DS structurd 020050],035), ([ 040060],065)} and
{( 010035],045), ([ 030048],055)} for P(By) (left) and P(B) (right), respectively. Bottom:
upper (solid line) and lower (dashed line) CDRE®) | FPE:) EPB) gng pPE).
respectively, corresponding to the illustrative §iictures described above

The focal elementsAl ;) :[Ei,ﬁg], i=1,2 ..,ng,j=1,2, ..,ng, of the probability

(chance)P(2) of the evenZ = (B1 oo B2) are obtained as images of the focal s@g@), I =

2 Notice that representing the epistemic uncertaintghe probabilities (chancesB’(Bl) and P(Bz) by DS
structures does not impair the generality of thecdption. Actually,any other type of distribution that may be
used to describe the epistemic uncertainnP(rBl) and P(BZ) can be easily transformed into a DS structure:

approaches for transformingrobability distributions can be found if® and ©%, whereas techniques for
transformingpossibilitydistributions can be found .

12



1,2, ...,ng, and Akg),j = 1, 2, ...,n, , through the functiorg, (P(B,), P(B,)) as A, =

B0 = | omin (6 (P(E)P(E) (o.(laLPE) |, i = 1

. _ : ~max
P(B)0AR(ey) P(B2 JOAL(s,) P(B)0AR (ey) . P(B2 JOAL 5,
2, ..., Nng,j=1,2,...,ng . For illustration purposes, again Bt andB; be the events of

failure of Components 1 and 2, respectively, ofdimeple parallel system of Figure 1 left, and
P(B,) andP(B,) the corresponding probabilities (chances): thiea probability (chance}(2)

of failure of the parallel system of Figure 1 |eftthe probability (chance) of the conjunction
Z = (B1 Nobj B2) of B1 andBy. For the sake of simplicity, we also suppose BiaandB, are
(objectively) independent events (i.eop] = ‘ind’): in such a caseP(2) is given by the
product ofP(B,) andP(By), i.e.,P(2) = g,(P(B,), P(B,)) = P(By)-P(B,) (see (1)). Finally, we
suppose thaP(B;) and P(B,) are distributed as in Figure 2. In this case, liwer (resp.,

upper) boundgi (resp., p!) of the focal setA,ii(Z) is computed as the product of the lower
boundsBiBl and Eéz (resp., upper boundg; and pj ) of the focal setsA,, and Al ),
respectively, i.e.p) = Bial -Eéz (resp.,pl = P - Py,) i =1, 2j =1, 2. Thus, itis found that
Aty =[0.2:0.1, 0.5-0.35] = [0.02, 0.17%f,) = [0.2:0.3, 0.5-0.45] = [0.06, 0.225¢,) =
[0.4-0.1, 0.6-0.35] = [0.04, 0.2108%,) = [0.4-0.3, 0.6:0.45] = [0.120, 0.270].

=1, 2, ..,

The probability massem(A}L(z)) of the focal elements\,,), i =1, 2, ...,ng , |

ng, , thereby obtained have to be determined basecherstate ofepistemicdependence

between theestimatesof P(B,) and P(B,). Three conditions of epistemic dependence are

often encountered in risk assessment problems #md, considered in this paper: i)

13



independence (Section 2.2.1), ii) total (perfeepehdence (Section 2.2.2) and iii) unknown

dependence(Section 2.2.3).

2.2.1 Independence

If the distributions describing the epistemic unaietty associated td®(B,) and P(B,) are

built usingdifferentinformation sourcege.g., different experts, observers or data s#is)
state-of-knowledgéendependencéitem i. above,epi = ‘ind’) exists between the estimates of

P(B,) and P(B,): in this paper, such condition is modeled by assgmandom set

independencebetween the focal elementﬁL(Bl)=[ELl,ﬁgl], i =1, 2, .., ng, and

Bl,
A;(Bz):[géz,ﬁéz], j=1,2 ...ng “®5n practice, this amounts to computing the

probability massesm(A,iL(Z)) of the focal eIementsA,iL(Z) as theproduct of the probability
massesn(Ag,)) and m(Alg ), i.e., m(Aly)) = m(ALe))-mlAls)).i=1,2, ...ng i =1, 2,
..., Ng, . Thus, referring again to the example above, foisd that under the assumption of
random set independencel = ‘ind’) the probability masses of the focal s@é_sl(z) =[0.02,
0.175], A%, = [0.06, 0.225],A%,, = [0.04, 0.210] andA%,) = [0.120, 0.270] aren(AL,)) =
0.350.45 = 0.1575,m(A%,)) = 0.350.55 = 0.1925,m(AZ,) = 0.650.45 = 0.2925 and
m(Aé(zz)) = 0.650.55 = 0.3575, respectively. The corresponding ugpe lower CDFs,

FP@ and FP?, of the probability (chanceé)(Z) of Z = (B, Ning B2)™ are shown in Figure 3,

top left.

% In the rest of the paper, the state of episterajteddence between the probabilities (chanegs) andP(By)

of eventsB; andB; linked to an evenZ of interest by the logical connection,y;’ is indicated asB; o By)™,
where the superscripepi’ stands for ind’, ‘perf or ‘ukn in the cases of independence, total (perfect) or
unknown epistemic dependence, respectively.

14



2.2.2 Total (perfect) dependence

When thesameinformation source is employed to construct theentainty distributions for
P(B,) and P(B,), thentotal (perfec) dependenceitem ii. above, épi = ‘perf) exists
between the estimates &(B,) and P(B,) ® '*. By way of example, consider the case of a
system containing a number gbhysically distingt but similar/nominally identical
components whose failure probabilities (chances)emtimated by means of teame data
set in such situation, thetate of knowledgabout these failure probabilities (chances) is
exactly thesameand, thus, the distributions describing the epigtauncertainty associated to
such failure probabilities (chances) have to besitteredtotally (perfectly) dependeht )

In this paper, such condition is straightforwardipdeled by imposingnaximal correlation

between the distributions ofP(B,) and P(B,) ® . In practice, assuming that the
distributions of P(B,) and P(B,) are totally (perfectly) correlated implies that emhone
uncertain parameter (e.g(B,)) is large with reference to its statistical dlaation, thenalso
the other uncertain parameter (eR(B,)) is large “to the same degree with respect towa
statistical distribution®*®. This “empirical” definition suggests the compigasl strategy for
simulating total (perfect) correlation between thstributions of the uncertain parameters
P(Bl) and P(Bz): i) choose a set ofs (equally spaced) valug i = 1, 2, ...,ng, within [0, 1)
(e.g.,.p = 0,4 =0.01, ....p"" = 0.99,8" = 1); ii) identify the corresponding focal sets

AL(BL):[E;’EEL] and AL(BZ):[EiBZ,T)iBZ] of P(B,) and P(B,) using theinverse transform

“ As stated in Ref. 2-Page 54, “an analyst’s stht@owledge about the possible values of a parantetan be
expressed in terms of a probability distributicﬁﬁ(e) when using Bayesian updating or expert judgmeris |

common practice to assign the same value to thanpeters of BEs of identical or similar components.
Therefore, for example, the probability of failwka class of identical motor-operated valves (MPMsopen is
considered the same. Suppose thaand 6, represent the parameters of two physically disting identical
MOVs: because this discussion assumes that all Bi@¥s have the same parameter, it is necessargtt s

0,. Moreover, because the analyst's state of knovdaddhe same for the two valves, it follows tHaﬁ(Hl) =

f(6,). Thus, f%(6,) and f%(6,) must be regarded as being equal distributionsteeated as completely
dependent distributions”.
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method i.e., [[F7=) (8 ) (EX® (8 ) and[(F=))"(8)(E"® ) (#).i =1 2, ....ne,

respectively (notice that using teamevaluesg' for the identification of the focal sets loéth

P(B,) and P(B,) impliestotal (perfect) dependendmetween them}; iii) calculate the focal

elementsAy,) as[ min {9,(P(B,),P(B,)}. max {9,(P(B)). P(Bz)}} :

P(BL)0A(g,): P(B2 )b (s,) P(B,)0Ab(5;) . P(B, )0Ab(s,)
i =1, 2, ...,ng; iv) associate toA,,, the probability massn(AiP(z)):ll Ng,i=1,2, ..
Referring again to the example above, it is fourat under the assumption of total (perfect)

epistemic dependence the probability masses ofoite sets A,y = [0.02, 0.175],ALf;) =

[0.06, 0.225], Agi) = [0.04, 0.210] andA;, = [0.120, 0.270] obtained by performing steps

i)-iv) above are m(A,ﬁ%z)) = 0.35, m(A,ifZ)) 0, m(A,i(lz)) = 0.10 and m(A,iZZ)) = 0.55,

respectively. The resulting upper and lower CDF?) and EP(Z), of the probability
(chanceP(2) of Z = (By Ning B2)*®" are shown in Figure 3, top right.

