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Risk analysis models describing aleatory (i.e., random) events contain parameters (e.g., probabilities, 
failure rates, …) that are epistemically-uncertain, i.e., known with poor precision. Whereas aleatory 
uncertainty is always described by probability distributions, epistemic uncertainty may be 
represented in different ways (e.g., probabilistic or possibilistic), depending on the information and 
data available. 
The work presented in this paper addresses the issue of accounting for (in)dependence relationships 
between epistemically-uncertain parameters. When a probabilistic representation of epistemic 
uncertainty is considered, uncertainty propagation is carried out by a two-dimensional (or double) 
Monte Carlo (MC) simulation approach; instead, when possibility distributions are used, two 
approaches are undertaken: the hybrid MC and Fuzzy Interval Analysis (FIA) method and the MC-
based Dempster-Shafer (DS) approach employing Independent Random Sets (IRSs). The objectives 
are: i) studying the effects of (in)dependence between the epistemically-uncertain parameters of the 
aleatory probability distributions (when a probabilistic/possibilistic representation of epistemic 
uncertainty is adopted) and ii) studying the effect of the probabilistic/possibilistic representation of 
epistemic uncertainty (when the state of dependence between the epistemic parameters is defined). 
The Dependency Bound Convolution (DBC) approach is then undertaken within a hierarchical 
setting of hybrid (probabilistic and possibilistic) uncertainty propagation, in order to account for all 
kinds of (possibly unknown) dependences between the random variables. 
The analyses are carried out with reference to two toy examples, built in such a way to allow 
performing a fair quantitative comparison between the methods, and evaluating their rationale and 
appropriateness in relation to risk analysis. 

Keywords: aleatory and epistemic uncertainties, dependences, two-dimensional Monte Carlo 
method, possibility distributions, fuzzy interval analysis, dependency bound convolution. 
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1. Introduction 

In risk analysis, uncertainty is typically distinguished into two types: randomness due to 
inherent variability in the system behavior and imprecision due to lack of knowledge and 
information on the system. The former type of uncertainty is often referred to as 
objective, aleatory, stochastic whereas the latter is often referred to as subjective, 
epistemic, state of knowledge.1-4 

We are interested in the framework of two hierarchical levels of uncertainty, referred 

to as “level-2” setting:5 the models of the aleatory events (e.g., the failure of a mechanical 

component, the variation of its geometrical dimensions and material properties, …) 

contain parameters (e.g., probabilities, failure rates,…) that are epistemically-uncertain, 

i.e., known with poor precision.a 

In current risk analysis, both aleatory and epistemic uncertainties are treated within a 

probabilistic framework.1,6-9 However, in some situations, the lack of complete 

knowledge, information and data impairs the probabilistic representation of epistemic 

uncertainty. A number of alternative representation frameworks have been proposed to 

handle such cases,10-14 e.g., fuzzy set theory,15 Dempster-Shafer theory of evidence,16-21 

possibility theory22-26 and interval analysis.27-31 

In this paper, we use probability distributions to describe aleatory uncertainty and we 

consider both probability and possibility distributions to describe the epistemic 

uncertainty in the parameters of the (aleatory) probability distributions.23-26 When both 

aleatory and epistemic uncertainties are represented by probability distributions, their 

propagation is carried out by a two-dimensional (or double) Monte Carlo (MC) 

simulation approach.5,32,33 Instead, when a hybrid (probabilistic and possibilistic) 

uncertainty representation is considered, two approaches are here undertaken: (i) the 

hybrid MC and Fuzzy Interval Analysis (FIA) approach,b where the MC technique34,35 is 

combined with the extension principle of fuzzy set theory,36-45 within a “level-2” 

hierarchical setting;24,46-51 (ii) the Monte Carlo (MC)-based Dempster-Shafer (DS) 

approach employing Independent Random Sets (IRSs),c where the possibility 

distributions describing the epistemically-uncertain parameters are discretized into focal 

sets that are randomly and independently sampled by MC.52-62 

 
a This framework of uncertainty modeling is an extension of the so-called “level-1” setting where random 
variability (aleatory uncertainty) and lack-of-knowledge (epistemic uncertainty) are not separated into two 
hierarchical levels.5 
b In the following, this method will be referred to as “hybrid MC-FIA approach” for brevity. 
c In the following, this method will be referred to as “MC-based DS-IRS approach” for brevity. 
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The above mentioned methods encompass several assumptions about the 

(in)dependence relationships between (i) the epistemically-uncertain parameters of the 

aleatory probability distributions and (ii) the aleatory variables. With respect to that, two 

issues must be considered for the practical application of the methods in risk assessment 

problems: 

(i) in the hybrid MC-FIA approach, total dependence is assumed between the 

epistemically-uncertain parameters of the aleatory probability distributions, i.e., 

between the information sources (e.g., the experts or observers) that supply the 

corresponding possibility distributions;23,24 on the contrary, in the MC-based DS-IRS 

approach, random set independence between the epistemic parameters is implied;52-55 

(ii)  the standard MC method (used to propagate the aleatory uncertainties in the three 

methods mentioned above) presupposes independence between the random 

variables,63 which may lead to overly optimistic results in risk assessment 

problems.64-66 In addition, although some dependences between the random variables 

may be accounted for by a MC approach (e.g., through copulas67), not all kinds of 

possible dependences can be modeled within a MC sampling framework.17 

 
The present paper addresses the first issue (i) above by comparing the double MC, 

hybrid MC-FIA and MC-based DS-IRS approaches with the following objectives: 

•  the study of the effect of dependence between the epistemically-uncertain parameters 

of the aleatory probability distributions when a probabilistic/non-probabilistic 

representation of epistemic uncertainty is adopted; 

•  the study of the effect of the probabilistic/non-probabilistic representation of 

epistemic uncertainty when the state of dependence between the epistemic 

parameters is defined. 

With respect to the second issue (ii) above, this paper aims at removing the 

assumption of independence between random variables. To this aim, the Dependency 

Bound Convolution (DBC) method17,64,68,69 is combined with the Fuzzy Interval Analysis 

(FIA) approach within a “level-2” framework of hybrid (probabilistic and possibilistic) 
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uncertainty propagation in order to account for all kinds of (possibly unknown) 

dependences between the random variables.d 

To the best of the authors’ knowledge, this is the first time that the above mentioned 

issues are systematically analyzed with reference to risk assessment problems where 

hybrid uncertainty is separated into two hierarchical levels. To keep the analysis simple 

and retain a clear view of each step, the investigations are carried out with respect to two 

simple examples; in addition, different numerical indicators (e.g., cumulative 

distributions, exceedance probabilities, percentiles, …) are considered to perform a fair, 

quantitative comparison between the methods and evaluate their rationale and 

appropriateness in relation to risk analysis. 

