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Risk analysis models describing aleatory (i.e., random) events contain parameters (e.g., probabilities, failure rates, …) that are epistemically-uncertain, i.e., known with poor precision. Whereas aleatory uncertainty is always described by probability distributions, epistemic uncertainty may be represented in different ways (e.g., probabilistic or possibilistic), depending on the information and data available. The work presented in this paper addresses the issue of accounting for (in)dependence relationships between epistemically-uncertain parameters. When a probabilistic representation of epistemic uncertainty is considered, uncertainty propagation is carried out by a two-dimensional (or double) Monte Carlo (MC) simulation approach; instead, when possibility distributions are used, two approaches are undertaken: the hybrid MC and Fuzzy Interval Analysis (FIA) method and the MCbased Dempster-Shafer (DS) approach employing Independent Random Sets (IRSs). The objectives are: i) studying the effects of (in)dependence between the epistemically-uncertain parameters of the aleatory probability distributions (when a probabilistic/possibilistic representation of epistemic uncertainty is adopted) and ii) studying the effect of the probabilistic/possibilistic representation of epistemic uncertainty (when the state of dependence between the epistemic parameters is defined). The Dependency Bound Convolution (DBC) approach is then undertaken within a hierarchical setting of hybrid (probabilistic and possibilistic) uncertainty propagation, in order to account for all kinds of (possibly unknown) dependences between the random variables. The analyses are carried out with reference to two toy examples, built in such a way to allow performing a fair quantitative comparison between the methods, and evaluating their rationale and appropriateness in relation to risk analysis.

Introduction

In risk analysis, uncertainty is typically distinguished into two types: randomness due to inherent variability in the system behavior and imprecision due to lack of knowledge and information on the system. The former type of uncertainty is often referred to as objective, aleatory, stochastic whereas the latter is often referred to as subjective, epistemic, state of knowledge. [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF]Risk-Informed Decision Making Handbook[END_REF][START_REF] Apostolakis | The concept of probability in safety assessment of technological systems[END_REF][START_REF] Helton | Alternative representations of epistemic uncertainties[END_REF] We are interested in the framework of two hierarchical levels of uncertainty, referred to as "level-2" setting: [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF] the models of the aleatory events (e.g., the failure of a mechanical component, the variation of its geometrical dimensions and material properties, …) contain parameters (e.g., probabilities, failure rates,…) that are epistemically-uncertain, i.e., known with poor precision. a

In current risk analysis, both aleatory and epistemic uncertainties are treated within a probabilistic framework. [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF]EPRI/NRC-RES Fire PRA methodology for nuclear power facilities[END_REF][START_REF] Apostolakis | Pitfalls in risk calculations[END_REF][START_REF] Huang | A fuzzy set approach for event tree analysis[END_REF][START_REF] Usnrc | An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[END_REF] However, in some situations, the lack of complete knowledge, information and data impairs the probabilistic representation of epistemic uncertainty. A number of alternative representation frameworks have been proposed to handle such cases, [START_REF] Aven | On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability[END_REF][START_REF] Aven | Interpretations of alternative uncertainty representations in a reliability and risk analysis context[END_REF][START_REF] Aven | The concept of ignorance in a risk assessment and risk management context[END_REF][START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF][START_REF] Ferson | Whereof one cannot speak: when input distributions are unknown[END_REF] e.g., fuzzy set theory, [START_REF] Klir | Fuzzy Sets and Fuzzy Logic: Theory and Applications[END_REF] Dempster-Shafer theory of evidence, [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Helton | A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[END_REF][START_REF] Helton | Representation of Analysis Results Involving Aleatory and Epistemic Uncertainty[END_REF][START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] possibility theory [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Possibility theory and statistical reasoning[END_REF][START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF] and interval analysis. [START_REF] Ferson | Arithmetic with uncertain numbers: rigorous and (often) best possible answers[END_REF][START_REF] Ferson | Sensitivity in risk analyses with uncertain numbers[END_REF][START_REF] Ferson | Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty[END_REF][START_REF] Ferson | Bounding uncertainty analyses[END_REF][START_REF] Moore | Methods and Applications of Interval Analysis[END_REF] In this paper, we use probability distributions to describe aleatory uncertainty and we consider both probability and possibility distributions to describe the epistemic uncertainty in the parameters of the (aleatory) probability distributions. [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Possibility theory and statistical reasoning[END_REF][START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF] When both aleatory and epistemic uncertainties are represented by probability distributions, their propagation is carried out by a two-dimensional (or double) Monte Carlo (MC) simulation approach. [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF][START_REF] Cullen | Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs[END_REF][START_REF] Rao | Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies[END_REF] Instead, when a hybrid (probabilistic and possibilistic) uncertainty representation is considered, two approaches are here undertaken: (i) the hybrid MC and Fuzzy Interval Analysis (FIA) approach, b where the MC technique [START_REF] Kalos | Monte Carlo methods. Volume I: Basics[END_REF][START_REF] Marseguerra | Basics of the Monte Carlo Method with Application to System Reliability[END_REF] is combined with the extension principle of fuzzy set theory, [START_REF] Baraldi | A Combined Monte Carlo and Possibilistic Approach to Uncertainty Propagation in Event Tree Analysis[END_REF][START_REF] Baudrit | Post-processing the hybrid method for addressing uncertainty in risk assessments[END_REF][START_REF] Baudrit | Joint propagation of variability and imprecision in assessing the risk of groundwater contamination[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF][START_REF] Cooper | Hybrid Processing of Stochastic and Subjective Uncertainty Data[END_REF][START_REF] Flage | Possibility-probability transformation in comparing different approaches to the treatment of epistemic uncertainties in a fault tree analysis[END_REF][START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF][START_REF] Kentel | Probabilistic-fuzzy health risk modeling[END_REF][START_REF] Kentel | Risk tolerance measure for decision-making in fuzzy analysis: a health risk assessment perspective[END_REF][START_REF] Zadeh | Fuzzy Sets[END_REF] within a "level-2" hierarchical setting; [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Kentel | 2D Monte Carlo versus 2D Fuzzy Monte Carlo Health Risk Assessment[END_REF][START_REF] Moller | Fuzzy randomness -a contribution to imprecise probability[END_REF][START_REF] Möller | Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics[END_REF][START_REF] Möller | Engineering computation under uncertainty -Capabilities of nontraditional models[END_REF][START_REF] Moller | Safety assessment of structures in view of fuzzy randomness[END_REF][START_REF] Moller | Time-dependent reliability of textilestrengthened RC structures under consideration of fuzzy randomness[END_REF] (ii) the Monte Carlo (MC)-based Dempster-Shafer (DS) approach employing Independent Random Sets (IRSs), c where the possibility distributions describing the epistemically-uncertain parameters are discretized into focal sets that are randomly and independently sampled by MC. 52-62 a This framework of uncertainty modeling is an extension of the so-called "level-1" setting where random variability (aleatory uncertainty) and lack-of-knowledge (epistemic uncertainty) are not separated into two hierarchical levels. 5 b In the following, this method will be referred to as "hybrid MC-FIA approach" for brevity. c In the following, this method will be referred to as "MC-based DS-IRS approach" for brevity.

The above mentioned methods encompass several assumptions about the (in)dependence relationships between (i) the epistemically-uncertain parameters of the aleatory probability distributions and (ii) the aleatory variables. With respect to that, two issues must be considered for the practical application of the methods in risk assessment problems:

(i) in the hybrid MC-FIA approach, total dependence is assumed between the epistemically-uncertain parameters of the aleatory probability distributions, i.e., between the information sources (e.g., the experts or observers) that supply the corresponding possibility distributions; [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF] on the contrary, in the MC-based DS-IRS approach, random set independence between the epistemic parameters is implied; [START_REF] Baudrit | Comparing Methods for Joint Objective and Subjective Uncertainty Propagation with an example in a risk assessment[END_REF][53][START_REF] Fetz | Sets of joint probability measures generated by weighted marginal focal sets[END_REF][START_REF] Fetz | Propagation of uncertainty through multivariate functions in the framework of sets of probability measures[END_REF] (ii) the standard MC method (used to propagate the aleatory uncertainties in the three methods mentioned above) presupposes independence between the random variables, [START_REF] Ferson | What Monte Carlo methods cannot do[END_REF] which may lead to overly optimistic results in risk assessment problems. [START_REF] Ferson | Correlation, dependency bounds and extinction risks[END_REF][START_REF] Ferson | Different methods are needed to propagate ignorance and variability[END_REF][START_REF] Ferson | Conservative uncertainty propagation in environmental risk assessments[END_REF] In addition, although some dependences between the random variables may be accounted for by a MC approach (e.g., through copulas [START_REF] Nelsen | An Introduction to Copulas[END_REF] ), not all kinds of possible dependences can be modeled within a MC sampling framework. [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] The present paper addresses the first issue (i) above by comparing the double MC, hybrid MC-FIA and MC-based DS-IRS approaches with the following objectives:

• the study of the effect of dependence between the epistemically-uncertain parameters of the aleatory probability distributions when a probabilistic/non-probabilistic representation of epistemic uncertainty is adopted; • the study of the effect of the probabilistic/non-probabilistic representation of epistemic uncertainty when the state of dependence between the epistemic parameters is defined.

With respect to the second issue (ii) above, this paper aims at removing the assumption of independence between random variables. To this aim, the Dependency Bound Convolution (DBC) method [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Ferson | Correlation, dependency bounds and extinction risks[END_REF][START_REF] Regan | Equivalence of five methods for bounding uncertainty[END_REF][START_REF] Williamson | Probabilistic arithmetic I: Numerical methods for calculating convolutions and dependency bounds[END_REF] is combined with the Fuzzy Interval Analysis (FIA) approach within a "level-2" framework of hybrid (probabilistic and possibilistic) uncertainty propagation in order to account for all kinds of (possibly unknown) dependences between the random variables. d To the best of the authors' knowledge, this is the first time that the above mentioned issues are systematically analyzed with reference to risk assessment problems where hybrid uncertainty is separated into two hierarchical levels. To keep the analysis simple and retain a clear view of each step, the investigations are carried out with respect to two simple examples; in addition, different numerical indicators (e.g., cumulative distributions, exceedance probabilities, percentiles, …) are considered to perform a fair, quantitative comparison between the methods and evaluate their rationale and appropriateness in relation to risk analysis.

The work benefits from the efforts that have already been done to formalize theoretically the distinct concepts of independence that arise in problems involving both variability and imprecision, [START_REF] Couso | Independence concepts in evidence theory[END_REF][START_REF] Couso | Examples of independence for imprecise probabilities[END_REF][START_REF] Couso | A survey of concepts of independence for imprecise probabilities[END_REF] within the frameworks of both evidence [START_REF] De Campos | Computing lower and upper expectations under epistemic independence[END_REF][START_REF] Vejnarová | A Thorough Comparison of Two Conditional Independence Concepts for Belief Functions[END_REF][START_REF] Yaghlane | Belief function independence: I. The marginal case[END_REF][START_REF] Yaghlane | Belief function independence: II. The conditional case[END_REF] and possibility theories. [START_REF] Coletti | Possibility theory: Conditional independence[END_REF][START_REF] De Campos | Independence concepts in possibility theory: Part I[END_REF][START_REF] De Campos | Independence concepts in possibility theory: Part II[END_REF][START_REF] Cooman | Possibility theory III: possibilistic independence[END_REF][START_REF] Miranda | Epistemic independence in numerical possibility theory[END_REF] The practical implications of different definitions of independence are illustrated with reference to the probabilistic risk assessment of engineering systems by Refs. 17, 54 and 55 only in a "level-1" setting; similar analyses are performed on environmental cases of soil contamination by Refs. 38 and 52, still in a "level-1" setting only.