2.2.3 Unknown dependence

When the state of dependence between the informatiarces used to build the distributions
of P(Bl) and P(Bz) cannotbe defined precisely by the analyst (item iii. adoepi = ‘ukn),

for the sake of conservatisatfl kindsof (possiblyunknown epistemic dependences between
the estimates oP(B,) and P(B,) have to be accounted for. In this paper, the Distion
Envelope Determination (DEnv) meth&4®® is adopted to this aim. The DEnv method
allows computingextreme upper and lower Cumulative Distribution Functio(fSDFs)
F22(p,) and EZ%) (p,) on the probability (chancéX2) = g, (P(B,), P(B,)) of the evenz

= (B1 oobj By)"" of interestno matterwhat correlations or dependencies exist ame{g,)

and P(Bz); these bounds are also the “pointwiest possiblewhich means they could not be

any tighter without excluding some possible depands’“?. In practice, the aim of the
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DEnv approach is to identify the, - ng probability massesn(A,iL(Z)) for the focal elements
A{l(z), i=1,2 ..,ng,]=1,2,...,ng , such that the upper CDF &{Z) is themaximal
possible (i.e.,FF%)(p,) = ma{F"(p,)}) and the lower CDF o®(2) is the minimal
possible €22 (p,) = min{EP(z)(pZ )}) provided that a precise set of constraintsaissfied

6165 1n more detail,F2?)(p,) and F2%)(p,) are found by solving the following linear
maximization (13) and minimization (14) problemsspectively:

Find m(A:L(Z)),i =120, =120y :

_ _ } 13
FDPE(ri/)( z) = ma){F P(Z)(pz} = max{ Z mgA,'L(Z)) }' Up, -
Ag(zfgz(AiP(Bl)'Arj:(sz) n[o. p, 20
Find m(A:L(Z)),i =12..05,j=12....ng :
. . ; (14)
22 (p,)=min{E " (p, } = mm{ m(Aé(z))} Op,
AE’(Z):gZ(AiP(Bl)’Ag’(BZ) Hlo.p,]

subject to the constraints that i) the probabih'rt&ssesn(AL(Bl)) and m(A,i(Bz)) are conserved

g Mg,

(ie., Zm(Aji(z))=m(A,i(Bz)),j =1,2, ...,Ng, and;m(AjL(z)):m(AL(Bl)), i=1,2 ..,ny)

i=1
and ii) the probability massem(A}L(z)) are larger than or equal to zero. For illustration
purposes, the values 672 (p,) = F22)(008) and F22) (p,) = 7% (022) are calculated
with reference to the example above. In order técutate IfD';(fV)(O.O8) by solving
maximization problem (13), those focal sets amdd,@), i =1, 2,} =1, 2, thatintersect
interval [0,pz] = [0, 0.08] have to be identified. Since in thisse A,y = [0.02, 0.175],A¢f,
= [0.06, 0.225],A%) = [0.04, 0.210] andAZ,, = [0.120, 0.270] (see abovely focal sets

Aty Aoz and Agy) intersect interval [0, 0.08]; theonly focal setsAy,), Ay and AZ

and the corresponding probability massexéAé%z)), m( rfz)) and m(A,i(lz)) have to be
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included in the functionlfp(z)(o.08) to be maximized. As a consequence, maximization
problem (13) becomes:

Find m(Aé%z) )’ m(Anlaiz) )' m(AS%z) )' m(Agfz)) :
Fz) (008) = max{F *(008} = max{m{Att) )+ m(A%,))+ m(AZ:, }

subject to the constraints thatri)(AL, )+ m(A%,)) = m(Alg,) = 0.35, m(AZL, )+ m(AZ,)) =
m{AYe) = 0.65, mA) )+ maZ;)) = mlAys,) = 0.45, m{Af,) )+ mla,)) = mag,,) =
0.55 and iiym(AL,)), m(AZ,)), m(AZ,), m(AZ,) > 0. The optimization process leads to
Fr2)(008) = 0.8 withm(AL,)) = 0, m(AL,)) = 0.35,m(A%,)) = 0.45 andm(AZ,,) = 0.2.

Instead, in order to calculaﬂgg(Ezn)V

(022) by solving minimization problem (14), those focal
sets amongA{l(z), i=1,2,}=1, 2, that arencludedin interval [0,pz] = [0, 0.22] have to be
identified. Since in this caség,) = [0.02, 0.175],A¢,) = [0.06, 0.225],A%,, = [0.04, 0.210]
and A%,y = [0.120, 0.270] (see abovely focal setsAg,) and A%, are included in interval

[0, 0.22]; thenonly Ay, and A%, and the corresponding probability masm(s&\,ﬁ%z)) and

m(AFZ,lZ)) have to be taken into account in the functEﬁ(z)(OZZ) to be minimized. Then,

minimization problem (14) becomes:

Find m{AL) ) m(A%,) ) mlAZ) ) (A, )
F7¢)(022) = min{E "?)(022} = min{m(at, )+ m(aZ,}

subject to the same constraints as (15). The opdition process leads @E‘Eﬁ’v(ozz) =0.45

(16)

with m(AL,) = 0.15,m(AZ,)) = 0.20,m(AZ,)) = 0.30 anam(AZ,) = 0.35.

Finally, it is worth noting that in order to constt theentire CDFs F2%)(p,) and EF) (p, )

Env
for P(Z), such optimization problems have to be solvedafbthe valuesp; of interest. The
resulting upper and lower CDF5,"?) and EP(Z), of the probability (chancd)(2) of Z = (B,
Ning B2)"" are shown in Figure 3, bottom.
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Figure 3. Upper (solid lines) and lower (dashedkh CDFs,F"?) and EP(Z), of the

probability (chance) P(Z) of the conjunction of t¢adjectively) independent eventsdhd B
with probabilities (chances) P(Band P(B) distributed as in Figure 2, under the
assumptions of independence (top left), total (igipt) and unknown (bottom) epistemic
dependence
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3 CASE STUDY

In this Section, we present the example FT usedeference. In Section 3.1, the FT structure
and BEs uncertainties are described; in Section tB2 different states of (objective and
epistemic) dependence between the BEs are summhaiizeSection 3.3, the numerical

indicators used to quantify the effects of suchethelences are provided.

3.1 Fault tree structure and basic events uncertainties

A simple FT comprised afige = 6 BEs Bi: i = 1, 2, ...,nge = 6} is considered (Figure 4).

BEs B;, B, andBs; are linked to even; by junctionJ; (an OR-gate) and BH3,, Bs andBg
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are linked to everk; by junctionJ, (also an OR-gate); finally, evertts andE; are linked to

the Top Event (TEX by junctionJ; (an AND-gate):

X=EnE,=(B0B,0B,)n(B,0B,1B) (17)

Top Event (TE), X

Event E; Event E,

SIS

Figure 4. FT structure

Letting {P(B ):i = 1,2...,n,. =6} denote the probabilities (chances) of BBs { = 1, 2, ...,
nge = 6}, the probability (chancd)(X) of the TEX is expressed in all generality as follows:
P(X)=0x(P(B,). P(B,). P(B,). P(B.). P(B5). P(Bs)). (18)
where gx(’) is a deterministic function of i) the FT struau(.e., the logical connections

between the BES) (see Figure 4) and ii) the (ptssdbjective dependences existing between

the BEs (see Sections 2 and 3.2).

It is assumed thafP(B ):i = 1,2...,n,. =6} are epistemically-uncertain. Uncertainties about
{P(B):i=16} are described using lognormal Probability Disttitu Functions (PDFs)
{f F’(E‘i)(pBi): LN(1,0,):i =16} with parameter values 4( ai): i = 1, 6} as specified in

Table I. As an exampleB; and Bs could denote failure of an item (e.g., a mechdnica
component) for which a sufficient amount of infotiaa (failure) data is available for
statistical analysis and for accurate characteomatof the corresponding epistemic
uncertainty by a precise probability distributiorDifferently, uncertainties about

{P(B):i=235 are represented using (trapezoidal) possibility stritiutions

{ﬂF’(E‘i)(pBi )=TRAHa .b,c.d,):i= 2,3,5}, with supports {&, d: i = 2, 3, 5} and cores K,
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cl: i =2, 3, 5} as specified in Table |. By way of exas) B,, B; andBs could denote events
(e.g., human-error-dominated events) for which atacdexists and where the (trapezoidal)
possibility distributions are constructed based expert statements alone. Finally, the

uncertainty abouP(B4) is described by a finite Dempster-Shafer (DS)cétne, i.e., by a set

of ng, =4 intervals (focal elementsg,L(B4) :[E.js ,ﬁé4] ,j=1,2,...,ny, =4, each of which is

assigned a probability mase(AFj,(B4)),j =1, 2, ...,ng =4, as specified in Table I. As an

example B4 could denote failure of an item (e.g., a protectivautomation system, a digital
instrumentation and control system, a recently-tigexl technology, ...) for which only
sparse pieces of data exist: in such cases, thleainformation is much more valuable
than purely subjective (and often vague) expergpuent, but it is not sufficient for building a
precise probability distribution.

Two different cases are considered: ‘large’ (Cajeardd ‘small’ (Case B) BE probabilities

(chances). In Case AP(B):i=12....n,. =6} are of the order of 1) whereas in Case B

they are of the order of TO(Table I). For illustration purposes, Figure 5 \whothe

distributions of{ P(B ): i = 1,2....,n,. =6}, with reference only to Case B.