 
The work benefits from the efforts that have already been done to formalize 

theoretically the distinct concepts of independence that arise in problems involving both 

variability and imprecision,70-72 within the frameworks of both evidence73-76 and 

possibility theories.77-81 The practical implications of different definitions of 

independence are illustrated with reference to the probabilistic risk assessment of 

engineering systems by Refs. 17, 54 and 55 only in a “level-1” setting; similar analyses 

are performed on environmental cases of soil contamination by Refs. 38 and 52, still in a 

“level-1” setting only. 

 

The remainder of the paper is organized as follows. In Sec. 2, the main steps of the 

techniques here employed for the joint hierarchical propagation of hybrid uncertainty in a 

“level-2” framework (i.e., the two-dimensional MC, hybrid MC-FIA, MC-based DS-IRS 

and the hybrid DBC-FIA methods) are briefly outlined; in Sec. 3, the two academic 

examples used to perform the comparison between the uncertainty propagation methods 

are presented; in Sec. 4, the results of the comparisons are reported and commented; Sec. 

5 offers a discussion of the results and some conclusions. Finally, some technical details 

about the two-dimensional MC, hybrid MC-FIA, MC-based DS-IRS and DBC-FIA 

approaches are given in Appendices A, B, C and D, respectively, for completeness. 

 
d In the following, the hybrid probabilistic and possibilistic approach employing the DBC method (instead of 
standard MC simulation) for the propagation of the aleatory uncertainties in a “level-2” setting will be referred 
to as “hybrid DBC-FIA approach” for brevity. 
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2. Computational methods employed in this study for the joint hierarchical 

propagation of hybrid uncertainty in a “level-2” fr amework 

In all generality, we consider a model whose output is a function 
( )nj YYYYfZ ...,, ..., , , 21=  of n  variables njYj ...,,2,1, = , whose uncertainty is described 

by probability distributions { }njyp j

Yj

j
 ..., ,2 ,1  :)( =

�
, where } ..., , ,{ ,2,1, jmjjjj θθθ=� , 

nj  ..., ,2 ,1= , are the vectors of the corresponding internal parameters. In a “level-2” 
framework, the parameters } ..., , ,{ ,2,1, jmjjjj θθθ=� , nj  ..., ,2 ,1= , of the probability 
distributions { }njyp j

Yj

j
 ..., ,2 ,1  :)( =

�
 are themselves affected by epistemic uncertainty5. 

Depending on the framework adopted to represent the epistemic uncertainty in the 

parameters j� , nj  ..., ,2 ,1= , different methods for uncertainty propagation are 

embraced: when probability distributions ( ) ( ) ( ){ }  ..., , , )( ,2,1,

,2,1,

j

jmjjjj

mjjjj ppp θθθ θθθ=�p� , 

j = 1, 2, …, n, are used, a two-dimensional (or double) Monte Carlo (MC) simulation 

approach is undertaken (Sec. 2.1); instead, when possibility distributions 

( ) ( ) ( ){ } ,...,, )( ,2,1,

,2,1,

j

jmjjjj

mjjjj θπθπθπ θθθ=��
� , j = 1, 2, …, n, are chosen, two options 

are here considered: a hybrid MC and Fuzzy Interval Analysis (FIA) approach (Sec. 2.2), 

and a MC-based Dempster-Shafer (DS) approach employing Independent Random Sets 

(IRSs) (Sec. 2.3). 

2.1. Two-dimensional Monte Carlo method 

In extreme synthesis, the two main steps of the procedure are:5,32,33 
(1) sample Ne random realizations ei

j� , ie = 1, 2, …, Ne, j = 1, 2, …, n, of the parameter 

vectors j�  from the probability distributions )( j
j
�p� , j = 1, 2, …, n (outer loop 

processing epistemic uncertainty by MC simulation); 

(2) for each realization ie = 1, 2, …, Ne of epistemic uncertainty, sample Na random 

realizations ea ii

jy , , ia = 1, 2, …, Na, j = 1, 2, …, n, of the “probabilistic” variables 

njYj ...,,2,1, = , from the probability distributions )( j

Y yp j

ei
j�

, j = 1, 2, …, n, 

conditioned at the values eij�  of the epistemically-uncertain parameters j�  sampled 

at step (1) above (inner loop processing aleatory uncertainty by MC simulation). 

The output of the algorithm is a set of Ne empirical Cumulative Distribution 

Functions (CDFs) { }ee

Z

i NiF
e

 ..., ,2 ,1  : =  for the model output Z ; this set 
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{ }ee

Z

i NiF
e

 ..., ,2 ,1  : =  has to be post-processed in order to obtain the upper and lower 

CDFs, ZF  and ZF , respectively, for Z . Further details are not given here for brevity 

sake: the reader is referred to Appendix A. 

Notice that the random samplings performed at steps (1) and (2) above may account 

for possible dependences existing between the epistemically-uncertain parameters and 

between the aleatory variables, respectively; on the other hand, such dependences can be 

obviously included in the analysis, only if they can be modeled within a classical MC 

framework.63 Finally, notice that in this work standard MC simulation is used to 

propagate the aleatory uncertainties in step (2) above, which presupposes independence 

between the random variables. 

2.2. Hybrid Monte Carlo and Fuzzy Interval Analysis approach 

In the MC-FIA approach, the propagation of the hybrid uncertainty is performed by 
combining the MC technique34,35 with the extension principle of fuzzy set theory36-45 
within a “level-2” setting by means of the following main steps:24,46-51 

(1) select one possibility value � ∈  (0, 1] and the corresponding cuts jmjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α , 

j = 1, 2, …, n, of the possibility distributions )( j
j
��

�  = 

( ) ( ) ( ){ } ,...,, ,2,1,

,2,1,

j

jmjjj

mjjj θπθπθπ θθθ  of the epistemically-uncertain parameters j� , j 

= 1, 2, …, n (outer loop processing epistemic uncertainty by fuzzy interval 

analysis); 

(2) sample Na random intervals ],[ ,,

aa i

j

i

j
yy αα

, aa Ni  ..., ,2 ,1= , j = 1, 2, …, n, of the 

“probabilistic” variables jY , j = 1, 2, …, n, from the probability distributions 

{ }njyp j

Yj

j
 ..., ,2 ,1  :)( =

�
, letting the epistemically-uncertain parameters 

} ..., , ,{ ,2,1, jmjjjj θθθ=�  range within the corresponding �-cuts jmjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α , j 

= 1, 2, …, n (found at step (1) above) (inner loop processing aleatory uncertainty by 

MC simulation); 

(3) repeat step (2) above for another possibility value � ∈  (0, 1]. 