The remainder of the paper is organized as follows. In Sec. 2, the main steps of the techniques here employed for the joint hierarchical propagation of hybrid uncertainty in a "level-2" framework (i.e., the two-dimensional MC, hybrid MC-FIA, MC-based DS-IRS and the hybrid DBC-FIA methods) are briefly outlined; in Sec. 3, the two academic examples used to perform the comparison between the uncertainty propagation methods are presented; in Sec. 4, the results of the comparisons are reported and commented; Sec. 5 offers a discussion of the results and some conclusions. Finally, some technical details about the two-dimensional MC, hybrid MC-FIA, MC-based DS-IRS and DBC-FIA approaches are given in Appendices A, B, C and D, respectively, for completeness. d In the following, the hybrid probabilistic and possibilistic approach employing the DBC method (instead of standard MC simulation) for the propagation of the aleatory uncertainties in a "level-2" setting will be referred to as "hybrid DBC-FIA approach" for brevity.

Computational methods employed in this study for the joint hierarchical propagation of hybrid uncertainty in a "level-2" framework

In all generality, we consider a model whose output is a function ( ) , j = 1, 2, …, n, are chosen, two options are here considered: a hybrid MC and Fuzzy Interval Analysis (FIA) approach (Sec. 2.2), and a MC-based Dempster-Shafer (DS) approach employing Independent Random Sets (IRSs) (Sec. 2.3).

n j Y Y Y Y f Z ..

Two-dimensional Monte Carlo method

In extreme synthesis, the two main steps of the procedure are: [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF][START_REF] Cullen | Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs[END_REF][START_REF] Rao | Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies[END_REF] (1) sample N e random realizations e i j 1 , i e = 1, 2, …, N e , j = 1, 2, …, n, of the parameter vectors j 1 from the probability distributions ) ( j has to be post-processed in order to obtain the upper and lower CDFs, Z F and Z F , respectively, for Z . Further details are not given here for brevity sake: the reader is referred to Appendix A.

Notice that the random samplings performed at steps (1) and (2) above may account for possible dependences existing between the epistemically-uncertain parameters and between the aleatory variables, respectively; on the other hand, such dependences can be obviously included in the analysis, only if they can be modeled within a classical MC framework. [START_REF] Ferson | What Monte Carlo methods cannot do[END_REF] Finally, notice that in this work standard MC simulation is used to propagate the aleatory uncertainties in step (2) above, which presupposes independence between the random variables.

Hybrid Monte Carlo and Fuzzy Interval Analysis approach

In the MC-FIA approach, the propagation of the hybrid uncertainty is performed by combining the MC technique [START_REF] Kalos | Monte Carlo methods. Volume I: Basics[END_REF][START_REF] Marseguerra | Basics of the Monte Carlo Method with Application to System Reliability[END_REF] with the extension principle of fuzzy set theory [START_REF] Baraldi | A Combined Monte Carlo and Possibilistic Approach to Uncertainty Propagation in Event Tree Analysis[END_REF][START_REF] Baudrit | Post-processing the hybrid method for addressing uncertainty in risk assessments[END_REF][START_REF] Baudrit | Joint propagation of variability and imprecision in assessing the risk of groundwater contamination[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF][START_REF] Cooper | Hybrid Processing of Stochastic and Subjective Uncertainty Data[END_REF][START_REF] Flage | Possibility-probability transformation in comparing different approaches to the treatment of epistemic uncertainties in a fault tree analysis[END_REF][START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF][START_REF] Kentel | Probabilistic-fuzzy health risk modeling[END_REF][START_REF] Kentel | Risk tolerance measure for decision-making in fuzzy analysis: a health risk assessment perspective[END_REF][START_REF] Zadeh | Fuzzy Sets[END_REF] within a "level-2" setting by means of the following main steps: [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Kentel | 2D Monte Carlo versus 2D Fuzzy Monte Carlo Health Risk Assessment[END_REF][START_REF] Moller | Fuzzy randomness -a contribution to imprecise probability[END_REF][START_REF] Möller | Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics[END_REF][START_REF] Möller | Engineering computation under uncertainty -Capabilities of nontraditional models[END_REF][START_REF] Moller | Safety assessment of structures in view of fuzzy randomness[END_REF][START_REF] Moller | Time-dependent reliability of textilestrengthened RC structures under consideration of fuzzy randomness[END_REF] (1) select one possibility value 1 ∈ (0, 1] and the corresponding cuts

j m j j j A A A , 2 , 1 ,
of the epistemically-uncertain parameters j 1 , j = 1, 2, …, n (outer loop processing epistemic uncertainty by fuzzy interval analysis);

(2) sample N a random intervals ] , [ , ,

a a i j i j y y α α , a a N i ..., , 2 , 1 = , j = 1, 2, …, n, of the "probabilistic" variables j Y , j = 1, 2, …, n, from the probability distributions { } n j y p j Y j j ..., , 2 , 1 : ) ( = 1 , letting the epistemically-uncertain parameters } ..., , , { , 2 , 1 , j m j j j j θ θ θ = 1
range within the corresponding 1-cuts , respectively. [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF] Further technical details are not given here for brevity sake: the reader is referred to Appendix B.

j m j j j A A A , 2 , 1 , ..., , , θ α θ α θ α , j = 1,
It is worth noting that performing an interval analysis on 1-cuts assumes total dependence between the epistemically-uncertain parameters. Actually, this procedure implies strong dependence between the information sources (e.g., the experts or observers) that supply the input possibility distributions, because the same confidence level (1 -α ) is chosen to build the 1-cuts for all the epistemically-uncertain parameters. [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF] In addition, notice that the random sampling performed in step (2) above can account for dependences possibly existing between the aleatory variables; on the other hand, such dependences can be obviously included in the analysis only if they can be modeled within a classical MC framework: [START_REF] Ferson | What Monte Carlo methods cannot do[END_REF] in this work, standard MC simulation is used to propagate the aleatory uncertainties, which presupposes independence between the random variables. Finally, as highlighted in Ref. 23, it is worth noting that this hybrid propagation method clearly assumes independence between the group of probabilistic (i.e., aleatory or random) variables and the group of the possibilistic (i.e., epistemicallyuncertain) parameters of the aleatory probability distributions.

Monte Carlo-based Dempster-Shafer approach employing Independent

Random Sets

In the MC-based DS-IRS approach, the possibility distributions employed in the hybrid MC-FIA method are encoded into discrete (focal) sets as follows: (i) determine q (nested) focal sets for the generic possibilistic parameter 2 as the 1-cuts

[ ] t t t A α α α θ θ , = , q t ..., 2, 1, = , with 0 ... 1 1 2 1 = > > > > = + q q α α α α ;
(ii) build the mass distribution of the focal sets by assigning

1 + - = ∆ = t t t t m α α α α .
In extreme synthesis, the main steps of the procedure are: [START_REF] Baudrit | Comparing Methods for Joint Objective and Subjective Uncertainty Propagation with an example in a risk assessment[END_REF]53 ( , respectively. [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF] Further technical details are not given here for brevity sake: the reader is referred to Appendix C.

Notice that, differently from the hybrid MC-FIA approach, at step (1) above a different possibility value (resp., confidence level) α (resp., 1 - 

Case studies

In this Section, the two simple examples adopted as benchmarks to compare the methods of Sec. 2 are presented. In particular, in Sec. 3.1, the model functions used are described together with the representation of the aleatory and epistemic components of uncertainty in the model input variables; in Sec. 3.2, the experimental comparisons carried out throughout the paper are outlined; finally, in Sec. 3.3, the numerical indicators used to perform a quantitative comparison between the uncertainty propagation techniques are provided.

Model functions

Two different model functions are considered:

( )

3 2 1 3 2 1 1 , , Y Y Y Y Y Y f Z ⋅ ⋅ = = (1) 
( )

3 2 1 3 2 1 2 , , Y Y Y Y Y Y f Z ⋅ = = . (2) 
The uncertain input variables Y 1 , Y 2 and Y 3 are described by probability distributions 

) ( 1 1 1 y p Y 1 , ) ( 2
) = LN(1 1 ) = LN(2 1,1 , 2 1,2 )
, where 3 1 = 2 1,1 is described by a triangular possibility distribution ( ) [7, 10] and

1 1 µ π µ = ( ) 1 , 1 1 , 1 θ π θ with core c 1 = 8 and support [a 1 , b 1 ] =
4 1 = 2 1,2 = 1.5; Y 2 is represented by a lognormal distribution LN(3 2 , 4 2 ) = LN(1 2 ) = LN(2 2,1 , 2 2,2 )
, where 3 2 = 2 2,1 = 9 and 4 2 = 2 2,2 is described by a triangular possibility distribution ( )

2 2 σ π σ = ( ) 2 , 2
with core c 3 = 4 and support [a 3 , b 3 ] = [2, 9].

Notice that the simplicity of functions ( 1) and ( 2) allows to retain a clear view of (i) the steps involved in the comparison of the uncertainty propagation methods of Sec. 2 and (ii) the "practical" interpretations of the results in relation to possible risk assessment applications.

Experimental comparisons

The following approaches are considered and compared in the task of hierarchically propagating aleatory and epistemic uncertainties in a "level-2" framework:

(i) the two-dimensional (double) MC approach of Sec. e It is important to note that the condition of total epistemic (or state-of-knowledge) dependence between parameters of risk models is far from unlikely. For example, consider the case of a system containing a number of physically distinct, but similar/nominally identical components whose failure rates are estimated by means of It is worth noting that the representation of epistemic uncertainty here used in the MC-based DS-IRS approach entirely relies on the possibilistic representation described in Sec. 3.1 and employed by the hybrid MC-FIA approach. However, in order to tailor this possibilistic representation to the DS framework, the possibility distributions of Sec. : these particular values are chosen for the sake of comparison with the hybrid MC-FIA approach described in detail in Appendix B.

In addition, notice that the probability distributions here used in the two-dimensional MC approach for the epistemically-uncertain parameters are obtained by transforming the possibility distributions of Sec. 3.1 according to the principle of insufficient reason. [START_REF] Dubois | On possibility/probability transformations[END_REF] The sampling procedure for transforming the possibility distribution ( ) θ π θ of the generic parameter θ into a probability distribution according to this principle is: [START_REF] Dubois | On possibility/probability transformations[END_REF][START_REF] Smets | Constructing the pignistic probability function in a context of uncertainty[END_REF] (ii) sample a random realization 2* for 2 from a uniform probability distribution on * α A .