P(B,)

Epistemic uncertainty description

Probability distribution

Distribution shape

Lognormal, f F’(E")(psi) = LN(u, 01)

Distribution Case A 3 =-1.60945, = 0.3226
parameters Case B p;=-5.8091p; = 0.6678
P(B,)

Epistemic uncertainty description

Possibility distribution

Distribution shape

Trapezoidal,7"®)(p, ) = TRAR@a,, by, C;, d5)

a,=1-10", b,=1.5-10, ¢, = 2.5-10', d, = 4- 10"

a,=2-10° b, =3-10°, c, = 5-10°, d, = 8- 10°

Distribution Case A
parameters Case B
P(B;)

Epistemic uncertainty description

Possibility distribution

Distribution shape

Trapezoidal,np(Ba)(sz) = TRARag, bs, Cs, ds)

a;=2.5-10,b; = 4-10", c;=4-10", d; = 5- 10"

a;=5-10°,b;=8-10°, ;= 8:10°, d3 = 1- 10°

Distribution Case A
parameters Case B
P(B.)
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Epistemic uncertainty description
Distribution shape

Dempster-Shafer (DS) structure
{(Ae, ma)): i = 12...n, =4
{([5-107, 2.5-101, 0.19), ([1-10, 1.5-107], 0.33), ([2.5-10, 4-107,

Distribution Case A o5, (12-10, 0g,-lol],o.zs)} )

parameters {([1-10°, 5-107, 0.19), ([2-10, 3-107, 0.33), ([5-10, 8-10°], 0.25),
Case B 14.10% 6.10%, 0.23)}

P(B)

Epistemic uncertainty description Possibility distribution

Distribution shape Trapezoidal,nP(Bﬁ)(pBS) =TRARas, bs, Cs, ds)

Distribution Case A as=5-10% bs=2-10", cs = 2-10", ds = 4.5-10°
parameters Case B as=1-10°, bs = 4-10°, cs = 4-10°, ds = 9- 10°
P(B,)

Epistemic uncertainty description Probability distribution

Distribution shape Lognormal, f P(B")(DBG) = LN(u, 06)

Distribution Case A g =-1.3863g5 = 0.2465
parameters Case B p5=-5.2150p, = 0.4214
Table I. Characteristics and parameters of theriistions of{P(B ):i = 1,2....,n,. =6}
Basic Event Bl (Case B) Basic Event B2 (Case B)
e N ]
1 YA Do R W
R L s O e O N
0 0.002 O‘(‘JO4 0‘0‘05 0. 0‘08 0“01 0.012 0.014 0 0.002 0. (;04 0. (‘)06 0.(‘)08 0.‘01 0. (;12 0.014

Probability of Basic Event Bl, P(Bl) Probability of Basic Event Bz' P(Bz)

Basic Event B3 (Case B) Basic Event B, (Case B)
T

P(B)

/R

Possibility value,

o
3

o
o

o
@

)
=

o
w

o
N

0.1

——— Upper CDF
Lower CDF

h |
0.004 0.006 0.008 0.01
Probability of Basic Event Ba, P(B3)

I I T
0.006 0.008 0.012

Probability of Basic Event B, P(B,)

0.014
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Basic Event B5 (Case B)

7 ®)
o
3

o

Possibility value,
o

o

Basic Event Bs (Case B)

L T I 1 T T
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 0.

Probability of Basic Event BS, P(Bs)

1 I 1 I Il I |
002 0.004 0.006 0.008 0.01 0.012 0.014
Probability of Basic EventBs, P(Be)

Figure 5. Distributions of P(B ):i = 1,2,...,n,. =6} for Case B

3.2 States of dependence considered

The following states of objective dependence betvitbe BEs of Section 3.1 are considered
in the analysis (Section 2.1): a) independence ((Keand (2)), b) perfect (see (3) and (4)), ¢)
opposite (see (5) and (6)), d) positive (see (9) @9)), e) negative (see (11) and (12)) and f)
unknown dependence (see (7) and (8)). In addittbe, following states of epistemic

dependence between the probabilities (chanced)eoBEs of Section 3.1 are considered in

the analysis (Section 2.2): i) independence, ifjgmt and iii) unknown dependence.

Two classes of analyses are performed (Section 4):

1. assuming unknown epistemic dependence (iii. abdwtveen the probabilities

(chances) of the BEs, the effects of different estafa.-f. above) of objective

dependence between the BEs are analyzed;

2. assuming objective independence (a. above) bettieeBES, the effects of different

states (i.-iii. above) of epistemic dependence betwthe probabilities (chances) of the

BEs are analyzed.

Table Il summarizes the analyses carried out irptleeent paper (Section 4) together with the

corresponding objectives.

States of dependence between the BEs

Objective (Section 2.1)

Epistemic (Section 2.2

) Aim of the analysis

Analysis 1

(Table 111

a) independence
b) perfect dependence

iii) unknown dependence

- study the effects of different states of objeetiv

dependence between the BEs of the FT when the s

fate
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and Section | c) opposite dependence of epistemic dependence between the probabilities
4.1) d) positive dependence (chances) of the BEs is given (in particular, unkno
e) negative dependence epistemic dependence is assumed in the present
f) unknown dependence analysis)
Analysis 2 - study the effects of different states of epistemi
i) independence dependence between the probabilities (chanceggof
(Table ”,' a) independence i) total (perfect) dependence BEs of the FT when the state of objective depenelern
and Section iii) unknown dependence | between the BEs is given (in particular, objective
4.2) independence is assumed in the present analysis)

Table Il. Analyses performed in Section 4, andrtredative objectives

For clarity, Table Ill reports the details of Anags 1 and 2 (Table II). First, only for

illustration purposes the effects of different egabf (objective and epistemic) dependences

between BEs Bi: i = 1, 2, ...,nge = 6} are demonstrated with reference to very sempl

configurations (referred to as C1-C5 in Table i) particular, eventZ = (B; N Bg) (C1), B1

N Bs) (C2), B2 N Bs) (C3), B4 LI Bs) (C4) and B, 1 B3) (C5) are considered in both

Analyses 1 and 2 to study whether (and how) thecesfof different states of (objective and

epistemic) dependence are influenced by the paatibogjical connectionexisting between

the BEs. Moreover, such analyses are performedoih Case A (namely, ‘large’ BE

probabilities-chances) and Case B (namely, ‘smBE probabilities-chances) to study

whether (and how) the effects of different stategobjective and epistemic) dependence are

influenced by thenagnitudeof the BE probabilities (chances).

Then, the more realistic case involving the FT igiuFe 4 is considered to analyze the effects

that (objective and epistemic) dependences betB&s{B;: i = 1, 2, ...,nge = 6} haveon

the probability (chancep(X) of the TEX (Table Ill, Configurations T1-T4 of Analysis 1 and

T1-T3 of Analysis 2). These computations are pentat only in Case B (namely, ‘small’ BE

probabilities-chances) because in realistic safdtical engineered systems the basic

components are usually highly reliable and, thb® torresponding failure probabilities

(chances) are typically very small. In AnalysisChnfiguration T1 represents the reference,

baseline case whesadl the BEs are considereddependentOn the opposite, Configuration

T4 represents thextreme(most conservatiyecase wher@o assumptions about the states of
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objective dependence betweah the BEs are made. Instead, Configurations T2 aBd T
represent ‘intermediate’ (and more realistic) caseparticular, in Configuration TRositive
objective dependence is assumed between BEand Bg (i.e., those events representing
failures of mechanical components): this situai®rar from unlikely in real systems and
may be due to several causes, e.g., i) shared spigcequipment (e.g., components in
different systems are fed from th&ame electrical bus) or ii) physical interactions (e.g.
failures of some component create extreme envirotehestresses, which increase the
probability-chance of multiple-component failures)stead, in Configuration T3 unknown
objective dependence is assumed betweemBBie., an event representing the failure of a
protective or automation system) and BE(i.e., an event dominated by a human error): in
real systems, this situation may occur, e.g., waeroperator turns off a protection system
(eventB,) after failing to correctly diagnose the conditiaisa plant (evenBs).

Finally, in Analysis 2 only ‘extreme’ situations earconsidered: in particular, in
Configurations T1, T2 and T3 states of independenotal (perfect) dependence and
unknown epistemic dependence, respectively, aranmas$ betweerall the probabilities

(chances) oéll the BEs of the FT.