For each interval A  of interest contained in the universe of discourse ZU  of Z , the 

output of the algorithm is represented by a set of plausibility functions 
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( ]{ }1,0:)( ∈αα APl  and a set of belief functions ( ]{ }1,0:)( ∈αα ABel , obtained in 

correspondence of the different possibility values � ∈  (0, 1] selected at step (1) above; 

these sets of functions are then synthesized into the plausibility Pl(A) and belief Bel(A) of 

A as �
1

0

)( αα dAPl  and �
1

0

)( αα dABel , respectively.24,39 Further technical details are not 

given here for brevity sake: the reader is referred to Appendix B. 

It is worth noting that performing an interval analysis on �-cuts assumes total 

dependence between the epistemically-uncertain parameters. Actually, this procedure 

implies strong dependence between the information sources (e.g., the experts or 

observers) that supply the input possibility distributions, because the same confidence 

level (1 – α ) is chosen to build the �-cuts for all the epistemically-uncertain 

parameters.23 In addition, notice that the random sampling performed in step (2) above 

can account for dependences possibly existing between the aleatory variables; on the 

other hand, such dependences can be obviously included in the analysis only if they can 

be modeled within a classical MC framework:63 in this work, standard MC simulation is 

used to propagate the aleatory uncertainties, which presupposes independence between 

the random variables. Finally, as highlighted in Ref. 23, it is worth noting that this hybrid 

propagation method clearly assumes independence between the group of probabilistic 

(i.e., aleatory or random) variables and the group of the possibilistic (i.e., epistemically-

uncertain) parameters of the aleatory probability distributions. 

2.3. Monte Carlo-based Dempster-Shafer approach employing Independent 

Random Sets 

In the MC-based DS-IRS approach, the possibility distributions employed in the hybrid 
MC-FIA method are encoded into discrete (focal) sets as follows: 
(i) determine q (nested) focal sets for the generic possibilistic parameter � as the �-cuts 

[ ]
ttt

A ααα θθ  ,= ,  qt ..., 2, 1,= , with 0...1 121 =>>>>= +qq αααα ; 

(ii)  build the mass distribution of the focal sets by assigning 1+−=∆= tttt
m αααα . 

In extreme synthesis, the main steps of the procedure are:52,53 

(1) sample Ne values { }ei

ij ,α , ie = 1, 2, …, Ne, jmi  ..., ,2 ,1= , nj  ..., 2, 1,= , from the 

discrete distribution ( ) } ..., ,2 ,1:,{
 , , , , qtm
tijtij =αα : these sampled values represent the 



8  
 

α  levels of the focal sets jmj

ei
ij

j

ei
ij

j

ei
ij

AAA ,

,

2,

,

1,

,

 ,... , ,
θ

α

θ

α

θ

α , ie = 1, 2, …, Ne, jmi  ..., ,2 ,1= , 

nj  ..., 2, 1,= , of the discretized possibility distributions )( j
j
��

�  of the parameters 

j� , nj  ..., 2, 1,=  (outer loop processing epistemic uncertainty by MC sampling of 

independent discrete focal sets); 

(2) for each realization ie = 1, 2, …, Ne of epistemic uncertainty (step (1) above), sample 

Na random intervals ],[ ,,
eaea ii

j

ii

j
yy , aa Ni  ..., ,2 ,1= , j = 1, 2, …, n, of the “probabilistic” 

variables jY , j = 1, 2, …, n, from the probability distributions 

{ }njyp j

Yj

j
 ..., ,2 ,1  :)( =

�
 (see step (2) of the procedure of Sec. 2.2) (inner loop 

processing aleatory uncertainty by MC simulation). 

For each interval A  of interest contained in the universe of discourse ZU  of Z , the 

output of the algorithm is represented by a set of Ne plausibility functions 

}...,,2,1:)({ eei NiAPl
e

=  and a set of Ne belief functions }...,,2,1:)({ eei NiABel
e

= , 

obtained in correspondence of the Ne different combinations of α  levels (i.e., of 

independent random sets) sampled at step 1. above; these sets of functions are then 

synthesized into the plausibility Pl(A) and belief Bel(A) of A as ( )�
=

=
e

e

e

N

i
i

e

APl
N

APl
1

1
)(  

and ( )�
=

=
e

e

e

N

i
i

e

ABel
N

ABel
1

1
)( , respectively.24,39 Further technical details are not given 

here for brevity sake: the reader is referred to Appendix C. 

Notice that, differently from the hybrid MC-FIA approach, at step (1) above a 

different possibility value (resp., confidence level) α  (resp., 1 – �) is randomly and 

independently sampled for each epistemically-uncertain parameter, i.e., random set 

independence is assumed between the epistemically-uncertain parameters. Again, notice 

that the random sampling performed in step (2) above can account for dependences 

possibly existing between the aleatory variables; on the other hand, such dependences 

can be obviously included in the analysis only if they can be modeled within a classical 

MC framework:63 in this work, standard MC simulation is used to propagate the aleatory 

uncertainties, which presupposes independence between the random variables. 
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Finally, in passing notice that all the methods outlined in Sections 2.1-2.3 employ 

standard MC simulation to propagate the aleatory uncertainties, which presupposes 

independence between the random variables jY , j = 1, 2, …, n. In order to show the 

possibility of removing this assumption, for illustration purposes the Dependency Bound 

Convolution (DBC) method17,64,68,69 is combined with the Fuzzy Interval Analysis (FIA) 

approach (Sec. 2.2) in order to account for all kinds of (possibly unknown) dependences 

between the random variables jY , j = 1, 2, …, n: in other words, the DBC method 

replaces standard MC simulation at step (2) of the procedure in Sec. 2.2. The technical 

details of the corresponding DBC-FIA algorithm are not given here for brevity: the reader 

is referred to Appendix D at the end of the paper. 