It is worth noting that other techniques of transformation of possibility distributions into probability density functions have been suggested in the literature, but the corresponding details are not given here for brevity sake: the interested reader is referred to Refs. 41, 82, 84 and 85 for some proposed techniques, e.g., the converse transformation. [START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF] Two classes of analyses are performed (Sec. 4):

(1) methods (i)-(iii) above are compared with the following objectives (Sec. 4.1):

the same data set: in such situation, the distributions describing the uncertainty associated to the failure rates have to be considered totally dependent. [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Apostolakis | Pitfalls in risk calculations[END_REF] • studying the effects of the state of dependence between the epistemicallyuncertain parameters of the aleatory probability distributions when a probabilistic/non-probabilistic representation of epistemic uncertainty is given: to this aim, approaches that represent in the same way the epistemic uncertainty (i.e., in terms of probability or possibility distributions) but assume different relationships (i.e., dependence or independence) between the epistemically uncertain parameters are compared in the following Sec. 4.1.1 (in particular, comparisons are performed between approaches (i.a) and (i.b) above and between approaches (ii) and (iii) above); • studying the effects of the probabilistic/non-probabilistic representations of the epistemically-uncertain parameters of the aleatory probability distributions when the state of dependence between the epistemically-uncertain parameters is given: to this aim, approaches assuming the same dependence relationship between the epistemically-uncertain parameters but employing different representations of the epistemic uncertainty are compared in the following Sec. 4.1.2 (in particular, comparisons are performed between approaches (i.a) and (ii) above and between approaches (i.b) and (iii) above).

Again, notice that, as highlighted in Sections 2.1-2.3 and Table 1, in methods (i)-(iii) above standard MC simulation is used to propagate the aleatory uncertainties, which presupposes independence between the random variables.

(2) methods (ii) and (iv) above, i.e., the hybrid MC-and DBC-FIA approaches (assuming independence and unknown dependence between the aleatory variables, respectively) are compared on the academic examples of the previous Sec. 3.1 in order to show the possibility of (Sec. 4.2):

• removing the assumption of independence between the aleatory variables (which is implicit in the adoption of standard MC sampling for the propagation of aleatory uncertainty);

• accounting for all kinds of (possibly unknown) dependences between the aleatory variables (i.e., also those that cannot be modeled even within arbitrarily complex MC sampling frameworks, e.g., copulas). Hybrid MC-FIA (ii.)

1 1 1 1 1 1 1 1

Objective

Study the effects of the probabilistic/non-probabilistic representation of the epistemically-uncertain parameters of the aleatory probability distributions when the state of dependence between the epistemically uncertain parameters is given

Unknown dependences between aleatory variables by DBC (Sec. 4.2)

State of dependence between the aleatory variables Independence Unknown dependence

Methods

Hybrid MC-FIA (ii.) vs Hybrid DBC-FIA (iv.)

Objectives

-Remove the assumption of independence between the aleatory variables (implicit in the adoption of standard MC sampling for the propagation of aleatory uncertainty) -Account for all kinds of (possibly unknown) dependences between the aleatory variables (i.e., also those that cannot be modeled even within arbitrarily complex MC sampling frameworks)

Quantitative indicators

The experimental comparisons described in the previous Sec. 3.2 are carried out with reference to three quantities of interest in risk assessment: i) the upper and lower Cumulative Distribution Functions (CDFs)

( ) i Z z F i and ( ) i Z z F i
of the model output Z i , i = 1, 2; ii) the 2.5-th and 97.5-th percentiles 

( ) i Z z F i 025 . 0 , and 
( ) i Z z F i 975 . 0 , of the CDF i Z F of Z i , i = 1,
i Z of Z i , i = 1, 2.
The calculation of CDFs is of great importance in risk assessment since they summarize the uncertainty "contained" in the variables of interest, i.e., the model outputs.

In the two-dimensional MC approach (Sec. 2.1), the upper and lower CDFs 

( ) i Z z F i and ( ) i Z z F i of Z i , i = 1, 2, are computed as ( ) ( ) { } i Z i N i i Z z F z F i e e e i ..., , 2 , 1 max = = and 
( ) i Z z F i ( ) { } i Z i N i z F i
( ] i i z A , ∞ - = , i = 1, 2: in this respect, ( ] ( ) i i z Z Pl , ∞ - ∈ and ( ] ( ) i i z Z Bel , ∞ - ∈ can be interpreted as bounding cumulative distributions ( ) i Z z F i = ( ] ( ) i i z Z Pl , ∞ - ∈ and 
( ) i Z z F i = ( ] ( ) i i z Z Bel , ∞ - ∈ , i = 1, 2. As highlighted in Ref. 24, ( ] ( ) i i z Z Pl , ∞ - ∈ and ( ] ( ) i i z Z Bel , ∞ - ∈
are the most precise bounds for the true CDF

( ) i Z z F i of Z i , i = 1, 2.
In order to provide a fair and quantitative comparison between the uncertainty propagation methods, two synthetic numerical indicators are also computed based on the functions ( ) 

Z of Z i , i = 1, 2.
However, it has to be noticed that in the two-dimensional MC method the identification of the upper and lower CDFs

( ) i Z z F i and ( ) i Z z F i of Z i , i = 1, 2, may not
provide a faithful representation of the real probabilistic bounds for

( ) i Z z F i , i = 1, 2:
actually, the computation of these CDFs as respectively. Since the upper and lower CDFs ( )

( ) ( ) { } i Z i N i i Z z F z F i e e e i ..., , 2 , 1 max = = and 
( ) i Z z F i ( ) { } i Z i N i z F i
1 1 z F Z and
( )

1 1 z F Z are computed by
resorting to "max" and "min" operators (i.e., ( )

( ) { } 1 ..., , 2 , 1 1 1 1 max z F z F Z i N i Z e e e =
= and ( )

1 1 z F Z ( ) { } 1 ..., , 2 , 1 1 min z F Z i N i e e e = =
), it may happen that the separation between these functions (in other words, the "content" of epistemic uncertainty carried by them) is entirely determined by the occasional random sampling of even only one of these "extreme" situations, thus not providing a faithful representation of the real probabilistic bounds for ( )

1 1 z F Z .
In order to overcome this drawback and provide more robust estimates for the probabilistic bounds of

( ) i Z z F i
, the 2.5-th and 97.5-th percentiles

( ) i Z z F i 025 . 0 , and 
( ) i Z z F i 975 . 0 , of the CDF i Z F
are here considered. By definition,

( ) i Z z F i 025 . 0 , and 
( ) i Z z F i 975 . 0 , are the two CDFs that envelop 95% of the CDFs of Z i , i = 1, 2: in particular, ( ) i Z z F i 025 . 0 ,
is such that (0.025•N e )% of the N e CDFs "lie below" (i.e., are lower than or equal to)

( ) i Z z F i 025 . 0 , ; instead, ( ) i Z z F i 975 . 0 , is such that [(1 -0.975)•N e ]% = (0.025•N e )%
of the N e CDFs "lie above" (i.e., are larger than or equal to) 

( ) i Z z F i 975
{ } i Z i N i i Z z F z F i e e e i ..., , 2 , 1 max = = and 
( ) i Z z F i ( ) { } i Z i N i z F i e e e ..., , 2 , 1 min = =
because their identification is not based on "max-min" operations, but rather on order statistics performed on a (possibly) large number N e of realizations, which is less influenced by single "outliers" (i.e., by "extreme" combinations of epistemic parameters values). Instead, in the hybrid MC-FIA approach such percentile distributions are simply obtained by considering the belief and plausibility functions generated in correspondence of the possibility level 1 = 1 -0.95 = 0.05: in particular,

( ) i Z z F i 025 . 0 , = ( ] ( ) i i z Z Bel , 05 . 0 ∞ - ∈ and 
( ) i Z z F i 975 . 0 , = ( ] ( ) i i z Z Pl , 05 . 0 ∞ - ∈ , i = 1, 2.
For the sake of completeness, as before two synthetic numerical indicators are computed based on the functions 

( ) i Z z F i 025 . 0 , and 
( ) i Z z F i 975 . 0 , : (a) the interval ( ) ( ) [ ] * 025 . 0 , * 975 . 0 , , i Z i Z z F z F i i for the probability [ ] * i i z Z P > that Z i exceeds a given threshold * i z , i = 1, 2; (b) the interval ( ) ( ) ( ) ( )] 95 . 0 , 95 . 0 [ 1 025 . 0 , 1 975 . 0 , - - i i Z Z F F for the 95-th quantile 95 . 0 i Z of Z i , i = 1, 2.

Applications

The uncertainty propagation methods described in Sec. 2 are here applied to the examples of Sec. 3: in Sec. 4.1, the efficiency of the methods (i) -(iii) is compared in the task of jointly hierarchically propagating hybrid uncertainty in a "level-2" framework; in Sec. 4.2, the Dependency Bound Convolution (DBC) method and the Fuzzy Interval Analysis (FIA) approach are joined within a "level-2" framework of hybrid (probabilistic and possibilistic) uncertainty propagation in the task of accounting for unknown dependences between the aleatory variables.

Comparison of the methods for the joint hierarchical propagation of hybrid uncertainty in a "level-2" framework

The double Monte Carlo (MC) approach (Sec. 2.1), the hybrid MC and Fuzzy Interval Analysis (FIA) method (Sec. 2.2) and the MC-based Dempster-Shafer approach employing Independent Random Sets (IRSs) (Sec. 2.3) are here compared with the following objectives:

• the study of the effect of dependence between the epistemically-uncertain parameters of the aleatory probability distributions when a probabilistic/non-probabilistic representation of epistemic uncertainty is adopted (Sec. 4.1.1); • the study of the effect of the probabilistic/non-probabilistic representation of epistemic uncertainty when the state of dependence between the epistemicallyuncertain parameters is defined (Sec. 4.1.2).

It is worth remembering that, as highlighted in Sections 2.1-2.3 and Table 1, in methods (i)-(iii) above (Sec. 3.2) standard MC simulation is used to propagate the aleatory uncertainties, which presupposes independence between the random variables.

Dependences between the epistemically-uncertain distribution parameters

We start by comparing approaches (i.a) and (i.b) above, i.e., double MC assuming total dependence and independence between the uncertain parameters, respectively (Sec. 2.1): the upper and lower Cumulative Distribution Functions (CDFs) 

( ) i Z z F i and ( ) i Z z F i , i = 1, 2, of the model outputs Z 1 = Y 1 •Y 2 •Y 3 (1) and Z 2 = Y 1 •Y 2 /Y 3
( ) i Z z F i and ( ) i Z z F i , i = 1, 2, of the model outputs Z1 = Y1•Y2•Y3 (left) and Z2 = Y1•Y2/Y3 (right)
obtained by the two-dimensional MC approach, considering total dependence (solid lines) and independence (dashed lines) between the epistemically-uncertain parameters It can be seen that assuming total dependence between the uncertain parameters leads to a larger gap between the upper and lower CDFs of the model output

Z 1 = Y 1 •Y 2 •Y 3 (1)
than assuming independence (Fig. 1, left); instead, the opposite situation occurs for 1, right). This can be easily explained by analyzing the input-output functional relationships of the models (1) and (2). We now move on to compare methods (ii) and (iii), i.e., the hybrid MC-FIA (Sec.