Analysis 1 — Unknown (1kn) epistemic dependence between the probabilitiesh@nces) of the BES

Configuration | Events and corresponding states oflgective (obj) dependence | Cases
Cl Z=(By N o;Be)™
Simple configurations: | C2 Z=(BL N o B)™
pairs of Basic Events C3 Z=(B; B obj BS)EE: obj =ind, perf, opp, ukn(see Section 2.1) A B
(BEs) C4 Z=(Bs L oy Bs)
C5 Z=(B; 1 4 B)™
T1 X=[B: UinaBz UinaBs) N ina Ba U ina Bs U ing Be)]™
T2 Positive po9 objective dependence betwdgnandBg
Top Event (TE) X T3 X=[B1 UinaBz UinaBs) N ing Ba U e Bs U ing Be)]™ B
T4 X= [(Bl D ukn BZ D ukn BS) N ukn (B4 D ukn BS D ukn B6)]ukr
Analysis 2 — Objective independencer{d) between the BEs
Configuration | Events and corresponding states of @gtemic (epi) dependence | Cases
C1 Z= (B N inaBe)™
Simple configurations: | C2 Z=(B1 N ingBs)*
pairs of Basic Events C3 Z=B, N ingBs)®™ | epi=ind, perf, ukn(see Section 2.2) A B
(BESs) ca Z=(Bs g Bs)™
G5 Z= (B U ing B)™
T1 X=[B1 Uina Bz UinaBa) N ing (Ba U ing Bs [ ing Be)]™
Top Event (TE) X B
P (TE) T2 X=[B1 Uina Bz UinaBa) N ing (Ba U ina Bs [ ing Be)]™"
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| T3 | X=[B1 UinaBo UinaBa) N ina Ba U ina Bs U ing Be)] ™ |

Table Ill. Details of the computations performediimalyses 1 and 2 (Table II). ‘Obj’ =
‘objective’; ‘epi’ = ‘epistemic’; ‘ind’ = ‘independence’; ‘perf’ = ‘perfect’; ‘opp’ =
‘opposite’; ‘ukn’ = ‘unknown’

3.3 Quantitative indicators

Two quantitative indicators are here introduce@\valuate the effects that different states of
(objective and state-of-knowledge) dependence lerivibe BEs (Section 3.2) have on the

probability (chanceP(2) of an evenZ of interest (e.g., in our case the XE i) the interval
[Py, p7**] for the 95-th percentil®(2)** of P(2), and ii) the relative average distantg
between the upper and lower Cumulative Distribufenctions (CDFsF *@) and F @ .

The interval[ p>*, p;*°] for the 95-th percentil®(Z)™* of P(Z) is defined as

02, 52| =[(F @) *(098), (E™®) (008, (19)

where [pr(z)]_l and [EP(Z)]_l are the inverse functions of the upper and lowBFE F P?)

and F7@ | respectively, oP(2). It is worth noting that in a risk analysis coxtie P =
(EP(Z))_1(0.95) is the interesting quantity since it guaranteest tithe probability
P[P(Z) < p2*] that the true value d¥(2) is lower thanpS® = LP(Z))_l(O.QS) is greater than

or equal to 0.95. Thugp>*® = (EP(Z))_1(0.95) can be interpreted as a conservative assignment
of the 95-th percentileP(2)** (i.e., a conservative estimate of risk) with respe the

imprecision arising from the input BEs of the Fbvimusly, the larger the value g&,*, the

larger the risk associated to the system.

The relative average distande between the upper and lower CDES®) and F 2) of P(2)

is defined as
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(20)

where [IEP(Z)]_l and [EP(Z)]_l are defined abovedz([a’):(EP(Z))_l([a’)—(IEP(Z))_l(,B) is the
width of the interval p, pZ] for thep-th percentileP(Z)” of P(2) (in other words,d, (5)

is the distance between the upper and lower CBE¢) and EP(Z) of P(Z) computed at
cumulative probability levep along the real ‘horizontal’ axis; it is straightfcard to notice

that d,(B) can take values between 0 and 1 because it idistance between the upper and

lower values of thg-th percentile ofP(Z), which obviously takes values between 0 and 1);
finally, E[P(z)"°] is the expected value of the probability distribnt fp(z)'Ns(p'ZNS)
obtained by transforming the upper and lower CBE¥) and EP(Z) of P(Z) according to the
principle of insufficient reasofi®. The sampling procedure for estimatiBfP(z)"*] is:
i. transform the upper and lower CDAs"?) and EP(Z) of P(2) into the (unique)
probability distribution f %@ (piis) ©5.89)
a. sampleNps random realizationsu; k = 1, 2, ...,Nng from a uniform

probability distribution on [0, 1) and consider tkerresponding intervals

[(Ep(z))_l(uk)’ (EP(Z))_l(Uk)] ,k=1,2,...Nns

b. sample a random realizatiop); for P(2)™° from a uniform probability
distribution on each interva(F ") (u, ) (E'D(Z))_l(uk N1.k=1,2,...Nns the
distribution resulting from the collection of theafizationsp,y , k=1, 2, ...,

Nins, is an empirical estimate foi P(Z)'Ns(p'ZNS));

NINS

i. estimateE[P(Z)"°] as |NSDZP'NS-
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Other methods for transforming the upper and lo@BFs FP2) and EP(Z) of P(2) into a
(unique) probability distribution are available'{f & 8788

It is worth noting that the quantitgl, (20) provides a measure of the average distanee (i
separation) between the upper and lower CBE¥) and EP(Z) of P(2), computed along the
real ‘horizontal’ axis. In this sense, it is alsoiadicator of the uncertainty (i.e., imprecision)
‘contained’ in the distribution dP(Z): the larger the average distandg (20), the larger the
uncertainty (imprecision) associated?(@).

Finally, notice that the expected vaIlEQP(Z)'NS] in (20) is simply chosen as a numerical
indicator of the approximate “location” of the up@ad lower CDF< "@) and EP(Z) on the
‘horizontal’ axis: in other words, it is taken as@americal indicator of therder of magnitude

of P(2). In this view, E[P(Z)"°] serves the main purpose oharmalization factorfor the
1

integral J'[(EP(Z))l(ﬂ)—(lfp(z))_l(ﬂ)]dﬁ, whose magnitude is obviously dependent on the
0

magnitude ofP(Z) and, thus, on the magnitude of the BE probaédichances). In this way,
such normalization factor allows a fair comparidmiween values of the distande (20)

computed in Cases A and B (Section 3.1), whereBiGeprobabilities (chances) differ by

severabrders of magnitude

4 APPLICATION

In this Section, the methods described in Sectidorzhandling dependences in FTA are
applied to the example of Section 3. In particugection 4.1 contains the results of Analysis
1 (Table Il in Section 3.2), whereas Section €garts the results of Analysis 2 (Table Il in

Section 3.2).
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4.1 Studying the effects of objective (aleatory) depemshces between the

basic events

Table IV reports the values of the indicatdrs, , p;**] (19) andd; (20) obtained for the

eventsZ = (B1 Nobj Be)"™", (B Nobj Bs)"™", (B2 Nobj Bs)™", (B4 [ o5 Bs)"" and B, 1 gpj By)" "
(Configurations C1-C5 of Analysis 1 in Table Ilipder the assumptions of independence
(‘obj = *ind), perfect (‘obj = ‘perf), opposite (bbj = ‘oppg) and unknown ©bj = ‘ukn)
objective dependence, with reference to Cases A Ean@ection 3.1); the estimates of
E[P(Z)'NS] are also shown for completeness. In addition, @yilustration purposes Figure

6 depicts the upper and lower Cumulative DistribmitiFunctions (CDFs)I?P[(Bl”"*”'BS)m],

FrlEome)] EP[(BI““J'BS)M] and EP[(B“D"b"BS)“kn] obtained for event{ Ny Bs)"“" (top) and B,

Uobj Bs)™" (bottom), respectively, under the assumptions mafependence (solid lines),
perfect (dashed lines), opposite (dotted lines) anknown (dot-dashed lines) objective
dependence, with reference to Cases A (left) an¢idht). Notice that by construction

I?P[(BlmuknBS)um] = l?P[(BI(‘I perf BS)Ukn] and F P[(BlﬁuknBS)Ukn] e F P[(BlnoppBS)um] , Whereas IEP[(B4DuknBS)UKn] =

GRS EP[(B“D“”BS)M] = el (see (7) and (8)): however, only for clarity of

illustration the corresponding lines in Figure 6 aot overlapped.

We start by analyzing those cases where the BEbnkel by AND-gates, i.eZ = (B1 Nop;

Bs)"X", (B1 Nobj Bs)™ ", (B2 Nobj Bs)"*" (Configurations C1-C3 in Table lII). It can be sethat

095 - 095

p —= 095
Bl%bst)Ukn’ (Bl%bst)

o and p(Bz%nst)ukn

in Case A the upper boun of the 95-th percentiles

09

P(B. 1y B ™, Pl(B 0oy B and P|(B, 0, B[ are 0.1528, 0.1557 and

0.1760, respectively, under the assumption of ieddpnce, whereas they are 0.3461, 0.3462

and 0.3941, respectively, under the assumption mifnown dependence. Thus, the
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assumption of independence would lead to underastign the upper bounds of the 95-th
quantiles (and, thus, the risk associated to theesy) by 2.27, 2.22 and 2.24 times,
respectively. These considerations are reflected by the analysis of the relative average
distances d( d(

and d( between the upper and lower CDFs

ki ki ki
Bl”oths)un' Bl”obst)un Bz”oths)un

pr[(Blﬂobj Be)um] pr[(Blﬂobj Bs)um] pr[(Bz“obj Bs)Ukn] F P[(Blﬂohj Bs)“kn] . F P[(Blﬂobj Bs)“kn] and F P[(Bzﬂom' Bs)“kn] ,

respectively. Actually, as before the assumptiomdépendence leads to underestimating the

uncertainty (imprecision) ‘contained’ in the dibutions of the probabilities
PI(B, Ny Bs)* ], PL(B. Ny B;)*] and PI(B, Ny, Bs)*] by 4.25, 2.61 and 2.65 times,
respectively.