 

Table 1 summarizes the characteristics of the approaches used in the following to 

propagate aleatory and epistemic uncertainties in a “level-2” framework. 
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Table 1. Characteristics of the approaches considered 
to propagate aleatory and epistemic uncertainties in a 
“level-2” framework 

Method 
Epistemic uncertainty  

representation 
Epistemic uncertainty 

propagation 
State of epistemic  

dependence 
State of aleatory  

dependence 

Double 
MC 

Probability  
distributions 

Random sampling (of 
probability distributions)  

by MC 

Independence/Total  
dependence 

Independence 

Hybrid  
MC-FIA 

Possibility  
distributions 

Fuzzy interval analysis 
Total  

dependence 
Independence 

MC-based  
DS-IRS 

Focal sets  
with associated probability  

masses (discretized 
possibility distributions) 

Random sampling (of 
discrete focal sets) by MC 

Random set  
independence 

Independence 

Hybrid  
DBC-FIA 

Possibility  
distributions 

Fuzzy interval analysis 
Total  

dependence 
Unknown  

dependence 

 

3. Case studies 

In this Section, the two simple examples adopted as benchmarks to compare the methods 
of Sec. 2 are presented. In particular, in Sec. 3.1, the model functions used are described 
together with the representation of the aleatory and epistemic components of uncertainty 
in the model input variables; in Sec. 3.2, the experimental comparisons carried out 
throughout the paper are outlined; finally, in Sec. 3.3, the numerical indicators used to 
perform a quantitative comparison between the uncertainty propagation techniques are 
provided. 

3.1. Model functions 

Two different model functions are considered: 

 ( ) 3213211 ,, YYYYYYfZ ⋅⋅==  (1) 

 ( ) 3213212 ,, YYYYYYfZ ⋅== . (2) 

The uncertain input variables Y1, Y2 and Y3 are described by probability distributions 

)( 1
1

1
ypY

�
, )( 2

2

2
ypY

�
 and )( 3

3

3
ypY

�
 whose parameter vectors 1� , 2�  and 3�  are themselves 

affected by epistemic uncertainty. In particular, Y1 is represented by a lognormal 

distribution LN(�1, �1) = LN(�1) = LN(�1,1, �1,2), where �1 = �1,1 is described by a 

triangular possibility distribution ( )1
1 µπ µ  = ( )1,1

1,1 θπθ  with core c1 = 8 and support [a1, 

b1] = [7, 10] and �1 = �1,2 = 1.5; Y2 is represented by a lognormal distribution LN(�2, �2) = 

LN(�2) = LN(�2,1, �2,2), where �2 = �2,1 = 9 and �2 = �2,2 is described by a triangular 
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possibility distribution ( )2
2 σπσ  = ( )2,2

2,2 θπθ  with core c2 = 1.7 and support [a2, b2] = [1, 

2]; finally, Y3 is represented by a triangular probability distribution TR(l, m, u) = TR(�3) = 

TR(�3,1, �3,2, �3,3), where l = �3,1 = 1, u = �3,3 = 10 and m = �3,2 is described by a triangular 

possibility distribution ( )mmπ  = ( )2,3
2,3 θπθ  with core c3 = 4 and support [a3, b3] = [2, 9]. 

Notice that the simplicity of functions (1) and (2) allows to retain a clear view of (i) 

the steps involved in the comparison of the uncertainty propagation methods of Sec. 2 

and (ii) the “practical” interpretations of the results in relation to possible risk assessment 

applications. 

3.2. Experimental comparisons 

The following approaches are considered and compared in the task of hierarchically 
propagating aleatory and epistemic uncertainties in a “level-2” framework: 
(i) the two-dimensional (double) MC approach of Sec. 2.1 and Appendix A: 

(a) assuming total dependence between the epistemically uncertain parameters of 

the aleatory probability distributions. This choice has been made to perform a 

fair comparison with the hybrid Monte Carlo (MC) and Fuzzy Interval Analysis 

(FIA) approach, which implicitly assumes by construction total dependence 

between the epistemically uncertain parameters (see Sec. 2.2).e 

(b) assuming independence between the epistemically uncertain parameters of the 

aleatory probability distributions. This choice has been made to perform a fair 

comparison with the Monte Carlo (MC)-based Dempster-Shafer (DS) approach 

employing Independent Random Sets (IRSs), which assumes independence 

between the epistemically uncertain parameters (see Sec. 2.3); 

(ii)  the hybrid MC-FIA approach of Sec. 2.2 and Appendix B; 

(iii)  the MC-based DS-IRS approach of Sec. 2.3 and Appendix C. 

(iv) the hybrid DBC-FIA approach of Appendix D. 

It is worth remembering that, as highlighted in Sections 2.1-2.3 and Table 1, in 

methods (i)-(iii) above standard MC simulation is used to propagate the aleatory 

uncertainties, which presupposes independence between the random variables. 

 
e It is important to note that the condition of total epistemic (or state-of-knowledge) dependence between 
parameters of risk models is far from unlikely. For example, consider the case of a system containing a number 
of physically distinct, but similar/nominally identical components whose failure rates are estimated by means of 
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It is worth noting that the representation of epistemic uncertainty here used in the 

MC-based DS-IRS approach entirely relies on the possibilistic representation described 

in Sec. 3.1 and employed by the hybrid MC-FIA approach. However, in order to tailor 

this possibilistic representation to the DS framework, the possibility distributions of Sec. 

3.1 are discretized into focal sets (or intervals), each of which is assigned a probability 

mass as explained in Sec. 2.3:23 in particular, in this paper q = 20 (nested) sets are 

determined for the generic possibilistic parameter θ  as the �-cuts ] ,[
t

tt
A ααα θθ= , 

20..., 2, 1, ==  qt , with 0...1 2112021 =>>>>= =+= qq αααα  and the corresponding mass 

distribution 
t

mα  is built by assigning 05.01 =−=∆= +tttt
m αααα : these particular 

values are chosen for the sake of comparison with the hybrid MC-FIA approach 

described in detail in Appendix B. 

In addition, notice that the probability distributions here used in the two-dimensional 

MC approach for the epistemically-uncertain parameters are obtained by transforming the 

possibility distributions of Sec. 3.1 according to the principle of insufficient reason.82 The 

sampling procedure for transforming the possibility distribution ( )θπθ  of the generic 

parameter θ  into a probability distribution according to this principle is:82,83 

(i) sample a random realization �*  for � in [0, 1) and consider the �-cut level 

] ,[ *** ααα θθ=A  = ( ){ }*: αθπθ θ ≥ ; 

(ii)  sample a random realization �* for � from a uniform probability distribution on *αA . 