Z 2 = Y 1 •Y 2 /Y 3 (2) (Fig.
In model function Z 2 = Y 1 •Y 2 /Y 3 (2)
2.2) and MC-based DS-IRS (Sec. 2.3) approaches. Fig. 2 shows the plausibility and belief functions, ( ] ( )

i i z Z Pl , ∞ - ∈ = ( ) i Z z F i and ( ] ( ) i i z Z Bel , ∞ - ∈ = ( ) i Z z F i , i = 1, 2,
respectively, of the model outputs

Z 1 = Y 1 •Y 2 •Y 3 (1) (left) and Z 2 = Y 1 •Y 2 /Y 3 (2) (right)
produced by the hybrid MC-FIA (solid lines) and MC-based DS-IRS (dashed lines) approaches. 

Model function Z 1 = Y 1 *Y 2 *Y 3 -Non-probabilistic epistemic uncertainty MC-based DS-IRS: Bel(Z 1 ∈ (-∞, z 1 ]) MC-based DS-IRS: Pl(Z 1 ∈ (-∞, z 1 ]) Hybrid MC-FIA: Bel(Z 1 ∈ (-∞, z 1 ])
Hybrid MC-FIA: 

Pl(Z 1 ∈ (-∞,
Z 2 = Y 1 *Y 2 /Y 3 -Non-probabilistic epistemic uncertainty MC-based DS-IRS: Bel(Z 2 ∈ (-∞, z 2 ]) MC-based DS-IRS: Pl(Z 2 ∈ (-∞, z 2 ])
Hybrid MC-FIA:

Bel(Z 2 ∈ (-∞, z 2 ])
Hybrid MC-FIA: The results are very similar, i.e., in the present case, the effect of the different dependence relationships between the epistemically-uncertain paramenters is not evident. This is confirmed by the analysis of the corresponding quantitative indicators: actually, the intervals for [ ] 

Pl(Z 2 ∈ (-∞, z 2 ])
i i z Z Pl , ∞ - ∈ = ( ) i Z z F i and ( ] ( ) i i z Z Bel , ∞ - ∈ = ( ) i Z z F i , i = 1,
*
( ) i Z z F i
, i = 1, 2 (solid lines), and then drop vertically to the abscissas to produce the intervals ( ) ( ) ( ) ( )] 55, 868.93] and ( ) ( ) ( ) ( )] 59, 46.32], respectively. The similarity between the results obtained the hybrid MC-FIA and MC-based DS-IRS approaches may be explained as follows. In the hybrid MC-FIA approach, the plausibility Pl(A) and belief Bel(A) functions of a given set A = (-

95 . 0 , 95 . 0 [ 1 1 1 1 - - Z Z F F = [617.
95 . 0 , 95 . 0 [ 1 1 2 2 - - Z Z F F = [28.
1, z] are calculated as 1 1 0 ) ( α α d A Pl and 1 1 0 ) ( α α d A Bel
, respectively, i.e., as the integrals over 1 ∈ (0, 1] of the different plausibility and belief functions, Pl 1 (A) and Bel 1 (A), respectively, obtained by fuzzy interval analysis at different possibility levels 1 ∈ (0, 1] (see Sec. 2.2 and Appendix B for details). [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | The mean value of a fuzzy number[END_REF][START_REF] Ralescu | Average level of a fuzzy set, in: Statistical Modeling, Analysis and Management of Fuzzy Data[END_REF] Instead, in the MC-based DS-IRS approach, Pl(A) and Bel(A) can be computed as Appendix C for details). [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF] It is arguable that the different assumptions of (in)dependence between the epistemically-uncertain parameters affect the "distributions" of the plausibility and belief functions generated in correspondence of different "realizations" of epistemic uncertainty: in other words, the set of plausibility (resp., belief) functions Pl 1 (A) (resp., Bel 1 (A)), 1 ∈ (0, 1], produced by the hybrid MC-FIA quantities is not reported here for brevity sake; the corresponding quantitative indicators are summarized in Table 3. method (assuming total dependence) will be substantially different from the set values, i.e., {1 1 = 0, 1 2 = 0, 1 3 = 0}, is always "processed" by fuzzy interval analysis in the hybrid MC-FIA method, due to the underlying assumption of total dependence between the information sources (e.g., the experts or observers) that supply the parameters possibility distributions: actually, the same possibility (resp. confidence) level α (resp., 1 -1) is chosen to build the 1-cuts for all the epistemically-uncertain parameters (see Sec. 2.2 and Appendix B). On the contrary, such combination of possibility (resp., confidence) values, i.e., {1 1 = 0, 1 2 = 0,

1 3 = 0} (resp., {1-1 1 = 1, 1-1 2 =
1, 1-1 3 = 1}), cannot be obtained easily (i.e., with high probability) by the MC-based DS-IRS approach, which performs a plain random sampling among independent intervals. This is coherent with the real processes of expert elicitation, in that it is difficult to find different (independent) experts that provide estimates about different uncertain parameters with the same (and, in this case, maximal) confidence. for model (1) (resp., (2)) independence (resp., total dependence) leads to less conservative results than total dependence (resp., independence). Thus, in a hypothetic risk assessment problem the analyst should know a priori the shape of the model function in order to guarantee conservatism. This raises serious concerns from the point of view of safety: actually, in the risk assessment of real safety-critical systems, most of the model functions adopted are not represented by explicit mathematical expressions, but rather by black boxes (i.e., implicit functions implemented in complex simulation codes). In such cases, the analyst must be aware of the fact that a probabilistic representation of epistemic uncertainty may fail to produce reliable and conservative results.

The second comparison (between methods (ii) and (iii)) shows instead that the state of dependence between the parameters is less critical when the representation of epistemic uncertainty is non-probabilistic: actually, the CDFs of the model outputs produced by the hybrid MC-FIA and the MC-based DS-IRS approaches are almost identical. However, the analysis of other quantitative indicators (e.g., the distribution of a given quantile of the output) shows that the hybrid MC-FIA method produces a larger separation between the plausibility and belief functions (i.e., more conservative results) than the MC-based DS-IRS approach (in particular, in the range of small probabilities that are of particular interest in the risk assessment of complex, highly reliable systems); in addition, contrarily to the double MC approach, the results produced by these methods do not seem to be affected by the characteristics of the model function at hand. Thus, in a non-probabilistic framework of epistemic uncertainty representation, the assumption of total dependence between the epistemically-uncertain parameters can be considered always more conservative than that of independence.

Probabilistic/possibilistic representation of the epistemically-uncertain distribution parameters

In this Section, we perform comparisons between approaches (i.a) and (ii) and between approaches (i.b) and (iii), i.e., approaches that assume the same state of dependence between the epistemically-uncertain parameters, but represent epistemic uncertainty in different ways: in particular, in both hybrid MC-FIA (ii) and MC-based DS-IRS (iii) methods, possibility distributions are employed which identify a family of probability distributions for the epistemically-uncertain parameters; h on the contrary, in the double MC approach ((i.a) and (i.b)), only a single probability distribution is assigned to represent the epistemic uncertainty associated to the parameters.

Fig. 5 shows the upper and lower Cumulative Distribution Functions (CDFs),

( ) i Z z F i and ( ) i Z z F i
, respectively, of the model outputs

Z 1 = Y 1 3Y 2 3Y 3 (left) and Z 2 =
Y 1 3Y 2 /Y 3 (right) obtained by the double MC approach assuming total dependence between the uncertain parameters (case (i.a), solid lines) and the plausibility and belief functions, ( ] ( )

i i z Z Pl , ∞ - ∈ = ( ) i Z z F i and ( ] ( ) i i z Z Bel , ∞ - ∈ = ( ) i Z z F i , i = 1, 2, respectively,
produced by the hybrid MC-FIA approach (case (ii), dashed lines). ). In a double MC framework, these "extreme" situations (which give rise to the largest separation between the upper and lower cumulative distribution functions, i.e., to the most conservative case) are favored, i.e., are randomly sampled with high probability, when total dependence is assumed between the epistemically-uncertain parameters (see Sec. 4.1.1). Thus, it is very likely that the upper and lower CDFs produced by the double MC method assuming total dependence are obtained in correspondence of "extreme" combinations of epistemically-uncertain parameter values (i.e., combinations of values close to the extreme bounds of the ranges of variability of the epistemically-uncertain parameters). On the contrary, in the hybrid MC-FIA approach As a final comparison, Fig. 6 shows the upper and lower CDFs,

( ) i Z z F i = ( ] ( ) i i z Z Pl , ∞ - ∈ and 
( ) i Z z F i = ( ] ( ) i i z Z Bel , ∞ - ∈ , i = 1,
( ) i Z z F i and ( ) i Z z F i , i = 1, 2, respectively, of the model outputs Z 1 = Y 1 •Y 2 •Y 3 (left) and Z 2 = Y 1 •Y 2 /Y 3 (right)
obtained by the two-dimensional MC approach, considering independence between the epistemically-uncertain parameters (solid lines) and the MC-based DS-IRS approach (dashed lines). 

Z

(Table 3):

the point estimate provided by double MC is 36.65, whereas the interval produced by the hybrid MC-FIA approach is [33.28, 57.02]. It can be seen that the upper bound of the interval [33.28, 57.02] produced by the hybrid MC-FIA approach overestimates by about 37.5% the corresponding point value generated by the double MC method.

The higher conservatism of the hybrid MC-FIA approach is also evidenced by the analysis of the 2.5-th and 97.5-th percentiles for Z 1 (left) and Z 2 (right) produced by the double MC method assuming total dependence between the epistemically-uncertain parameters (dashed lines) and the hybrid MC-FIA approach (solid lines); as before, the corresponding quantities produced by the MC-based DS-IRS approach and the double MC method (assuming independence between the epistemically-uncertain parameters) are not shown here for brevity sake. 3). For example, the estimates for the interval The second comparison (between methods (i.b) and (iii)) shows instead that when there is independence between the epistemically-uncertain parameters, probabilistic and non-probabilistic representations of epistemic uncertainty produce absolutely comparable results: thus, in this case, embracing one representation of uncertainty instead of the other would not change significantly the final decision.

( ) i Z z F i 025 . 0 , and 
( ) i Z z F i 975 . 0 , of the CDF ( ) i Z z F i of the model output Z i , i = 1, 2.
( ) ( ) ( ) ( )] 95 . 0 , 95 . 0 [ 1 025 . 0 , 1 975 . 0 , 2 2 - - Z Z F F of
However, it is worth remembering that the considerations made above are valid if the analyst is interested only in the estimation of the upper and lower CDFs of the model output, but they do not hold in general for other quantities of interest in risk assessment (e.g., the distributions of a given quantile or the percentiles of the CDF of the model output). In these cases, a non-probabilistic representation of epistemic uncertainty always produces more reliable and conservative results than a probabilistic one, irrespective of (i) the state of dependence between the epistemically-uncertain parameters and (ii) the Fig. 9 shows the upper and lower CDFs Hybrid MC-FIA: Hybrid MC-FIA: Based on the results above, it can be concluded that the use of the DBC approach within a "level-2" setting may be very useful to provide an initial "worst-case" estimate of the risk associated to the system at hand when nothing is known about the real state of dependence between the input variables; however, in many realistic applications this would lead to excessively conservative (and thus pessimistic) results that would need to be refined by acquiring knowledge on the system and, in particular, on the actual state of dependence of the random variables of the model.