This underestimation is much more significant irs€8. Actually, the values oﬂi((si T

T)(‘:i ey and T)(ggi g are 9.2078- 18 6.9995-13 and 7.0080- I8 respectively, under

the assumption of independence, whereas they 287@®.10°, 8.8002- 16 and 7.8810- 1§

respectively, under the assumption of unknown depecel Thus, the assumption of
independence leads to underestimating the upperdsafithe 95-th quantiles (and, thus, the
risk associated to the system) by 89.02, 125.7014:2d60 times, respectively. Again, these

considerations are reflected by the analysis of rilative average distancedial B, i
N obj Be

d( and d( Actually, as before the assumption of independeleads to

Bl("othS)UKn B2 N opj BS)Ukn )

underestimating the uncertainty (imprecision) asded to the distributions of
ukn ukn: kn

PI(B, Ny Bs)* 1. PL(BL Ny B;)* and P(B, ny, B )] by 136.89, 164.80 and 140.99

times, respectively. A visual representation ostheesults is given in Figure 6, top: actually,

it can be seen that the upper and lower cDE&E ] and EP[(BmuknBs)“*“] of
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P[(B, N, B;)""] (dashed linesyompletely envelothe upper and lower CDFB PlEinw )]

and £ ABw®) of pi(B, . B.)* (solid lines) in both Cases A (left) and B (right)

The facts that i) the assumption of objective iredefence leads to a consistent
underestimation of risk and ii) such underestinratomore dramatic in Case B than in Case
A are explained as follows. The probability (chgnokthe conjunction of two independent

events, sayB; andBs, is given by the product of the corresponding pbdiiges (chances)
P(B,) and P(B,), i.e., P(B,n,, B;) = P(B,)- P(B,) (see (1)): thus, iP(B,) and P(B,) are
of the order of 18, then P(B, n,, B,) is of the order of 1&". Instead, ifno assumption at all

about the state of objective dependence betizeandBs can be made, only (extreme and

best possible) lower and upper bounds R{B, n B;) can be computed aB(B, N, B;) =

[P(B, 10 B P (B 1 s B = [P(B, 10 B5) P (B 1 o B5) =
[max{P(B,)+ P(B,)- 1,6}, min{P(B,), P(B, )}] (see (7). In this case, ®(B,) and P(B;) are
of the order of 18, then the upper bound®(B, n,,B;) = min{P(B,),P(B,)} (which
represents the most conservative estimate of risk}till of the order of 10. As a
consequenceP(B, n,,B;) ~ 10" is approximatelyn orders of magnitudéarger than

P(B, n,, B;) = 10%", which explains also why the difference betweR{B, n,, B;) and

P(B, n,, B;) dramaticallyincreasesas P(B,) and P(B,) decreasdi.e., as increasek

Different situations arise in the cases where tke Bre linked by OR-gates, i.&.7 (B4 L op;

Bs)"“"and B, L op; B3)"" (Configurations C4 and C5 in Table III). It can s®en that in Case

095
(B4Dobj Bs )Ukn

and p* _\. are 0.6670 and 0.6970, respectively, under the

A the values ofp e
2 - obj ©3

assumption of independence, whereas they are 0.84010.8941, respectively, under the

assumption of unknown dependence. Thus, the asgumpf independence leads to
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underestimating the upper bounds of the 95-th geantand, thus, the risk associated to the
system) by about 1.26 and 1.28 times, respectiVédigse considerations are reflected also by

the values of the relative average distamt@% 5 i and d( between the upper and

ki
By o B X"

lower CDFs pr[(B“D"”jBS)Ukn], prKBzD"b"BS)Ukn], prlecael] gng FP[(BZ']°hiB3)Ukn], respectively.
Actually, as before, the assumption of independdeads to underestimating the uncertainty
(imprecision) ‘contained” in the distributions (B, Oy, B} and P[(8, Oy, B.) by

1.45 and 1.85 times. Notice that timagnitudeof such underestimationsnst negligible but

it is muchless relevanthan for the cases where BEs are linked by ANRgat

095

In Case B, the values of> . and P are 1.6685-10 and 1.7772-18

Ple.0u,)

respectively, under the assumption of independemdeereas they are 1.6763“@nd
1.7881- 10, respectively, under the assumption of unknowneddpnce. Thus, in this case
the assumption of independence leads terg slightunderestimation of the upper bounds of
the 95-th quantiles (and, thus, of the risk assedi@o the system), i.e., only by about 1.01

and 1.02 times, respectively. Instead, the valuahefelative average distancdé B
'4 = obj

and d( .« are 1.0216 and 0.6381, respectively, under thengstson of independence,

BZDobjBS)
whereas they are 1.1676 and 0.8076, respectivalgeruthe assumption of unknown

dependence: in other words, th@certainty (imprecision) associated to distributions of
Pi(B, Oy, B.}*] and P[(B, Oy, B} is underestimatecby about 1.14 and 1.27 times.
Thus, although theisk estimates areomparable the underestimation of the uncertainty
(imprecision) associated to the distributionsRj{B, Oy, B.}*"] and P[(B, Oy, B} is not
negligible A visual representation of these results is gimeligure 6, bottom right. Actually,
it can be seen that the lower CDE§’[(B“D“*“BS)M] (dashed line) andt Pl 0 )] (solid line)

(i.e., the CDFs used to estimate the upper bouhtieed®5-th quantiles oP[(B, O, B,)""]
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and P[(B4Dmd Bs)”k”], respectively) almostoincide on the contrary, the upper CDF

EPle0we) ] (dashed line) lies consistentipovethe upper CDFE PC 5] (solid line).

These results are explained as follows. The prdibalfchance) of the disjunction of two
independent events, sag; and Bs, is given by P(B,0,,B,) = P(B,) + P(B,) -
P(B,)- P(B;,) (see (2)). Instead, iho assumptions at all about the state of objective
dependence betwedBy and Bs can be made, only (extreme and best possible)r|@and

upper bounds on P(B,0B;) can be computed as P(B,0,,B) =

[P(B, 0o B;), P(B, D B = [P(B, U B,) P(B, Doy B
[max{P(B,), P(B, )}, min{1, P(B,) + P(B, )}| (see (8)). If bothP(B,) and P(B,) are of the order
of 10" (with n >> 1, like in the present Case B), thé{B,O,, B.) = P(B,) + P(B;) -
P(B,)-P(B,) = P(B,) + P(B;) = 2-10". In addition, it is evident thaP(B, 0, B,) =
[max{P(B,), P(B, )}, min{1, P(B,) + P(B, }| = [10™, 2-107. This means that if bot#®(B,) and
P(B,) arequite small(i.e., if n >> 1), then the value d®(B, 0, B;) is comparableto that of
P(B,0,,B.), ie., P(B,O,,B;) = P(B,0,,B;) = 2-10" in other words, twaadically
differentassumptions about the state of objective deperdbatweerB, andBs provide a

comparablerisk estimate. On the contrary, the uncertainty (imigien) ‘contained’ in the

distributions of P(B, 0, B;) and P(B, 0, B;) is obviously quite different: actually, the
interval P(B, 0, B;) ~ [10", 2-10" ‘completely envelops’ the estimate(B, 0, B;) ~

2-10",

Analysis 1 — Unknown (1kn) epistemic dependence between the probabilitiesh@nces) of the BEs

Case A
State of objective ¢bj) dependence
EventZ Indicators | Independence ind) Perfect (perf) Opposite Opp) Unknown (ukn)
ElP(z)™] 0.0583 0.1954 0 0.1069
ukn
(B ”(gil?e) d, 0.8634 0.6321 / 3.6672
1=, 52°] | [0.0492, 0.1528] [0.2205, 0.3461] 0 [0, 0.3461]
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ElP(z)™] 0.0553 0.1627 0 0.1068

(B1 ”(%1‘2'?5)“" d, 1.4779 1.8426 / 3.8630
@""5, 5395] [0.0243, 0.1557] [0.1564, 0.3462] 0 [0, 0.3462]
Elr(z)"] 0.0715 0.2068 0 0.1573

(B, Q%ia?s)“k" d, 1.6629 3.0140 4.3991
b‘m, EQ%J [0.0188, 0.1760] [0.1220, 0.3941] 0 [0, 0.3941]
Elr(z)"] 0.3933 0.2645 0.4538 0.4219

(B« D(ébil )Bs)“k" d 0.9325 0.5493 1.1871 1.3495
1=, 5*| | [0.3100, 0.6670] [0.2500, 0.4401] [0.3302, 0.8401]  [0.2500, 0.8401]
E[P )] 0.5272 0.3873 0.6251 0.5750