It is worth noting that other techniques of transformation of possibility distributions 

into probability density functions have been suggested in the literature, but the 

corresponding details are not given here for brevity sake: the interested reader is referred 

to Refs. 41, 82, 84 and 85 for some proposed techniques, e.g., the converse 

transformation.84 

 

Two classes of analyses are performed (Sec. 4): 

(1) methods (i)-(iii) above are compared with the following objectives (Sec. 4.1): 

                                                                                                                         
the same data set: in such situation, the distributions describing the uncertainty associated to the failure rates 
have to be considered totally dependent.1,7 
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•  studying the effects of the state of dependence between the epistemically-

uncertain parameters of the aleatory probability distributions when a 

probabilistic/non-probabilistic representation of epistemic uncertainty is given: to 

this aim, approaches that represent in the same way the epistemic uncertainty 

(i.e., in terms of probability or possibility distributions) but assume different 

relationships (i.e., dependence or independence) between the epistemically 

uncertain parameters are compared in the following Sec. 4.1.1 (in particular, 

comparisons are performed between approaches (i.a) and (i.b) above and between 

approaches (ii) and (iii) above); 

•  studying the effects of the probabilistic/non-probabilistic representations of the 

epistemically-uncertain parameters of the aleatory probability distributions when 

the state of dependence between the epistemically-uncertain parameters is given: 

to this aim, approaches assuming the same dependence relationship between the 

epistemically-uncertain parameters but employing different representations of the 

epistemic uncertainty are compared in the following Sec. 4.1.2 (in particular, 

comparisons are performed between approaches (i.a) and (ii) above and between 

approaches (i.b) and (iii) above). 

Again, notice that, as highlighted in Sections 2.1-2.3 and Table 1, in methods (i)-(iii) 

above standard MC simulation is used to propagate the aleatory uncertainties, which 

presupposes independence between the random variables. 

(2) methods (ii) and (iv) above, i.e., the hybrid MC- and DBC-FIA approaches 

(assuming independence and unknown dependence between the aleatory variables, 

respectively) are compared on the academic examples of the previous Sec. 3.1 in 

order to show the possibility of (Sec. 4.2): 

•  removing the assumption of independence between the aleatory variables (which 

is implicit in the adoption of standard MC sampling for the propagation of 

aleatory uncertainty); 

•  accounting for all kinds of (possibly unknown) dependences between the aleatory 

variables (i.e., also those that cannot be modeled even within arbitrarily complex 

MC sampling frameworks, e.g., copulas). 

Table 2 summarizes the analyses carried out in the present paper together with the 
corresponding objectives. 



14  
 

Table 2. Comparisons performed in Sec. 4, and their 
relative objectives 

Comparison between the uncertainty propagation methods (Sec. 4.1) 
Sec. 4.1.1 

  Representation of epistemic uncertainty  

  Probabilistic   Non-probabilistic 

State of epistemic  
dependence  

Independence Double MC (i.b.)  MC-based DS-IRS (iii.) 

 vs  vs 
Total  

dependence 
Double MC (i.a.)  Hybrid MC-FIA (ii.) 

 ����  ���� 

 Objective 

Study the effects of the state of dependence between the 
epistemically-uncertain parameters of the aleatory probability 
distributions when a probabilistic/non-probabilistic 
representation of epistemic uncertainty is given 

Sec. 4.1.2 

  State of epistemic dependence 

  Independence  Total dependence 

Representation of 
epistemic uncertainty 

Probabilistic Double MC (i.b.)  Double MC (i.a.) 

 vs  vs 
Non-

probabilistic 
MC-based DS-IRS (iii.)  Hybrid MC-FIA (ii.) 

 ����  ���� 

 Objective 

Study the effects of the probabilistic/non-probabilistic 
representation of the epistemically-uncertain parameters of the 
aleatory probability distributions when the state of dependence 
between the epistemically uncertain parameters is given 

Unknown dependences between aleatory variables by DBC (Sec. 4.2) 

 
State of dependence between the aleatory variables 

Independence  Unknown dependence 

Methods Hybrid MC-FIA (ii.) vs Hybrid DBC-FIA (iv.) 

Objectives 

-Remove the assumption of independence between the aleatory 
variables (implicit in the adoption of standard MC sampling for 
the propagation of aleatory uncertainty) 
-Account for all kinds of (possibly unknown) dependences 
between the aleatory variables (i.e., also those that cannot be 
modeled even within arbitrarily complex MC sampling 
frameworks) 

 

3.3. Quantitative indicators 

The experimental comparisons described in the previous Sec. 3.2 are carried out with 
reference to three quantities of interest in risk assessment: i) the upper and lower 
Cumulative Distribution Functions (CDFs) ( )i

Z zF i  and ( )i

Z zF i  of the model output Zi, i 
= 1, 2; ii) the 2.5-th and 97.5-th percentiles ( )i

Z zF i 025.0,  and ( )i

Z zF i 975.0,  of the CDF iZF  
of Zi, i = 1, 2 (i.e., the two CDFs that envelop 95% of the CDFs of Zi); iii) the upper and 
lower CDFs ( )95.095.0

i

Z zF i  and ( )95.0
95.0

i

Z zF i  of the 95-th percentile 95.0
iZ  of Zi, i = 1, 2. 
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The calculation of CDFs is of great importance in risk assessment since they 

summarize the uncertainty “contained” in the variables of interest, i.e., the model outputs. 

In the two-dimensional MC approach (Sec. 2.1), the upper and lower CDFs ( )i

Z zF i  and 

( )i

Z zF i  of Zi, i = 1, 2, are computed as ( ) ( ){ }i

Z

iNii

Z zFzF i

e
ee

i

...,,2,1
max

=
=  and 

( )i

Z zF i ( ){ }i

Z

iNi
zF i

e
ee ...,,2,1

min
=

=  (i.e., as the two “extreme” CDFs that envelop all the Ne CDFs 

generated in correspondence of the Ne realizations of epistemic uncertainty). Instead, in 

the hybrid MC-FIA (Sec. 2.2) and MC-based DS-IRS (Sec. 2.3) approaches, ( )i

Z zF i  and 

( )i

Z zF i  of Zi, i = 1, 2, are computed by considering the plausibility and belief of the set 

( ]ii zA ,∞−= , i = 1, 2: in this respect, ( ]( )ii zZPl ,∞−∈  and ( ]( )ii zZBel ,∞−∈  can be 

interpreted as bounding cumulative distributions ( )i

Z zF i  = ( ]( )ii zZPl ,∞−∈  and 

( )i

Z zF i  = ( ]( )ii zZBel ,∞−∈ , i = 1, 2. As highlighted in Ref. 24, ( ]( )ii zZPl ,∞−∈  and 

( ]( )ii zZBel ,∞−∈  are the most precise bounds for the true CDF ( )i

Z zF i  of Zi, i = 1, 2. 

In order to provide a fair and quantitative comparison between the uncertainty 

propagation methods, two synthetic numerical indicators are also computed based on the 

functions ( )i

Z zF i  and ( )i

Z zF i : (a) the (interval for the) probability [ ]*

ii zZP >  that Zi 

exceeds a given threshold *iz , i = 1, 2 (in the present paper, *1z  = 1000 and *
2z  = 35); (b) 

the (interval for the) 95-th percentile 95.0

iZ  of Zi, i = 1, 2. 