( ) i Z z F i and ( ) i Z z F i , i = 1,
Bel(Z 1 ∈ (-∞, z 1 ]) Hybrid MC-FIA: Pl(Z 1 ∈ (-∞, z 1 ]) Hybrid DBC-FIA: Bel(Z 1 ∈ (-∞, z 1 ]) Hybrid DBC-FIA: Pl(Z 1 ∈ (-∞, z 1 ])
Bel(Z 2 ∈ (-∞, z 2 ]) Hybrid MC-FIA: Pl(Z 2 ∈ (-∞, z 2 ]) Hybrid DBC-FIA: Bel(Z 2 ∈ (-∞, z 2 ]) Hybrid DBC-FIA: Pl(Z 2 ∈ (-∞, z 2 ])
( ) i Z z F i and ( ) i Z z F i , i = 1,

Discussion and conclusions

In the present paper, the two-dimensional MC, hybrid MC-FIA and MC-based DS-IRS approaches have been considered for the joint hierarchical propagation of hybrid (probabilistic and possibilistic) uncertainty within a "level-2" framework. Two examples have been taken as reference. Two issues have been addressed in the analyses: (i) the implicit assumptions about the (in)dependence relationships among parameters subject to epistemic uncertainty (e.g., the hybrid MC-FIA approach assumes total dependence, whereas the MC-based DS-IRS method assumes random set independence);

(ii) the use of standard MC sampling to propagate the aleatory uncertainties, which implicitly assumes independence between the random variables.

With respect to issue (i) above, the two-dimensional MC, hybrid MC-FIA and MCbased DS-IRS approaches have been compared with the following objectives:

(a) the study of the effects of dependence between the epistemically-uncertain parameters of the aleatory probability distributions when a probabilistic/nonprobabilistic representation of epistemic uncertainty is adopted:

• the comparison between two-dimensional MC approaches assuming total dependence and independence between the epistemically-uncertain parameters, respectively, has shown that the results produced by the double MC approach are strongly related to the particular characteristics of the model function at hand (i.e., whether the function is increasing in all the variables or not, whether it is monotonic or not, …): thus, different states of dependence between the epistemically-uncertain parameters of the input probability distributions may give rise to completely different results also when applied to the same model function. In particular, when the output is increasing in each place with respect to the inputs (e.g., the model function contains only products), assuming total dependence between the epistemically-uncertain parameters leads to a larger gap between the upper and lower CDFs of the model output (i.e., to more conservative results); on the contrary, when the output is not increasing in each place with respect to the inputs (e.g., the model function contains both products and quotients), the opposite situation occurs: the assumption of total dependence typically produces a consistently smaller gap between the bounding CDFs of the model output (i.e., less conservative results); • the comparison between hybrid MC-FIA and MC-based DS-IRS approaches has shown that the plausibility and belief functions of the model output produced by the two approaches are similar: in other words, the computation of the upper and lower CDFs of the output is not significantly influenced by the different assumptions of (in)dependence between the epistemically-uncertain parameters. This is due to the fact that the different CDFs generated in correspondence of different (dependent or independent) "realizations" of epistemic uncertainty by the hybrid MC-FIA and MC-based DS-IRS approaches, respectively, are averaged to obtain the plausibility and belief functions of the model output: such procedure typically "cancels out" the effect of the particular state of dependence between the epistemically-uncertain parameters. However, this is not the case for other quantities of interest in risk assessment, e.g., the distributions of a given quantile or the percentiles of the CDF of the model output: in these cases, the hybrid MC-FIA method produces more conservative results than the MCbased DS-IRS approach. Actually, in processing epistemic uncertainty the assumption of total dependence allows selecting "extreme" combinations of 1cuts (e.g., the combination of all the 1-cuts with possibility level 1 = 0) that cannot be easily obtained by plain random sampling of independent sets: this produces conservative estimates, in particular in the range of extreme cumulative probabilities (i.e., around 0 and 1).

• contrarily to probabilistic approaches, the results produced by hybrid methods do not seem to be affected by the characteristics of the model function at hand.

Based on the considerations above, it can be concluded that:

• when the representation of epistemic uncertainty is probabilistic, the state of dependence between the epistemically-uncertain parameters of the aleatory probability distributions becomes a critical factor in risk-informed decisions because the effect of different (in)dependence assumptions on the conservatism of the estimates is closely related to the structure of the model function at hand. This raises serious concerns from the point of view of safety: actually, in the risk assessment of real safety-critical systems, many of the model functions adopted are not represented by explicit mathematical expressions, but rather by black boxes (i.e., implicit functions implemented in complex simulation codes). In such cases, two options are suggested: (1) the analyst performs a sensitivity study to gather the largest amount possible of information about the characteristics of the model function at hand; on the basis of the indications obtained, he/she "artificially" selects the state of the dependence between the epistemicallyuncertain parameters that produces the most conservative results; (2) the analyst assumes independence between the epistemically-uncertain parameters, which has been shown to produce more conservative results than total dependence when the model function is not increasing in each place with respect to the inputs;

• when the representation of the epistemically-uncertain parameters is nonprobabilistic, the state of dependence between the epistemically-uncertain parameters of the aleatory probability distributions is less critical. However, the hybrid MC-FIA method may be preferred to the MC-based DS-IRS approach because it provides more conservative results in the estimation of (i) the distributions of a given quantile of the model output and (ii) the percentiles of the CDF of the output. In addition, this higher conservatism is particularly evident in the range of extreme probabilities (i.e., around 0 and 1) that are of paramount importance in realistic risk assessment applications involving complex, highly reliable engineering systems.

(b) the study of the effect of the probabilistic/non-probabilistic representation of epistemic uncertainty when the state of dependence between the epistemicallyuncertain parameters is defined:

• the comparison between the MC-based DS-IRS approach and the twodimensional MC approach assuming independence between the epistemicallyuncertain parameters has shown that in the case studies considered the upper and lower CDFs of the model output produced by the two approaches are similar. This is due to (i) the common assumption of independence between the epistemically-uncertain parameters; (ii) the similar characteristics of the two algorithms used to propagate the uncertainties and (iii) the fact that the computation of the bounding CDFs of the model output in the double MC approach is strongly influenced by the occasional random sampling of "extreme" combinations of values of the epistemically-uncertain parameters;

• the comparison between the hybrid MC-FIA method and the two-dimensional MC approach assuming total dependence between the epistemically-uncertain parameters has shown that the conservatism of the results depends on the structure of the model function at hand. In particular, when the model function is not increasing in each place with respect to the inputs (e.g., it contains both multiplications and quotients), the gap between the plausibility and belief functions of the output produced by the hybrid approach is typically larger than the gap between the upper and lower CDFs produced by the two-dimensional MC method. This is explained by the fact that in the two-dimensional MC approach the assumption of total dependence prevents the random sampling of "extreme" combinations of epistemically-uncertain parameters. On the contrary, in the hybrid MC-FIA method, an exhaustive interval analysis is performed for different 1-cuts of the possibility distributions: the result is that the hybrid approach is able to explore a larger set of combinations of epistemicallyuncertain parameter values than the double MC approach, thus producing more conservative results.

Instead, when the model function is increasing in each place with respect to the inputs (e.g., it contains only multiplications), the opposite situation occurs: actually, in this case the two-dimensional MC approach assuming total dependence is very likely to sample "extreme" combinations of the epistemically-uncertain parameters;

• both non-probabilistic approaches (i.e., the hybrid MC-FIA and the MC-based DS-IRS methods) always lead to more conservative results than the probabilistic approaches (i.e., the two-dimensional MC method assuming total dependence and independence) in the estimation of quantities like the distribution of a quantile of the output or the percentiles of the CDFs of the output (i.e., those quantities whose computation is not influenced by the occasional random sampling of "extreme" combinations of values of the epistemically-uncertain parameters). In particular, (i) the non-probabilistic approaches are able to produce upper and lower distributions for all the quantiles of the output, whereas the two-dimensional MC method provides only a single probability distribution;

(ii) the percentiles of the CDFs of the output produced by the non-probabilistic approaches completely envelop those generated by the probabilistic approaches.

Based on the considerations above, it can be concluded that:

• if the analyst is interested only in the estimation of the upper and lower CDFs of the model output: o when there is total dependence between the epistemically-uncertain parameters, a probabilistic representation of the epistemically-uncertain parameters of the aleatory probability distributions may fail to produce reliable and conservative results, which raises concerns from the point of view of safety; o when there is independence between the epistemically-uncertain parameters, both probabilistic and non-probabilistic representations of the epistemically-uncertain parameters may be chosen since they may (occasionally) produce comparable results;

• if the analyst is interested in the estimation of quantities like the distribution of a given quantile or the percentiles of the CDFs of the output, a non-probabilistic representation of epistemic uncertainty is in general suggested because it provides more conservative results.

The findings of the comparison show that adopting different methods for jointly propagating aleatory and epistemic uncertainties may generate different results and possibly different decisions in risk problems involving uncertainties: this is of paramount importance in systems that are critical from the safety viewpoint, e.g., in the nuclear, aerospace, chemical and environmental fields. In particular, it seems advisable to suggest that, if nothing is known about the dependence relationship between the epistemicallyuncertain parameters, one should resort to the hybrid MC-FIA approach because its risk estimates are more conservative than (or at least comparable to) those obtained by the double MC approach assuming dependence (or independence) between the epistemicallyuncertain parameters: thus, a non-probabilistic representation of epistemic uncertainty represents in general a "safer" choice.

With respect to issue (ii) above, the DBC method has been framed for the first time within a "level-2" setting of hybrid uncertainty propagation with the objectives of: (a) removing the assumption of independence between the aleatory variables (which is implicit in the adoption of standard MC sampling for the propagation of the aleatory uncertainties) and (b) accounting for all kinds of (possibly unknown) dependences between the aleatory variables, i.e., also those that cannot be modeled even within arbitrarily complex MC sampling frameworks (e.g., copulas). It has been shown that the upper and lower CDFs of the output produced by the hybrid DBC-FIA approach completely envelop those obtained by the hybrid MC-FIA method. Based on the results obtained, it can be concluded that the use of the DBC approach within a "level-2" setting may be very useful to provide an initial "worst-case" estimate of the risk associated to the system at hand when nothing is known about the real state of dependence between the variables; however, in many realistic applications this would lead to excessively conservative (and thus pessimistic) results that need to be refined by acquiring further knowledge on the system, its model and the real state of dependence between the random variables.