(B2 D( ébé‘_);?’s)um 0.5161 0.2419 0.7644 0.9542
@‘“’5, 5295] [0.4519, 0.6970] [0.3910, 0.4961] [0.4911, 0.8941]  [0.3910, 0.8941]

Case B
State of objective 6bj) dependence
EventZ Indicators | Independence ind) Perfect (perf) Opposite Opp) Unknown (ukn)

E[P )] 2.0110° 3.0010° 0 1.8410°

(B le 1?6)Ukn 1.3339 67.0056 / 182.6408
@‘”5, 5395J [1.4110°% 9.21107 | [3.4310° 8.19107 0 [0, 8.19107
E[P )| 1.8410° 2.7110° 0 1.8310°

(B, ”(giz?s)um 1.2028 101.9268 / 198.2254
@‘”5, 5395J [8.7510°, 7.8510% | [2.5610° 8.80107 0 [0, 8.80107]
E[P )] 2.6210° 4.1410° 0 3.1510°

(B2 ”(gis?s)um 1.7034 164.6245 / 240.1765
@"95, 5395] [5.6810° 7.0:10% | [2.4410°% 7.88107 0 [0, 7.88107
E[P )] 8.9310° 5.1910° 9.0010° 8.3310°

(B4 D( ébil)Bs)Uk" 1.0216 0.4700 1.0325 1.1676
@""5, 5395] [6.5910° 1.67107 | [5.0010° 8.7610% | [6.4010° 1.68107 | [5.0010°% 1.68107
E[P )] 1.25107 7.7410° 1.25102 1.15102

(B2 U By 0.6381 0.2047 0.6468 0.8076

(C5)

E)OQS , 5395]

[9.8310°% 1.78107

[7.8210°% 9.92107

[9.8210°% 1.79107

[7.8210°% 1.79107

Table IV. Values of the |nd|cato|1;°95 _°95J (19) and d (20) obtained for the simple events

= (B Mobj Be)" ", (Br Notj Bs)"", (B2 Nobj Bs)™", (Bs U oj Bs)*“"and (B O o) Bg) ™"
(Configurations C1-C5 of Analysis 1 in Table lIhder the assumptions of independence,
perfect, opposite and unknown objective dependevitereference to Cases A and B; the

estimates folE[P(2)"°] are also reported for completeness
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Figure 6. Upper and lower CDFE P[(Bl“"h"BS)m], lfp[(B“D"h"B*")Ukn], EP[(B”“"BS)“ ‘| and

EP[(B“D“J' %] obtained for events (B ob Bs)"“" (top) and (B I ob; Bs)"" (bottom),

respectively, under the assumptions of independ@adid lines), perfect (dashed lines),
opposite (dotted lines) and unknown (dot-dashesk)imbjective dependence, with reference

to Case A (left) and B (right). Top, right: the (\raIP[(Bl N o BS)”"”] =0inCaseBis
represented out of scale at about®’ for clarity of illustration

Similar analyses are performed on the probabilityagce)P(X) of the TEX of the FT in

Figure 4. Table V reports the values of the indicef p;”, py™] (19) anddy (20) obtained

X

for P(X) under different assumptions of objective dependerbetween the BEs
(Configurations T1-T4 in Table IIl), with referente Case B; the estimates f&fP(X)"°]

are also shown for completeness. For illustratiampeses, Figure 7 depicts the upper and
lower CDFs F ") and Ep(x) obtained forP(X) under different assumptions of objective

dependence between the BEs (Configurations T1-Tiébie IlI).
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These results confirm the considerations drawnhleyanalysis of the simple Configurations

C1-C5in Table Ill. For example, it can be seer tha values of the upper bourf® on the

95-th quantileP(X)** are 7.2275-1band 8.9766-1din Configurations T1 (wherall the
BEs are considereshdependentand T2 (where BE®; and Bs are consideregbositively
dependent This means that neglecting an hypothetical stafgositive dependence between
only onepair of BEs linked by an AND-gate is sufficient fianderestimating the upper bound
P of the 95-th quantileP(X )% (and, thus, the risk associated to the system) g2
times. On the contrary, in Configuration T3 (whem indication at all about the state of
objective dependence between HisandBs is available), the value op™ is 7.7580- 10:
thus, in this casevenassumingunknownobjective dependence between a couple of BEs
linked by an OR-gate leads to overestimating thk aissociated to the systemly by about
1.07 times with respect to the ‘baseline’ assunmptibindependence. Finally, Configuration
T4 represents the ‘extreme’ case when&knownobjective dependence is assumed between
all the BEs of the FT: notice that since in the pres@nalysis 1 unknown epistemic
dependence iglso assumed between the probabilities (chancea)l dfie BEs, Configuration

T4 provides the most ‘uncertain’ and, thusnservativeestimate forP(X). Actually, the
values of p>* anddy are 2.5923-10and 72.7040, respectively, i.e., 35.87 and 44irhég

larger than those obtained under the ‘baselinairapsion of objective independence between

all the BEs (Configuration T1).

Analysis 1 — Unknown epistemic dependence betwedretprobabilities (chances) of the BEs

Case B
Indicators
Top Event (TE) X (configuration, Table 1) E[P(X)'NS] d, bi%, 52‘95]
X=[B: Jina Bz ingBs) N ind Bs U ing Bs U ina B]™ (T1) | 2.872510° 1.6472 [7.36170°, 7.2275107]
Positive po3 objective dependence betweRnandBg (T2) 2.257410° | 15.3945 [6.56240°, 8.976610°7
X=[B1 UinaBs U ingBs) N ina (Ba 1 wn Bs U ina Be)]™ (T3) | 2.899810° 1.7324 [6.12371.0°, 7.758010%]
X=[B: 1 wnB2 U winBs) N wen Bs L wn Bs [ wn Be)1™ (T4) | 1.046310% | 72.7040 [3.57380°, 2.5923107]
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Table V. Values of the indicatofp.”, p;*°] (19) and ¢l (20) obtained for P(X) under

different assumptions of objective dependence leettvee BEs (Configurations T1-T4 in
Table Ill), with reference to Case B; the estimdtsE[P(X )"°] are also reported

Analysis 1 - Case B: Top Event (TE), X
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Probability P(X) of the Top Event (TE) X
Figure 7. Upper and lower cDFE "¥) and EP(X) obtained for P(X), with reference to Case
B under different assumptions of objective depecelbetween the BEs (Configurations T1-

T4 in Table Ill). The value P(X) = 0 is representad of scale at about-10° for clarity of
illustration
Some considerations are in order with respectaardisults obtained. It has been shown that

the assumption of objective independence betweenliBked by AND-gates very often leads

to asignificantunderestimatiorof i) the risk associated to the system (hereesgmted by the
upper boundp2® of the 95-th quantile®(X ) of P(X)) and ii) the uncertainty (imprecision)
‘contained’ in the distribution oP(X) (here represented by the relative average distdnc
between the upper and lower CDFE®) and FPX) of the TE probability-chancB(X)). In

more detail, it can be seen that when the BE piitiieb (chances) are of the order of*10

(like in the present Case A), the assumption ofectye independence leads to
underestimating risk and uncertainty by 2.22-2ig¥%$ and 2.61-4.21 times, respectively,
with respect to the assumption of unknown objectdependence. Instead, if the BE
probabilities (chances) are of the order of?400° (like in the present Case B), the

assumption of objective independence leads to esterating risk and uncertainty by 89—
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125 times and 136-164 times, respectively, witlpees to the assumption of unknown
objective dependence. Thus, the effects of objedeendences between BEs linked by
AND-gates becomes more and mdramaticas the BE probabilities (chancelgcreasethis
poses serious concerns in the risk assessmenngdler systems where the components are
highly reliable and, thus, characterized by verakifailure probabilities (chances).

Instead, it has been shown that the assumptiobjettive independence between BEs linked
by OR-gates leads tosight underestimatiorof both risk and uncertainty. In particular, ihca
be seen that when the BE probabilities (chancespathe order of 19 (like in the present
Case A), the assumption of objective independemealsl to underestimating risk and
uncertainty by 1.26-1.28 times and 1.45-1.85 tinrespectively, with respect to the
assumption of unknown objective dependence. Insiédlde BE probabilities (chances) are
of the order of 18-10° (like in the present Case B), the assumption ofecihje
independence doe®t lead to aemarkableunderestimation of risk, whereas it causem@a
negligible underestimation of uncertainty (i.e., by 1.14-1ives with respect to the
assumption of unknown objective dependence). Basedhese considerations, it can be
concluded that i) the assumption of objective indeleece between BEs linked by OR-gates
leads to aslight underestimation of rislonly when the BE probabilities (chances) are
relatively large (e.g., of the order of 0and ii) the relevance of the underestimation of
uncertainty does not change dramatically as thepBibabilities (chances) change. These
considerations makes the treatment of dependeretegdn BEs linked by OR-gates much

less criticalthan for AND-gates.
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4.2 Studying the effects of state-of-knowledge (epistea) dependences

between the probabilities (chances) of the basic ents

Table VI reports the values of the indicatdps, , p;**] (19) andd; (20) obtained for the

eventsZ = (B1 Nind Be)*™®, (B1 Nina Bs)*®, (B2 Nind Bs)®™, (Ba Uina Bs)*™ and B, [ ing Ba)*”
(Configurations C1-C5 of Analysis 2 in Table Ilihder the assumptions of independence
(‘epi = ‘ind), perfect ('epi = ‘perf) and unknown (epi = ‘ukn) epistemic dependence,
with reference to Cases A and B; the estimates E{)P(Z)'NS] are also reported for

completeness. In addition, only for illustrationrposes, Figure 8 shows the upper and lower
Cumulative Distribution Functions (CDFsI?P[(Bl“i"dBf’)epi], Pl EP[(Bl”i“dBS)epi] and

EP[(B“D‘““BS)EN] obtained for eventsBf{ Ning Bs)®” (top) and Bs Lling Bs)®” (bottom),

respectively, under the assumptions of independésulal lines), perfect (dashed lines) and

unknown (dot-dashed lines) epistemic dependenc, reference to Cases A (left) and B

(right).