 
However, it has to be noticed that in the two-dimensional MC method the 

identification of the upper and lower CDFs ( )i

Z zF i  and ( )i

Z zF i  of Zi, i = 1, 2, may not 

provide a faithful representation of the real probabilistic bounds for ( )i

Z zF i , i = 1, 2: 

actually, the computation of these CDFs as ( ) ( ){ }i

Z

iNii

Z zFzF i

e
ee

i

...,,2,1
max

=
=  and 

( )i

Z zF i ( ){ }i

Z

iNi
zF i

e
ee ...,,2,1

min
=

=  may be influenced by the occasional random sampling of 

“extreme” combinations of the epistemic parameters. For example, referring to model 

function Z1 = Y1·Y2·Y3 (1) above, it can be seen that a combination of high values of the 

random variables Y1 and Y2 and Y3 leads to “extremely high” values of the model output 
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Z1: notice that in a “level-2” framework of uncertainty modeling, this combination of 

high values of the random variables Y1 and Y2 and Y3 is favored on its turn by a 

combination of high values of the corresponding epistemically-uncertain parameters �1 = 

�1,1 and �2 = �2,2 and m = �3,2, respectively. By way of example, it is evident that if the 

epistemically-uncertain mean �1 = �1,1 of random variable Y1 is high, then the values of 

the corresponding random variable Y1 are “expected” to be relatively high (in other 

words, relatively high values of random variable Y1 are favored). Conversely, an 

occasional combination of low values of the random variables Y1 and Y2 and Y3 produces 

“extremely low” values of the model output Z1: again, notice that in a “level-2” 

framework of uncertainty modeling, this combination of low values of the random 

variables Y1 and Y2 and Y3 is favored on its turn by a combination of low values of the 

corresponding epistemically-uncertain parameters �1 = �1,1 and �2 = �2,2 and m = �3,2, 

respectively. Since the upper and lower CDFs ( )1
1 zF Z  and ( )1

1 zF Z  are computed by 

resorting to “max” and “min” operators (i.e., ( ) ( ){ }1...,,2,11
11 max zFzF Z

iNi

Z

e
ee =

=  and 

( )1
1 zF Z ( ){ }1...,,2,1

1min zF Z

iNi e
ee =

= ), it may happen that the separation between these functions (in 

other words, the “content” of epistemic uncertainty carried by them) is entirely 

determined by the occasional random sampling of even only one of these “extreme” 

situations, thus not providing a faithful representation of the real probabilistic bounds for 

( )1
1 zF Z . 

 

In order to overcome this drawback and provide more robust estimates for the 

probabilistic bounds of ( )i

Z zF i , the 2.5-th and 97.5-th percentiles ( )i

Z zF i 025.0,  and 

( )i

Z zF i 975.0,  of the CDF iZF  are here considered. By definition, ( )i

Z zF i 025.0,  and 

( )i

Z zF i 975.0,  are the two CDFs that envelop 95% of the CDFs of Zi, i = 1, 2: in particular, 

( )i

Z zF i 025.0,  is such that (0.025·Ne)% of the Ne CDFs “lie below” (i.e., are lower than or 

equal to) ( )i

Z zF i 025.0, ; instead, ( )i

Z zF i 975.0,  is such that [(1 – 0.975)·Ne]% = (0.025·Ne)% 

of the Ne CDFs “lie above” (i.e., are larger than or equal to) ( )i

Z zF i 975.0, . The same 

“empirical” procedure is employed to identify ( )i

Z zF i 025.0,  and ( )i

Z zF i 975.0,  in the MC-
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based DS-IRS approach. Notice that the percentiles ( )i

Z zF i 025.0,  and ( )i

Z zF i 975.0,  thereby 

identified represent more robust estimates of the “true” probabilistic bounds of ( )i

Z zF i  

than the upper and lower CDFs ( ) ( ){ }i

Z

iNii

Z zFzF i

e
ee

i

...,,2,1
max

=
=  and ( )i

Z zF i ( ){ }i

Z

iNi
zF i

e
ee ...,,2,1

min
=

=  

because their identification is not based on “max-min” operations, but rather on order 

statistics performed on a (possibly) large number Ne of realizations, which is less 

influenced by single “outliers” (i.e., by “extreme” combinations of epistemic parameters 

values). Instead, in the hybrid MC-FIA approach such percentile distributions are simply 

obtained by considering the belief and plausibility functions generated in correspondence 

of the possibility level � = 1 – 0.95 = 0.05: in particular, ( )i

Z zF i 025.0,  = 

( ]( )ii zZBel ,05.0 ∞−∈  and ( )i

Z zF i 975.0,  = ( ]( )ii zZPl ,05.0 ∞−∈ , i = 1, 2. 

For the sake of completeness, as before two synthetic numerical indicators are 

computed based on the functions ( )i

Z zF i 025.0,  and ( )i

Z zF i 975.0, : (a) the interval 

( ) ( )[ ]*025.0,*975.0, , i

Z

i

Z zFzF ii  for the probability [ ]*
ii zZP >  that Zi exceeds a given threshold 

*
iz , i = 1, 2; (b) the interval ( ) ( ) ( ) ( )]95.0,95.0[

1025.0,1975.0, −−
ii ZZ FF  for the 95-th quantile 

95.0
iZ  of Zi, i = 1, 2. 

 

Finally, the upper and lower CDFs ( )95.095.0

i

Z zF i  and ( )95.0
95.0

i

Z zF i  of the 95-th quantile 

95.0
iZ  of Zi, i = 1, 2, are considered. In the double MC approach, a single CDF ( )95.095.0

i

Z zF i  

= ( )95.095.0

i

Z zF i  = ( )95.0
95.0

i

Z zF i  for 95.0
iZ  is “empirically” constructed using the Ne values 

[ ] ( ){ }ee

Z

i NiF i

e
...,,2,1:95.0

1 =−
 generated in correspondence of the Ne random realizations 

of epistemic uncertainty: in particular, ( )95.0
95.0

i

Z zF i  = [ ] ( ){ }�
=

− ≤
e

e

i

e

N

i
i

Z

i

e

zFI
N 1

95.01
95.0

1
, 

where [ ] ( ){ }95.01
95.0 i

Z

i zFI i

e
≤−

 is 1, if [ ] ( ) 95.01
95.0 i

Z

i zF i

e
≤−

 and 0, otherwise. Similarly, in 

the MC-based DS-IRS approach, ( )95.095.0

i

Z zF i  = ( )95.095.0

i

Z zPl i  and ( )95.0
95.0

i

Z zF i  = 

( )95.095.0

i

Z zBel i  are built using the sets of Ne values [ ] ( ){ }ee

Z

i NiPl i

e
...,,2,1:95.0

1 =−
 and 

[ ] ( ){ }ee

Z

i NiBel i

e
...,,2,1:95.0

1 =−
, respectively. Instead, in the hybrid MC-FIA approach, 
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( )95.095.0

i

Z zF i  = ( )95.095.0

i

Z zPl i  and ( )95.0
95.0

i

z zF i  = ( )95.095.0

i

Z zBel i  are obtained as 
[ ] ( )

{ }α
α

95.01
95.0

sup
i

iZ zPl ≤
−

 

and 
[ ] ( )

{ }α
α

95.01
95.0

sup
i

iZ zBel >
−

, respectively24. 