The findings and conclusions drawn by the comparisons performed in Sec. 4 are summarized in Table 4 for the sake of clarity. Hybrid MC-FIA (ii.)
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Findings

Method (i.a) vs (i.b):

-The state of dependence between the parameters is critical because its effect on the conservatism of the estimates is related to the structure of the model function -Two options are suggested: 1) perform a sensitivity study to get information about the model function and "artificially" select the state of dependence that produces the most conservative results; 2) assume independence between the parameters, which is more conservative than total dependence when the model function is not increasing in each place with the inputs

Method (ii) vs (iii):

-The state of dependence is not so critical (e.g., it has almost no effect on the upper and lower CDFs of the model output) -Hybrid MC-FIA may be preferred to MC-based DS-IRS because it is more conservative in the estimation of i) the distributions of a given quantile of the model output and ii) the percentiles of the CDF of the output (in particular, in the range of extreme probabilities, i.e., around 0 and 1)
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Findings

General:

-In the estimation of quantities like the distribution of a given quantile or the percentiles of the CDFs of the output, a non-probabilistic representation of epistemic uncertainty is suggested because it provides more conservative results

Method (i.b.) vs (iii):

-In the estimation of the upper and lower CDFs of the output, both representations of epistemic uncertainty may be chosen since they may (occasionally) produce comparable results

Method (i.a.) vs (ii):

-In the estimation of the upper and lower CDFs of the output, a probabilistic representation of epistemic uncertainty may fail to produce reliable and conservative results ( ) 

F 1 = 1 1 , 1 Y F θ = 1 1 Y F µ and 2 2 Y F 1 = 1 1 , 2 Y F θ =
Y F 1 = 1 1 , 1 Y F θ = 1 1 Y F µ and 2 2 Y F 1 = 1 1 , 2 Y F θ =
a e i i Y u F 2 1 ] [ 2 1 , 2 - θ = ( ) a e i i Y u F 2 1 ] [ 2 2 - µ = ( )
: for example, if Z = Y 1 3Y 2 /Y 3 , then a i z α = a a a i i i y y y α α α , 3 , 2 , 1 / ⋅ and a i z α = a a a i i i y y y α α α , 3 , 2 , 1 / ⋅ ; 
(5) take the values a i z α and a i z α found in (4) above as the lower and upper limits of the N a

1-cuts

a i Z A , α of Z, a a N i ..., , 2 , 1 = 
. A probability mass ( ) [START_REF]EPRI/NRC-RES Fire PRA methodology for nuclear power facilities[END_REF] for each set A of interest in the universe of discourse Z U of Z , calculate the plausibility Pl 1 (A) and belief Bel 1 (A) of level 1 as

a i Z N A m a 1 , = α is associated at each 1-cut a i Z A , α , a a N i ..., , 2 , 1 = ; ( 
2 ≠ ∩ = 0 , , ) ( ) ( A A i Z a i Z a A m A Pl α α α and 2 ⊆ = A A i Z a i Z a A m A Bel , ) ( ) ( , α α α , respectively. (7) if 1 < α , then set α α α ∆ + =
(e.g., 05 . 0 = ∆α in this paper) and return to step (2) above; otherwise, go to (8) below; [START_REF] Huang | A fuzzy set approach for event tree analysis[END_REF] calculate the plausibility Pl(A) and belief Bel(A) for A as 1

0 ) ( α α d A Pl 2 2 = ∆ ⋅ + q i i e e A Pl q 0 ) ( 1 1 α and 1 1 0 ) ( α α d A Bel 2 2 = ∆ ⋅ + q i i e e A Bel q 0 ) ( 1 1 α 1 
, respectively, where (q + 1)= (1/51 + 1) = 21 is the total number of 1-cuts processed in the analysis. [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF] As highlighted in Sec. 2.2, it is worth noting that performing an interval analysis on 1-cuts assumes total dependence between the epistemically-uncertain parameters.

Actually, this procedure implies strong dependence between the information sources (e.g., the experts or observers) that supply the input possibility distributions, because the same confidence level (1 -α ) is chosen to build the 1-cuts for all the epistemicallyuncertain parameters. [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF] In addition, notice that the random sampling performed at step (3) above may account for possible dependences existing between the aleatory variables; on the other hand, such dependences can be obviously included in the analysis, only if they can be modeled within a classical MC framework: [START_REF] Ferson | What Monte Carlo methods cannot do[END_REF] The main steps of the procedure are: [START_REF] Baudrit | Comparing Methods for Joint Objective and Subjective Uncertainty Propagation with an example in a risk assessment[END_REF]53 (1) set i e = 1 (outer loop processing epistemic uncertainty by standard MC simulation);

θ α A = 1 µ α A = 1 2 . 0 µ A and 2 , 2 θ α A = 2 σ α A = 2 2 . 0 σ A for 2 1,1 = 3 1 and 2 2,2 = 4 2 are found as ] , [ ] , [ , 1 , 1 , 1 , 1 , 1 , 1 α α α α µ µ θ θ = = [7.2, 9.6] and ] , [ ] , [ , 2 , 2 , 2 , 2 , 2 , 2 α α α α σ σ θ θ = = [1.
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( Notice that, differently from the hybrid MC-FIA approach, at step (2) above a different possibility value (resp., confidence level) α (resp., 1 -1) is randomly and independently sampled for each epistemically-uncertain parameter, i.e., random set independence is assumed between the epistemically-uncertain parameters. In addition, notice that the random sampling performed at step (3) above may account for possible dependences existing between the aleatory variables; on the other hand, such dependences can be obviously included in the analysis, only if they can be modeled within a classical MC framework: [START_REF] Ferson | What Monte Carlo methods cannot do[END_REF] The characteristics of the algorithm described above are here exploited to join the Dependency Bound Convolution (DBC) method and the Fuzzy Interval Analysis (FIA)

approach within a "level-2" framework of hybrid (probabilistic and possibilistic) uncertainty propagation. In synthesis, the main steps of the hybrid DBC-FIA algorithm are:

(1) outer loop processing epistemic uncertainty by FIA: perform the same steps (1) and

(2) of the procedure in Appendix B to get the 1-cuts j m j j j A A A 

1 ,j

 1 = 1, 2, …, n, are used, a two-dimensional (or double) Monte Carlo (MC) simulation approach is undertaken (Sec. 2.1); instead, when possibility distributions

j 1 p 1 , 1 ,Functions

 11 j = 1, 2, …, n (outer loop processing epistemic uncertainty by MC simulation); (2) for each realization i e = 1, 2, …, N e of epistemic uncertainty, sample N a random realizations i a = 1, 2, …, N a , j = 1, 2, …, n, of the "probabilistic" variables j = 1, 2, …, n, conditioned at the values e i j 1 of the epistemically-uncertain parameters j 1 sampled at step (1) above (inner loop processing aleatory uncertainty by MC simulation).The output of the algorithm is a set of N e empirical Cumulative Distribution

  2, …, n (found at step (1) above) (inner loop processing aleatory uncertainty by MC simulation); (3) repeat step (2) above for another possibility value 1 ∈ (0, 1]. For each interval A of interest contained in the universe of discourse Z U of Z , the output of the algorithm is represented by a set of plausibility functions different possibility values 1 ∈ (0, 1] selected at step (1) above; these sets of functions are then synthesized into the plausibility Pl(A) and belief Bel(A) of

  of the N e different combinations of α levels (i.e., of independent random sets) sampled at step 1. above; these sets of functions are then synthesized into the plausibility Pl(A) and belief Bel(A) of A as

  (i) sample a random realization 1* for 1 in [0, 1) and consider the 1-cut level ]

  by the occasional random sampling of "extreme" combinations of the epistemic parameters. For example, referring to modelfunction Z 1 = Y 1 •Y 2 •Y 3(1) above, it can be seen that a combination of high values of the random variables Y 1 and Y 2 and Y 3 leads to "extremely high" values of the model output Z 1 : notice that in a "level-2" framework of uncertainty modeling, this combination of high values of the random variables Y 1 and Y 2 and Y 3 is favored on its turn by a combination of high values of the corresponding epistemically-uncertain parameters 3 1 = 2 1,1 and 4 2 = 2 2,2 and m = 2 3,2 , respectively. By way of example, it is evident that if the epistemically-uncertain mean 3 1 = 2 1,1 of random variable Y 1 is high, then the values of the corresponding random variable Y 1 are "expected" to be relatively high (in other words, relatively high values of random variable Y 1 are favored). Conversely, an occasional combination of low values of the random variables Y 1 and Y 2 and Y 3 produces "extremely low" values of the model output Z 1 : again, notice that in a "level-2" framework of uncertainty modeling, this combination of low values of the random variables Y 1 and Y 2 and Y 3 is favored on its turn by a combination of low values of the corresponding epistemically-uncertain parameters 3 1 = 2 1,1 and 4 2 = 2 2,2 and m = 2 3,2 ,

  robust estimates of the "true" probabilistic bounds of

Finally

  of Z i , i = 1, 2, are considered. In the double MC approach, a single CDF of the N e random realizations of epistemic uncertainty: in particular, the sets of N e values [ ] ( ) Instead, in the hybrid MC-FIA approach, two synthetic numerical indicators are computed based on the functions (b) the (interval for the) 95-th quantile [ ]

( 2 ) 3 -Fig. 1 .

 231 Fig. 1. Comparison of the upper and lower CDFs

  two of the input random variables (i.e., Y 1 and Y 2 ) appear at the numerator, whereas the other (i.e., Y 3 ) appears at the denominator of the expression. In such a case, the highest possible values for the model output Z 2 are obtained with a combination of high values of both random variables Y 1 and Y 2 and low values of random variable Y 3 : notice that in a "level-2" framework of uncertainty modeling, this particular combination of values of the random variables Y 1 , Y 2 and Y 3 is favored on its turn by a combination of high values of both epistemically-uncertain parameters 3 1 = 2 1,1 and 4 2 = 2 2,2 and low values of epistemically-uncertain parameter m = 2 3,2 . By way of example, it is evident that if the epistemically-uncertain mean 3 1 = 2 1,1 of random variable Y 1 is relatively high, then the values of the corresponding random variable Y 1 are expected to be relatively high (in other words, relatively high values of random variable Y 1 are favored by high values of the corresponding epistemicallyuncertain mean 3 1 = 2 1,1 ). Conversely, the lowest possible values for the model output Z 2 are obtained with a combination of low values of both Y 1 and Y 2 and high values of Y 3 : notice that in a "level-2" framework of uncertainty modeling, this particular combination of values of the random variables Y 1 , Y 2 and Y 3 is favored on its turn by a combination of low values of both epistemically-uncertain parameters 3 1 = 2 1,1 and 4 2 = 2 2,2 and high values of epistemically-uncertain parameter m = 2 3,2 . These extreme situations (which give rise to the largest separation between the upper and lower CDFs, i.e., to the most "epistemically-uncertain" and, thus, conservative case), can be obtained only in case (i.b) above, i.e., assuming independence between the epistemically-uncertain parameters. Actually, if a pure random sampling is performed among independent epistemicallyuncertain parameters, all possible combinations of values can be in principle generated, since the entire ranges of variability of the epistemically-uncertain parameters can be explored independently: thus, in some random samples of epistemic uncertainty (step (1) of Sec. 2.1), high values of both epistemically-uncertain parameters 3 1 = 2 1,1 and 4 2 = 2 2,2 (which favor on their turn high values of both random variables Y 1 and Y 2 ) may be combined by chance with low values of epistemically-uncertain parameter m = 2 3,2 (which favor on their turn low values of random variable Y 3 ); on the contrary, in other random samples of epistemic uncertainty (step (1) of Sec. 2.1), low values of both epistemically-uncertain parameters 3 1 = 2 1,1 and 4 2 = 2 2,2 (which favor on their turn low values of both random variables Y 1 and Y 2 ) may be combined by chance with high values of epistemically-uncertain parameter m = 2 3,2 (which favor on their turn high values of random variable Y 3 ). Conversely, such "extreme" situations cannot occur if there is total dependence between the epistemically-uncertain parameters (i.e., case (i.a) above). Actually, in such a case high (resp., low) values of both epistemically-uncertain parameters 3 1 = 2 1,1 and 4 2 = 2 2,2 (which favor on their turn high -resp., low -values of both random variables Y 1 and Y 2 ) can only be combined with high (resp., low) values of epistemically-uncertain parameter m = 2 3,2 (which favor on their turn high -resp., lowvalues of random variable Y 3 ), giving rise to values of output Z 2 which are lower (resp., higher) than the highest (resp., lowest) possible: in other words, the separation between the upper and lower CDFs produced in case (i.a) is always smaller than that produced by the "extreme" situations described above (which are possible only in case (i.b)). f On the contrary, in model function Z 1 = Y 1 •Y 2 •Y 3 (1) only multiplications (i.e., operations increasing in each place) are present. In such a case, the highest possible values for the model output Z 1 are obtained with a combination of high values of Y 1 and Y 2 and Y 3 (which are favored on their turn by high values of the corresponding epistemically-uncertain parameters 3 1 = 2 1,1 and 4 2 = 2 2,2 and m = 2 3,2 ); conversely, the lowest possible values for model output Z 1 are obtained with a combination of low values of Y 1 and Y 2 and Y 3 (which are favored on their turn by low values of the corresponding epistemically-uncertain parameters 3 1 = 2 1,1 and 4 2 = 2 2,2 and m = 2 3,2 ). Although these "extreme" situations may be obtained (by chance) also in case (i.b) above (i.e., by assuming independence between the epistemically-uncertain parameters), they can be obtained far more easily (i.e., more probably) in case (i.a) above (i.e., assuming total dependence). These considerations are supported by the values of the synthetic numerical indicators described in Sec. 3.3.