We start by analyzing the cases where the BESrdted by AND-gates and we refer only to

event Z = By Ning Bs)® (C2) for brevity sake. It can be seen that in Caske values of the

upper boundp;” _ ., of the 95-th percentiIeP[(Bl N g Bs)epi]095 are 0.1216, 0.1467 and

0.1557 under the assumptions of independence, fpwfect) and unknown epistemic
dependence, respectively. Thus, the assumptiorpisteenic independence would lead to
underestimating the upper bound of the 95-th gleafdind, thus, the risk associated to the
system) by 1.21 and 1.28 times with respect to abksumptions of total and unknown
epistemic dependence, respectively; in additionticaothat the assumption of perfect
dependence produces estimates of the upper bouth@ &5-th quantile that ammmparable

to those obtained under the assumption of unknogperidence. These considerations are
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reflected also by the analysis of the values ofréhative average distan@b(Bl B ) between
Nind

the upper and lower CDFB B andEP[(Bl”‘"dBf’)epi]. Actually, as before the assumption
of epistemic independence leads to underestimétmgincertainty (imprecision) ‘contained’
in the distribution of P[(Bl N ing Bs)epi] by about 1.04 and 1.92 times with respect to the

assumptions of perfect and unknown epistemic depee respectively. Similar
considerations can be drawn from the analysesafte\B: Ning Bs)®* and B8 Ning Bs)®™.

No significant differences can be found here betwibe results obtained in Cases A and B.
For example, in Case B, the assumption of epistemiiependence leads to underestimating
the upper bounds of the 95-th quantiles (and, ttingsrisk associated to the system) by 1.287
and 1.290 times with respect to the assumptionstaf and unknown epistemic dependence,
respectively; in addition, the estimates producgdhe assumptions of total and unknown
epistemic dependence aenost identicabs before.

Very similar considerations (and results) can keawir by the analysis of those cases where
the BEs are linked by OR-gates, i2.= (B4 Uing Bs)®® and B, U inq Bs)®*® (Configurations
C4 and C5 in Table Ill) in both Cases A and B: thue analyze only evenB{ LI ing Bs)®™
with reference to Case A for brevity. It can berst#®at the assumption of independence leads
to underestimating the upper bounds of the 95-dmtles (and, thus, the risk associated to
the system) by 1.03 and 1.04 times with respedhéoassumptions of total and unknown
dependence, respectively.

These results are pictorially confirmed by Figure&ually, it can be seen that the upper and
lower CDFs ofP[(B1 Ning Bs)®"] (top) andP[(Bs L ing Bs)®"] (bottom) obtained under the
assumption of unknown epistemic dependence (ddtedanes)completely envelophose
obtained under the assumptions of independencel (sws) and perfect dependence (dashed
lines) in both Cases A (left) and B (right) (i.hey obviously represemhore conservative

estimates of the bounding distributions). In adudtiit is worth noting that the lower (resp.,
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upper) CDFs obtained under the assumption of perégastemic dependence, i.e.,

F Ao ] ang prlene)] (regp Frleower ] ang FrE0wer]) arevery closeto

(B 11 B) ]

those produced by the assumption of unknown epistdependence, i.ek and

F e (resp., FEBmal] ang FAEcwe )y in the region where the cumulative

probability is very close to the ‘extreme’ upperubd 1 (resp., lower bound 0). In other
words, the CDFs produced under assumptions of gieastfed unknown epistemic dependence

arealmost identicain the range oéxtreme probabilities-chancéise.,extreme quantilgghat

are of particular interest in the risk assessmeobmplex,highly reliablesystems.

Analysis 2 — Objective independencen(d) between the BEs
Case A
State of epistemic €pi) dependence
EventZ Indicators | Independence ind) Perfect (perf) Unknown (ukn)
| E[P )] 0.0543 0.0576 0.0583
. epi
(By rggcil)Be) 0 0 0.9270
@‘“’5, 5395] 0.0974 0.1230 [0.0492, 0.1528]
| E[P )™ ] 0.0474 0.0510 0.0553
I
(B r(]icnzdz)Bs)ep 0.8993 0.9389 1.7242
@‘“’5, 5395] [0.0503, 0.1216] [0.0634, 0.1467] [0.0243, 0.1557]
| E[P )] 0.0609 0.0622 0.0715
. epi
(B2 nga)Bs) 1.4874 15152 1.9523
ﬁ)‘“’s, EE%J [0.0254, 0.1551] [0.0283, 0.1717] [0.0188, 0.1760]
| E[P )] 0.3817 0.3740 0.3933
) epi
(B4 D(énz)Bs) 0.6510 0.6393 0.9608
ﬁ)‘“’s, EE%J [0.3786, 0.6423] [0.3933, 0.6618] [0.3100, 0.6670]
| E[P )] 0.5192 0.5178 0.5272
A epi
(B2 D(éng)Bs) 0.4239 0.4229 0.5241
@‘“’5, 5395] [0.4707, 0.6798] [0.4813, 0.6932] [0.4519, 0.6970]
Case B
State of epistemic €pi) dependence
EventZ Indicators | Independence ind) Perfect (erf) Unknown (ukn)
| E[P '”5] 1.6210° 2.0:10° 2.0110°
(B “iédlBﬁ)ep' 0 0 1.6603
( ) 095 —095 5 5 =l
ﬁ) o] 4.3610 6.7210 [1.4110° 9.2110°%]
(B, NmaBy® | E[P(2)"] 1.6910° 1.9610° 1.8510°
(C2) d, 0.9112 0.9943 1.3109
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1=, 52°| | 2.3810° 6.09107 | [3.4510° 7.85109 | [8.7510° 7.88107]

| E[P )™ 2.4310° 2.4910° 2.6210°

(B Tg%)BS)ep' 1.4878 1.5251 1.8371
@"95, 5295] [1.01:10° 6.19109 | [1.1310% 6.8710% | [5.6810° 7.0110%]

| E[P )™ 8.6910° 8.6510° 8.9310°

(B D(éng)BS)ep' 0.7266 0.7237 1.0499
@"95, 5395] [8.3810° 1.59107 | [8.8210° 1.67107 [6.5910° 1.67107

| E[P )™ 1.22102 1.22107 1.25102

(B D( éng)BB)ep' 0.5289 0.5298 0.6502
ﬁ)‘“’f’, EQ%J [1.0510% 1.72107 | [1.07-10% 1.76107 [9.8310° 1.78107

Table VI. Values of the indicatofp.”, p;*°

(19) and d (20) obtained for events Z = {B

Nind Be)®, (B1 Nind Bs)*, (B2 Nina Bs)*”", (B4 O ing Bs)® and (B 0 ing Bs)®™ (Configurations
C1-C5 of Analysis 2 in Table Ill) under the assuom of independence, perfect and
unknown epistemic dependence, with reference tes<Casand B

°P' (Configuration C2)
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Figure 8. Upper and lower CDF?P[(Bl”i""BS)epi], EP[ B )7 and EP[(B"Di””BS)epi]

obtained for events (Bing Bs)®" (top) and (B L ing Bs)®” (bottom), respectively, under the
assumptions of independence (solid lines), pe(tiathed lines) and unknown (dot-dashed
lines) epistemic dependence, with reference to CAq¢eft) and B (right)

If P[(54 Uind BS)Epi] ’
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Similar analyses performed oR(X). Table VII reports the values of the indicators

[p,”, Px] (19) anddy (20) obtained foiP(X) under different assumptions of epistemic

dependence between the probabilities (chances)hef BEs (Configurations T1-T3 of
Analysis 2 in Table Ill), with reference to Case tBe estimates folE[P(X)"°] are also
shown for completeness. For illustration purposégre 9 depicts the upper and lower CDFs
FPX) and EP(X) obtained forP(X) assuming independence (solid lines), perfecthglhs
lines) and unknown (dot-dashed lines) epistemiceddpnce between the probabilities
(chances) oéll the BEs (Configurations T1-T3 of Analysis 2 in Tahl).