As before, two synthetic numerical indicators are computed based on the functions 

( )95.095.0

i

Z zF i  and ( )95.0
95.0

i

Z zF i : (a) the (interval for the) probability [ ]*95.095.0

ii zZP >  that 95.0

iZ  

exceeds a given threshold *95.0

iz , i = 1, 2 (in the present paper, *95.0

1z  = 1000 and *95.0

2z  = 

55); (b) the (interval for the) 95-th quantile [ ] 95.095.0

iZ  of 95.0

iZ , i = 1, 2. 

4. Applications 

The uncertainty propagation methods described in Sec. 2 are here applied to the examples 
of Sec. 3: in Sec. 4.1, the efficiency of the methods (i) – (iii) is compared in the task of 
jointly hierarchically propagating hybrid uncertainty in a “level-2” framework; in Sec. 
4.2, the Dependency Bound Convolution (DBC) method and the Fuzzy Interval Analysis 
(FIA) approach are joined within a “level-2” framework of hybrid (probabilistic and 
possibilistic) uncertainty propagation in the task of accounting for unknown dependences 
between the aleatory variables. 

4.1. Comparison of the methods for the joint hierarchical propagation of hybrid 
uncertainty in a “level-2” framework 

The double Monte Carlo (MC) approach (Sec. 2.1), the hybrid MC and Fuzzy Interval 
Analysis (FIA) method (Sec. 2.2) and the MC-based Dempster-Shafer approach 
employing Independent Random Sets (IRSs) (Sec. 2.3) are here compared with the 
following objectives: 
•  the study of the effect of dependence between the epistemically-uncertain parameters 

of the aleatory probability distributions when a probabilistic/non-probabilistic 

representation of epistemic uncertainty is adopted (Sec. 4.1.1); 

•  the study of the effect of the probabilistic/non-probabilistic representation of 

epistemic uncertainty when the state of dependence between the epistemically-

uncertain parameters is defined (Sec. 4.1.2). 

It is worth remembering that, as highlighted in Sections 2.1-2.3 and Table 1, in 

methods (i)-(iii) above (Sec. 3.2) standard MC simulation is used to propagate the 

aleatory uncertainties, which presupposes independence between the random variables. 
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4.1.1 Dependences between the epistemically-uncertain distribution parameters 

We start by comparing approaches (i.a) and (i.b) above, i.e., double MC assuming total 
dependence and independence between the uncertain parameters, respectively (Sec. 2.1): 
the upper and lower Cumulative Distribution Functions (CDFs) ( )i

Z zF i  and ( )i

Z zF i , i = 
1, 2, of the model outputs Z1 = Y1·Y2·Y3 (1) and Z2 = Y1·Y2/Y3 (2) obtained by approaches 
(i.a) and (i.b) are shown in Fig. 1, left and right, respectively. 
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Fig. 1. Comparison of the upper and lower CDFs ( )i

Z zF i  and ( )i

Z zF i , i = 1, 2, of the model outputs Z1 = 
Y1·Y2·Y3 (left) and Z2 = Y1·Y2/Y3 (right) obtained by the two-dimensional MC approach, considering total 

dependence (solid lines) and independence (dashed lines) between the epistemically-uncertain parameters 

It can be seen that assuming total dependence between the uncertain parameters leads 

to a larger gap between the upper and lower CDFs of the model output Z1 = Y1·Y2·Y3 (1) 

than assuming independence (Fig. 1, left); instead, the opposite situation occurs for Z2 = 

Y1·Y2/Y3 (2) (Fig. 1, right). This can be easily explained by analyzing the input-output 

functional relationships of the models (1) and (2). 

In model function Z2 = Y1·Y2/Y3 (2) two of the input random variables (i.e., Y1 and Y2) 

appear at the numerator, whereas the other (i.e., Y3) appears at the denominator of the 

expression. In such a case, the highest possible values for the model output Z2 are 

obtained with a combination of high values of both random variables Y1 and Y2 and low 

values of random variable Y3: notice that in a “level-2” framework of uncertainty 

modeling, this particular combination of values of the random variables Y1, Y2 and Y3 is 

favored on its turn by a combination of high values of both epistemically-uncertain 

parameters �1 = �1,1 and �2 = �2,2 and low values of epistemically-uncertain parameter m 

= �3,2. By way of example, it is evident that if the epistemically-uncertain mean �1 = �1,1 

of random variable Y1 is relatively high, then the values of the corresponding random 



20  
 
variable Y1 are expected to be relatively high (in other words, relatively high values of 

random variable Y1 are favored by high values of the corresponding epistemically-

uncertain mean �1 = �1,1). Conversely, the lowest possible values for the model output Z2 

are obtained with a combination of low values of both Y1 and Y2 and high values of Y3: 

notice that in a “level-2” framework of uncertainty modeling, this particular combination 

of values of the random variables Y1, Y2 and Y3 is favored on its turn by a combination of 

low values of both epistemically-uncertain parameters �1 = �1,1 and �2 = �2,2 and high 

values of epistemically-uncertain parameter m = �3,2. These extreme situations (which 

give rise to the largest separation between the upper and lower CDFs, i.e., to the most 

“epistemically-uncertain” and, thus, conservative case), can be obtained only in case (i.b) 

above, i.e., assuming independence between the epistemically-uncertain parameters. 