  2, respectively, of the model outputs Z1 = Y1•Y2•Y3 (left) and Z2 = Y1•Y2/Y3 (right) obtained by hybrid MC-FIA (solid lines) and MC-based DS-IRS (dashed lines) approaches

,

  i.e., as the arithmetic means of the different plausibility and belief functions i e = 1, 2, …, N e , obtained in correspondence of the N e different random combinations of the independent focal sets representing the epistemically-uncertain distribution parameters (see Sec. 2.3 and
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 14 Fig. 4. Comparison of the 2.5-th and 97.5-th percentiles
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 335 Fig. 5. Comparison of the upper and lower CDFs

  z i ]), i.e., by the plausibility and belief functions generated in correspondence of the combination of the 1-cuts of level 1 = 0 (that are the largest possible). The situation is reversed for model function Z 2 = Y 1 •Y 2 /Y 3 (2) (Fig. 5, left). Actually, in this case, the assumption of total dependence between the epistemically-uncertain parameters prevents the double MC method from obtaining conservative bounds because only a limited set of combinations of uncertain parameter values can be randomly explored (see the explanation above and Sec. 4.1.1).
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 118 Fig. 8. Comparison of the 2.5-th and 97.5-th percentiles,

  0190, 0.3245] and [0.0625, 0.1050] for the MC-FIA and double MC approaches, respectively: again, the width of the interval provided by the double MC method is 7.2 times smaller than that produced by the hybrid approach, with a significant underestimation of the exceedance probability.A final remark is in order with respect to the results obtained. The first comparison (between methods (i.a) and (ii)) shows that when there is total dependence between the epistemically-uncertain parameters, the effect of different representations of epistemic uncertainty on the conservatism of the results is not univocal, but rather it is related to the characteristics of the model function at hand. For example, in case of model function (1), a probabilistic representation of epistemic uncertainty provides a larger gap between the upper and lower CDFs of the model output (i.e., more conservative results) than a nonprobabilistic representation; on the contrary, for model function(2), the opposite situation occurs. As a consequence, embracing one representation of epistemic uncertainty instead of the other may significantly change the outcome of a decision making process in a risk assessment problem involving uncertainties: this is of paramount importance in systems that are critical from the safety view point, e.g., in the nuclear, aerospace, chemical and environmental fields.

2 ,

 2 of the model outputs Z 1 (left) and Z 2 (right) obtained by the hybrid MC-FIA (dashed lines, Sec. 2.2 and Appendix B) and DBC-FIA (solid lines, Appendix D) approaches, which assume independence and unknown dependence, respectively, between the aleatory variables Y 1 , Y 2 and Y 3 .
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 9 Fig. 9. Comparison of the upper and lower CDFs,

ZZ

  2, respectively, of the model outputs Z1 = Y1•Y2•Y3 (left) and Z2 = Y1•Y2/Y3 (right) obtained by the hybrid MC-FIA (dashed lined) and hybrid DBC-FIA (solid lines) approaches, assuming independence and unknown dependence, respectively, between the aleatory variables Y1, Y2 and Y3 As expected, the inclusion of all kinds of possible dependences between the aleatory variables increases significantly the gap between the upper and lower CDFs of the model outputs (and, correspondingly, the conservatism of the results). This is confirmed by the analysis of the quantitative indicators [ ] are [0.0013, 0.0199] and [617.55, 868.93], respectively, in case of independence, whereas they are [0, 0.3460] and [242.36, 1547.23], respectively, in case of unknown dependence: thus, the assumption of independence leads to underestimating the (upper bound of the) exceedance probabilityand the quantile by about 17 and 2 times, respectively. In addition, the intervals for are [0.0426, 0.1944] and[28.59, 46.32], respectively, in case of independence, whereas they are [0, 0.5249] and[10.40, 104.15], respectively, in case of unknown dependence: again, the assumption of independence leads to underestimating the (upper bound of the) exceedance probability and the quantile by about 3 and 2.3 times, respectively.
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 4 Comparisons performed in Sec. 4, and their relative findingsComparison between the uncertainty propagation methods (Sec.4

F ) with mean equal to 2 . 2 ,

 22 standard deviation equal to 1 and support [0, 4.5]. In Figs. A.1 and A.2 the procedures for sampling the random realizations illustrated with respect to different assumptions of (in)dependence between the epistemically-uncertain parameters 2 1,1 = 3 1 and 2 2,1 = 3 2 . In Fig. A.1, we assume total dependence between the epistemically-uncertain parameters 2 1,1 = 3 1 and 2 2,1 = 3 2 and independence between the random variables Y 1 and Y 2 . With reference to the procedure outlined above, a random vector { } process epistemic uncertainty (step (2)); in case of total dependence between the epistemically-uncertain parameters 2 1,1 = 3 1 and 2 2,1 = 3 2 the vector { } 2 1,1 = 3 1 and 2 2,1 = 3 2 are then found by the inverse transform method as [ ] ( ) 18 in Fig. A.1, top left) and [ ] ( )

2 2 YF

 22 Fig. A.1 bottom) are sampled from a uniform distribution in [0,1) and the corresponding realizations

2 2 YF

 22 µ for Y 1 and Y 2 , respectively, are constructed using the values sampled for 2 1,1 = 3 1 and 2 2,1 = 3 2 , i.e., 86 (Fig. A.2 bottom). Then, since independence is still assumed between Y 1 and Y 2 , as above two random 0.60 in Fig. A.2 bottom) are sampled from a uniform distribution in [0,1) and the corresponding realizations

=

  in this work, standard MC simulation is used to propagate the aleatory uncertainties, which presupposes independence between the random variables. Finally, as highlighted in Ref. 23, it is worth noting that this hybrid propagation method clearly assumes independence between the group of probabilistic (i.e., aleatory or random) variables and the group of the possibilistic (i.e., epistemically-uncertain) parameters of the aleatory probability distributions. By way of example and only for illustration purposes, let us consider two random variables Y 1 and Y 2 that are described by probability distributions ) TR(a 2 , c 2 , b 2 ) with core c 2 = 1.7 and support [a 2 , b 2 ] = [1, 2]. In Fig. B.1 the procedure for sampling the i a -th random intervals the aleatory variables Y 1 and Y 2 , respectively, is illustrated. A single possibility value 1 (e.g., 1 = 0.2 in Fig. B.1, top) is selected and the corresponding 1-cuts 1 , 1

Y 1 ∼ 2 µ 1 Y 2 ∼ 2 σ 2

 121222 Fig. B.1. Top: possibility distributions ( ) 1

  i e -th random realization of epistemic uncertainty;(4) if i e < N e , set i e = i e + 1 and go back to step (2) above; otherwise, go to (5) below; i e = 1, 2, …, N e , calculate the plausibility Pl(A) and belief Bel(A) for each set A of interest contained in the universe of discourse

αA

  in this work, standard MC simulation is used to propagate the aleatory uncertainties, which presupposes independence between the random variables. By way of example and only for illustration purposes, let us consider the two random variables Y 1 and Y 2 described in the previous Appendix B. In Fig. C.1 the procedure for sampling the i a -th random intervals ] variables Y 1 and Y 2 , respectively, is illustrated. Since independence is now assumed between the epistemically-uncertain parameters 2 1,1 = 3 1 and 2 2,2 = 4 2 , two possibly different = 0.1 in Fig. C.1, top) are randomly selected and the corresponding focal sets for 2 1,1 = 3 1 and 2 2,2 = 4 2 are found as ] , [ ]

F 1 Y F and 2 YF 2 into 2 YFF

 1222 07, 1.97], respectively. Then, since independence is also assumed between Y 1 and Y 2 , two random numbers a 0.15 in Fig. C.1, bottom) are sampled from a uniform distribution in [0,102, 7.90], respectively. reader is referred to Refs. 17, 68 and 69 for the formal expressions of Z DBC F and Z DBC F when O ∈ {+, -, *, /} and to Ref. 89 for the extension of these results to other operators such as power, logarithm, and so on. In this theoretical framework, Ref. 69 provides operative rules to explicitly determine when O ∈ {+, -, *, /}. In particular, the main steps of the algorithm are: (i) discretize the CDFs of the random variables Y 1 and Y , respectively (i.e., build probability boxes for Y 1 and Y 2 ); (ii) apply the mathematical formulas provided in Ref. 69 to obtain bounds [ ] on the CDF Z F . The reader is referred to the seminal paper for further technical details.

1 ,F

 1 j = 1, 2, …, n;(2) inner loop processing aleatory uncertainty by DBC:(i) letting parameters j 1 range within the corresponding 1-cuts step (1) above), build the upper and lower CDFs α (i.e., the probability boxes) of level 1 for the "probabilistic" variables j Y as apply the DBC rules to obtain the bounds of level 1 [ ] repeat step (2) above for another possibility value 1 ∈ (0

  1) sample N e values { }

				α levels of the focal sets	A α θ	j e i j , ,	i 1	,	A α θ	j e i j , ,	i 2	,	, ...	A α θ	j e i j , ,	m i	j	, i e = 1, 2, …, N e ,	i	=	, 1	, 2	...,	m	j	,
				j	=	1,	2,	...,	n	, of the discretized possibility distributions	2	1	j	( j 1	)	of the parameters
				j 1 ,			j		=	1,	2,	...,	n			(outer loop processing epistemic uncertainty by MC sampling of
				independent discrete focal sets);
	(2) for each realization i e = 1, 2, …, N e of epistemic uncertainty (step (1) above), sample
				N a random intervals	[	y	a i j	, i e	,	y	a i j	, i e	]	,	i	a	=	, 1	, 2	...,	N	a	, j = 1, 2, …, n, of the "probabilistic"
				variables			j Y , j = 1, 2, …, n, from the probability distributions
				{ p	Y j j	(	y	j	)	:		j	=	, 1	, 2	...,	} n	
	{	Pl	i e	(	) A	:	i	e		=	, 1	, 2	...,	N	e	}	and a set of N e belief functions	{	Bel	i	(	) A	:	i	e	, 1	, 2	...,	N	e	}
																										e j , i α , i e = 1, 2, …, N e , i	i	=	, 1	, 2	...,	m	j	,	j	=	1,	2,	...,	n	, from the
				discrete distribution ( { α	j	,	i	,	t	,	m α	j	,	i	,	t	)	:	t	=	, 1	, 2	...,	} q	: these sampled values represent the

1

(see step

(2) 

of the procedure of Sec. 2.2) (inner loop processing aleatory uncertainty by MC simulation).