It can be seen that the values of the upper bopffd of the 95-th percentile®(X)** are
4.4030-10, 6.4111-18 and 7.2275-16 under the assumptions of independence, total
dependence and unknown dependence, respectivelg, Tie assumption of independence
would lead to underestimating the upper bound ef 3-th quantile (and, thus, the risk
associated to the system) by 1.456 and 1.641 tmbsrespect to the assumptions of total
and unknown dependence, respectively. This isatefteby the analysis of the indicatdy:

the assumption of epistemic independence leadsderastimatinglx by 1.02 and 2.56 times,

with respect to the assumptions of total and unkmepistemic dependence.

Analysis 2 — Objective independencen(d) between the BEs
Case B

Indicators

Top Event (TE) X (configuration, Table I11) E[P(X)'NS] d, bi%. 52’95]

By UinaBo UingB3) N ing (Bs U ingBs U ing Be)]™ (T1) | 2.157110” | 0.8576 [1.98211.0°, 4.4030107]

X
X
X

[
[(B: Uina By L inaBs) N ing (Bs Uina Bs U ina Be)]™" (T2) | 2.311910* | 0.8781 [3.1558.0" 6.411110°
[(Br Uing B2 UingBs) N ing (Bs Ling Bs L ina Be)]™ (T3) | 2.872510* | 2.1935|  [7.36120°, 7.2275107

Table VII. Values of the indicatoti)z%, Y] (19) and ¢ (20) obtained for P(X) under the

assumptions of independence, perfect and unknoisteepc dependence (Configurations
T1-T3 of Analysis 2 in Table Ill), with referenceGases A and B
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Analysis 2 - Case B: Top Event (TE), X
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Figure 9. Upper and lower cDFE "™ and EP(X) obtained for P(X) under the assumptions
of independence (solid lines), perfect (dashed)ia@d unknown (dot-dashed lines)

epistemic dependence (Configurations T1-T3 of Amaly/in Table 1), with reference to
Case B
Some considerations are in order with respecteod¢isults obtained. It has been shown that
the assumption of epistemic independence betweeprdiabilities (chances) of BEs linked
by AND-gates very often leads to an underestimadibi) the risk associated to the system
(here represented by the upper bound of the 9%+imtde of the TE probability-chance) and
i) the ‘imprecision’ contained in the distributioof the TE probability-chance (here
represented by the relative average distance bettveeupper and lower CDFs of the TE
probability-chance). In particular, in the analysisConfigurations C1-C5 it is shown that
when the BE probabilities (chances) are of the model0” (like in the present Case A), the
assumption of epistemic independence leads to astil@ating risk and uncertainty by 1.11—
1.57 times and 1.02-1.92 times, respectively, watspect to the assumptions of total and
unknown epistemic dependence. Similarly, if the @BBbabilities (chances) are of the order
of 10%-10° (like in the present Case B), the assumption @ftemic independence leads to
underestimating risk and uncertainty by 1.11-2ifrge$ and 1.03-1.44 times, respectively,

with respect to the assumptions of total and unkmepistemic dependence.
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Similar results are obtained for BEs linked by O&Reg. In particular, it can be seen that
when the BE probabilities (chances) are of the model0* (like in the present Case A), the
assumption of independence leads to underestimasikgnd uncertainty by 1.02—-1.04 times
and 1.01-1.48 times, respectively, with respecth® assumptions of total and unknown
epistemic dependence. If the BE probabilities (chahare of the order of 810> (like in

the present Case B), the assumption of episterdependence leads to underestimating risk
and uncertainty by 1.025-1.05 times and 1.01-1imés, respectively, with respect to the
assumptions of total and unknown epistemic depereden

Finally, in the analysis of the probability (chahot the TE of the FT in Figure 4 it is shown
that assuming epistemic independence between thizalpitities (chances) adll the BEs
leads to underestimating risk and uncertainty by58-4.641 and 1.02-2.56 times,
respectively, with respect to the assumptions t&l tand unknown epistemic dependence. A
final remark is in order with respect to the faeattin all the cases considered, the 95-th
quantile estimates produced under the assumptiqgreidéct dependence atemparableto
those obtained under the hypothesis of unknownraégrece.

On the basis of these considerations, it can beleded that i) the effects of epistemic
dependence are in generabn negligible (in particular, in the estimation o$mall
probabilities-chancesand extreme quantilgs but they arequantitativelyless relevantand
critical than those of objective dependence (see the pue\dection 4.1); ii) the effects of
epistemic dependence am®t influenced dramatically by the type ddgical connection
existing between the BEs, and iii) the effects pistemic dependence ar®t modified
significantly by themagnitude of the BE probabilities (chances). These constaera
demonstrate that epistemic dependencasnot be neglected in the risk assessment of

complex, safety-critical engineering systems (irtipalar, whensmall probabilities-chances
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and extreme quantileshave to be estimated); however, their effects ldtely to be

overwhelmed by those of objective dependencesd¢dggnt).

5 DISCUSSION AND CONCLUSIONS

In this paper, the effects of objective and stdtkrmwledge dependences between the BEs of
a FT have been quantified. Two types of analys&e baen carried out on a FT with six BEs:

1. assuming unknown epistemic dependence betweenrtalplities (chances) of the
BEs, the effects of different states of objectiepehdence between the BEs have been
guantified,;

2. assuming objective independence between the BExftbeets of different states of
epistemic dependence between the probabilitiesn¢es of the BEs have been
studied.

With respect to analysis 1. above, it has been slthat:

« the assumption of objective independence betweenBiis linked by AND-gates
alwaysleads to aseriousunderestimation of i) the risk associated to tystesn (here
represented by the upper bound of the 95-th qeanfilthe TE probability-chance)
and ii) the uncertainty (imprecision) ‘containedi the (distribution of the) TE
probability-chance (here represented by the relativerage distance between the
upper and lower CDFs of the TE probability-chaneéh respect to the assumptions
of perfect and unknown objective dependence: dgtuidle corresponding estimates
may differ even by severalders of magnitude

» this underestimation becomes more and mdramatic as the BE probabilities
(chances) gesmaller. this poses serious concerns in the risk assessmheamplex
systems where the components are highly reliabte #ws, characterized by very

small failure probabilities (chances);
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» the assumption of objective independence betweenliBked by OR-gates may lead
to aslight underestimation of both risk and the uncertaihtyarticular:

= the assumption of objective independence betweea BBEds to aslight
underestimation of risknly when the BE probabilities (chances) are relatively
large (e.g., of the order of 1¥); otherwise, when the BE probabilities
(chances) are quite small (e.g., of the order 6f-10°), the assumption of
independence produces risk estimates that caraparableeven to those
provided by the assumption of unknown dependence;

= the assumption of objective independence betweeraB#aysleads to alight
underestimation of the uncertainty (imprecisiorgritained’ in the distribution
of the TE probability (chance);

= the effects of objective dependence between BEkediroy OR-gates aneot
influenced dramatically by thmagnitudeof the BE probabilities (chances).

Based on the considerations above, it can be cdedlthat:

» the treatment of objective dependences betweenliBEsd by AND-gates is much
more criticalthan for OR-gates;

* unknown (or, at least, perfect) objective dependeimuld be assumed between BEs
linked by AND-gates, in particular if the corresparg probabilities (chances) are
very small (e.g., of the order of $910?): this leads to obtaining conservative risk
estimates;

« objective dependences between BEs linked by ORsgate be in generakglectedf

the corresponding probabilities (chances)vamy small(e.g., around I6102).

With respect to analysis 2. above, it has been slibat:
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the assumption of epistemic independence betweeprtimbilities (chances) of the
BEs leads to anon negligibleunderestimation of the risk associated to theesyst
(here represented by the upper bound of the 95itintde of the TE probability-
chance) with respect to the assumptions of perfaai unknown epistemic
dependence: this is particularly evident in theingstion of small probabilities
(chances) andextreme quantilegshat are of paramount importance in the risk
assessment of complexighly reliablesystems;

the estimates for the upper bound of the 95-th tjeanf the TE probability (chance)
produced by the assumptions of perfect and unknepistemic dependence are
comparable

the effects of epistemic dependence between thepBbabilities (chances) are
quantitativelyless relevantand critical than those of objective dependence between
the BEs: they may differ by severalders of magnitude

the effects of epistemic dependenceraemodified significantly by thenagnitudeof
the BE probabilities (chances);

the effects of epistemic dependence ot influenced dramatically by the type of

logical connectiorexisting between the BEs.

Based on the considerations above, it can be coadlthat:

the conditions of epistemic dependence between dBEgrobabilities (chances)
should not be neglectedwhen small probabilities(chances) ane&xtreme quantiles
have to be estimated: with respect to that, unkn@vnat least, perfect) epistemic
dependences should be assumed in order to obtasec@tive risk estimates;

if objective dependences abso present (e.g., between BEs linked by AND-gates and
characterized by very small probabilities-chance)e effects of epistemic

dependence are likely to beerwhelmedy those of objective dependence.
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