For each interval A of interest contained in the universe of discourse Z U of Z , the output of the algorithm is represented by a set of N e plausibility functions

Table 2

 2 

	summarizes the analyses carried out in the present paper together with the
	corresponding objectives.

Table 2 .

 2 Comparisons performed in Sec. 4, and their relative objectives

Comparison between the uncertainty propagation methods (Sec. 4.1) Sec. 4.1.1 Representation of epistemic uncertainty Probabilistic Non-probabilistic State of epistemic dependence

  

	Independence	Double MC (i.b.)	MC-based DS-IRS (iii.)
		vs	vs
	Total dependence	Double MC (i.a.)	Hybrid MC-FIA (ii.)
		1 1 1 1	1 1 1 1
		Study the effects of the state of dependence between the
	Objective	epistemically-uncertain parameters of the aleatory probability distributions when a probabilistic/non-probabilistic
		representation of epistemic uncertainty is given

Sec. 4.1.2 State of epistemic dependence Independence Total dependence Representation of epistemic uncertainty

  

	Probabilistic	Double MC (i.b.)	Double MC (i.a.)
		vs	vs
	Non-probabilistic	MC-based DS-IRS (iii.)	

  Table 3 reports the intervals for [ ]

	(2) it is the assumption of total dependence that leads to underestimate the upper bounds
	of [ Z P	2	>	z	* 2	]	and	Z	0 2	95 .	by about 32.4% and 15.5%, respectively. g
														i P > Z	z	* i	and	95 . Z , i = 1, 2, 0 i
	produced by the double MC approaches considering total dependence (case i.a.) and
	independence (case i.b.) between the epistemically-uncertain parameters. It can be seen
	that	P	[ Z	1	>	z	* 1	]	and	Z	0 1	95 .	range within [0.0006, 0.0342] and [566.86, 932.13],
														P	Z	1	>	z	* 1	and	Z	0 1	95 .
	by about 73.1% and 12.5%, respectively. Instead, [ Z P	2	>	z	* 2	]	and	Z	0 2	95 .	range within
	[0.0626, 0.1108] and [32.12, 38.05], respectively, in case (i.a), whereas they range
	[0.0318, 0.1640] and [26.36, 45.03], respectively, in case (i.b): thus, for model function
	f A straightforward remark is in order. Based on the consideration made above about model Z2 = Y1•Y2/Y3 (2),
	the easiest way to sample these "extreme" combinations of parameter values (i.e., to obtain the largest possible
	separation between the upper and lower CDFs and, thus, the most conservative results) would be by
	"artificially" imposing total dependence between the epistemically-uncertain parameters of Y1 and Y2 and
	opposite dependence between the epistemically-uncertain parameter of Y3 and the epistemically-uncertain
	parameters of both Y1 and Y2.

respectively, in case (i.a), whereas they range within [0.0004, 0.0092] and [613.58, 816.07], respectively, in case (i.b): thus, for model function (1) the assumption of independence would lead to underestimating the upper bounds of [ ]

  2, are obtained by averaging the different plausibility and belief functions (i.e., Pl 1 (Z i ∈ (-1, z i ]) and Bel 1 (Z i ∈ (-1, z

i ]), respectively) generated at different possibility levels 1 ∈ (0, 1] (in other words, by averaging the different contributions to the plausibility and belief functions produced by different 1-cuts of the epistemic parameters) (see Sec. 2.2 and Appendix B). Although this procedure is shown to provide the best bounds for the model outputs,

[START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF] 

it obviously prevents obtaining the "largest" possible bounds: actually, these extreme bounds are represented by Pl 0 (Z i ∈ (-1, z i ]) and Bel 0 (Z i ∈ (-1,

  2) sample the values { } ) perform the same steps (3) -(4) (inner loop processing aleatory uncertainty by standard MC simulation) as in the procedure of Appendix B to obtain

																								e j , i α , i	i	=	, 1	, 2	...,	m	j	,	j	=	1,	2,	...,	n	, from the discrete distribution
	( { α	j	,	i	,	t	,	m α	j	,	i	,	t	)	:	t		=	, 1	, 2	...,	} q	: these sampled values represent the α levels of the
	focal sets					A α θ	j e i j , ,	i 1	,	A α θ	j e i j , ,	i 2	,	, ...	A α θ	j e i j , ,	m i	j	,	i	=	, 1	, 2	...,	m	j	,	j	=	1,	2,	...,	n	, of the discretized
	possibility distributions	2	1	j	( j 1	)	of the parameters j 1 ,	j	=	1,	2,	...,	n	;
	(3a e i i z ,	and
	a z , , e i i		i	a	=		, 1	, 2	...,	N	a	, as the upper and lower limits of

  1 

																										θ	α	i	e	θ	α	i	e	=	µ	α	i	e	µ	α	i	e	= [7.8, 8.4] and
	[	2	,	2	,	, e 2 i	2	,	2	,	2	,	, e 2 i	2	]	[	2	,	, e 2 i	2	,	2	,	, e 2 i	2	]

h Recall that in the MC-based DS-IRS approach the possibility distributions are discretized into focal sets (see Sec. 2.3 and Appendix C for details).

characteristics of the model function at hand. Therefore, even if the double MC approach purposedly tries to separate variability from imprecision, in many cases it fails to produce reliable and conservative results, which can raise great concerns from the safety point of view. This leads to conclude that when the state of dependence between the epistemically-uncertain parameters is not known to the analyst (which is far from unlikely in practice), a non-probabilistic representation of epistemic uncertainty may represent in most cases the "safest" choice. 

Inclusion of unknown dependences between the aleatory variables in a "level-2" framework

In this Section, the Dependency Bound Convolution (DBC) method [START_REF] Williamson | Probabilistic arithmetic I: Numerical methods for calculating convolutions and dependency bounds[END_REF] is framed within a "level-2" setting of hybrid (i.e., probabilistic and possibilistic) uncertainty propagation: this allows accounting for all the (possibly unknown) dependences that may exist between the aleatory variables Y 1 , Y 2 and Y 3 (i.e., the inputs to model functions

(Table 4. Continued).

Unknown dependences between aleatory variables by DBC (Sec. 4.2)

State of dependence between the aleatory variables Independence Unknown dependence

Methods

Hybrid MC-FIA (ii.) vs Hybrid DBC-FIA (iv.)

Findings

-The upper and lower CDF of the output produced by hybrid DBC-FIA completely envelop those obtained by hybrid MC-FIA -Hybrid DBC-FIA is useful to provide an initial "worst-case" estimate of risk when nothing is known about the real state of dependence between the random variables -In realistic applications hybrid DBC-FIA leads to excessively conservative (and thus pessimistic) results that need to be refined by acquiring further knowledge on the system, its model and the real state of dependence between the random variables

Appendix A. Two-dimensional Monte Carlo method

The main steps of the procedure are: [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF][START_REF] Cullen | Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs[END_REF][START_REF] Rao | Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies[END_REF] (1) set i e = 1 (outer loop processing epistemic uncertainty by MC simulation);

(2) sample the i e -th set of random realizations e i j 

, where 2 1,2 = 4 1 = 1.5 and 2 1,1 = 3 1 is described on its turn by a normal probability distribution ( )

) with mean equal to 8, standard deviation equal to 1 and support [6, 10];

where 2 2,2 = 4 2 = 1.7 and 2 2,1 = 3 2 is described on its turn by a normal probability distribution ( )

6.5 

Appendix B. Hybrid Monte Carlo and Fuzzy Interval Analysis approach

The main steps of the procedure are: [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Kalos | Monte Carlo methods. Volume I: Basics[END_REF][START_REF] Marseguerra | Basics of the Monte Carlo Method with Application to System Reliability[END_REF][START_REF] Baraldi | A Combined Monte Carlo and Possibilistic Approach to Uncertainty Propagation in Event Tree Analysis[END_REF][START_REF] Baudrit | Post-processing the hybrid method for addressing uncertainty in risk assessments[END_REF][START_REF] Baudrit | Joint propagation of variability and imprecision in assessing the risk of groundwater contamination[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF][START_REF] Cooper | Hybrid Processing of Stochastic and Subjective Uncertainty Data[END_REF][START_REF] Flage | Possibility-probability transformation in comparing different approaches to the treatment of epistemic uncertainties in a fault tree analysis[END_REF][START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF][START_REF] Kentel | Probabilistic-fuzzy health risk modeling[END_REF][START_REF] Kentel | Risk tolerance measure for decision-making in fuzzy analysis: a health risk assessment perspective[END_REF][START_REF] Zadeh | Fuzzy Sets[END_REF][START_REF] Kentel | 2D Monte Carlo versus 2D Fuzzy Monte Carlo Health Risk Assessment[END_REF][START_REF] Moller | Fuzzy randomness -a contribution to imprecise probability[END_REF][START_REF] Möller | Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics[END_REF][START_REF] Möller | Engineering computation under uncertainty -Capabilities of nontraditional models[END_REF][START_REF] Moller | Safety assessment of structures in view of fuzzy randomness[END_REF][START_REF] Moller | Time-dependent reliability of textilestrengthened RC structures under consideration of fuzzy randomness[END_REF] (1) set 1 = 0 (outer loop processing epistemic uncertainty by fuzzy interval analysis);

(2) select the 1-cuts Epistemically-uncertain parameter µ 1 of Y 1 : µ 1 ∼ π µ 1 (µ 1 ) = TR [START_REF] Apostolakis | Pitfalls in risk calculations[END_REF][START_REF] Huang | A fuzzy set approach for event tree analysis[END_REF][START_REF] Aven | On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability[END_REF] 

Appendix D. Hybrid Dependency Bound Convolution and Fuzzy Interval Analysis approach

The Dependency Bound Convolution (DBC) method [START_REF] Williamson | Probabilistic arithmetic I: Numerical methods for calculating convolutions and dependency bounds[END_REF] allows computing extreme upper and lower CDFs on the outputs of probabilistic models no matter what correlations or dependencies exist among the input variables; these bounds are also the "pointwise best possible." [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Regan | Equivalence of five methods for bounding uncertainty[END_REF] The method is based on the theorem of Frank et al., 1987, [START_REF] Frank | Best-possible bounds for the distribution of a sum-a problem of Kolmogorov[END_REF] F . [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Regan | Equivalence of five methods for bounding uncertainty[END_REF] The