Actually, if a pure random sampling is performed among independent epistemically-

uncertain parameters, all possible combinations of values can be in principle generated, 

since the entire ranges of variability of the epistemically-uncertain parameters can be 

explored independently: thus, in some random samples of epistemic uncertainty (step (1) 

of Sec. 2.1), high values of both epistemically-uncertain parameters �1 = �1,1 and �2 = �2,2 

(which favor on their turn high values of both random variables Y1 and Y2) may be 

combined by chance with low values of epistemically-uncertain parameter m = �3,2 

(which favor on their turn low values of random variable Y3); on the contrary, in other 

random samples of epistemic uncertainty (step (1) of Sec. 2.1), low values of both 

epistemically-uncertain parameters �1 = �1,1 and �2 = �2,2 (which favor on their turn low 

values of both random variables Y1 and Y2) may be combined by chance with high values 

of epistemically-uncertain parameter m = �3,2 (which favor on their turn high values of 

random variable Y3). Conversely, such “extreme” situations cannot occur if there is total 

dependence between the epistemically-uncertain parameters (i.e., case (i.a) above). 

Actually, in such a case high (resp., low) values of both epistemically-uncertain 

parameters �1 = �1,1 and �2 = �2,2 (which favor on their turn high – resp., low – values of 

both random variables Y1 and Y2) can only be combined with high (resp., low) values of 

epistemically-uncertain parameter m = �3,2 (which favor on their turn high – resp., low – 

values of random variable Y3), giving rise to values of output Z2 which are lower (resp., 

higher) than the highest (resp., lowest) possible: in other words, the separation between 
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the upper and lower CDFs produced in case (i.a) is always smaller than that produced by 

the “extreme” situations described above (which are possible only in case (i.b)).f 

On the contrary, in model function Z1 = Y1·Y2·Y3 (1) only multiplications (i.e., 

operations increasing in each place) are present. In such a case, the highest possible 

values for the model output Z1 are obtained with a combination of high values of Y1 and 

Y2 and Y3 (which are favored on their turn by high values of the corresponding 

epistemically-uncertain parameters �1 = �1,1 and �2 = �2,2 and m = �3,2); conversely, the 

lowest possible values for model output Z1 are obtained with a combination of low values 

of Y1 and Y2 and Y3 (which are favored on their turn by low values of the corresponding 

epistemically-uncertain parameters �1 = �1,1 and �2 = �2,2 and m = �3,2). Although these 

“extreme” situations may be obtained (by chance) also in case (i.b) above (i.e., by 

assuming independence between the epistemically-uncertain parameters), they can be 

obtained far more easily (i.e., more probably) in case (i.a) above (i.e., assuming total 

dependence). 

These considerations are supported by the values of the synthetic numerical indicators 

described in Sec. 3.3. Table 3 reports the intervals for [ ]*

ii zZP >  and 95.0

iZ , i = 1, 2, 

produced by the double MC approaches considering total dependence (case i.a.) and 

independence (case i.b.) between the epistemically-uncertain parameters. It can be seen 

that [ ]*

11 zZP >  and 95.0

1Z  range within [0.0006, 0.0342] and [566.86, 932.13], 

respectively, in case (i.a), whereas they range within [0.0004, 0.0092] and [613.58, 

816.07], respectively, in case (i.b): thus, for model function (1) the assumption of 

independence would lead to underestimating the upper bounds of [ ]*

11 zZP >  and 95.0

1Z  

by about 73.1% and 12.5%, respectively. Instead, [ ]*

22 zZP >  and 95.0

2Z  range within 

[0.0626, 0.1108] and [32.12, 38.05], respectively, in case (i.a), whereas they range 

[0.0318, 0.1640] and [26.36, 45.03], respectively, in case (i.b): thus, for model function 

 
f A straightforward remark is in order. Based on the consideration made above about model Z2 = Y1·Y2/Y3 (2), 
the easiest way to sample these “extreme” combinations of parameter values (i.e., to obtain the largest possible 
separation between the upper and lower CDFs and, thus, the most conservative results) would be by 
“artificially” imposing total dependence between the epistemically-uncertain parameters of Y1 and Y2 and 
opposite dependence between the epistemically-uncertain parameter of Y3 and the epistemically-uncertain 
parameters of both Y1 and Y2. 
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(2) it is the assumption of total dependence that leads to underestimate the upper bounds 

of [ ]*

22 zZP >  and 95.0

2Z  by about 32.4% and 15.5%, respectively.g 

 
We now move on to compare methods (ii) and (iii), i.e., the hybrid MC-FIA (Sec. 

2.2) and MC-based DS-IRS (Sec. 2.3) approaches. Fig. 2 shows the plausibility and 

belief functions, ( ]( )ii zZPl ,∞−∈  = ( )i

Z zF i  and ( ]( )ii zZBel ,∞−∈  = ( )i

Z zF i , i = 1, 2, 

respectively, of the model outputs Z1 = Y1·Y2·Y3 (1) (left) and Z2 = Y1·Y2/Y3 (2) (right) 

produced by the hybrid MC-FIA (solid lines) and MC-based DS-IRS (dashed lines) 

approaches. 
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Fig. 2. Comparison of the plausibility and belief functions, ( ]( )ii zZPl ,∞−∈  = ( )i

Z zF i  and 
( ]( )ii zZBel ,∞−∈  = ( )i

Z zF i , i = 1, 2, respectively, of the model outputs Z1 = Y1·Y2·Y3 (left) and Z2 = 
Y1·Y2/Y3 (right) obtained by hybrid MC-FIA (solid lines) and MC-based DS-IRS (dashed lines) approaches 

The results are very similar, i.e., in the present case, the effect of the different 

dependence relationships between the epistemically-uncertain paramenters is not evident. 

This is confirmed by the analysis of the corresponding quantitative indicators: actually, 

the intervals for [ ]*
11 zZP >  and 95.0

1Z  are [0.0013, 0.0199] and [617.55, 868.93], 

respectively, in case (ii), whereas they are [0.0010, 0.0194] and [604.31, 867.44], 

respectively, in case (iii); in addition, the intervals for [ ]*
22 zZP >  and 95.0

2Z  are [0.0426, 

0.1944] and [28.59, 46.32], respectively, in case (ii), whereas they are [0.0436, 0.1728] 

 
g Notice that the same conclusions could be drawn by the analysis of the other quantities of interest considered 
in the present paper, i.e., the 2.5-th and 97.5-th percentiles of the CDFs of the model outputs and the (upper and 
lower) CDFs of the 95-th quantile of the model outputs (see Sec. 3.3). A pictorial representation of such 
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and [28.77, 44.71], respectively, in case (iii). Only for illustration purposes, a pictorial 

representation of the operative procedure which is adopted to identify the intervals for 

quantiles 95.0

1Z  and 95.0

2Z  is given in Fig. 2, left and right, respectively, with reference to 

the hybrid MC-FIA approach (solid lines). The intervals for the 95th quantiles 95.0

1Z  and 

95.0

2Z  of Z1 and Z2 are operatively identified by the arrows that originate at 0.95 on the 

ordinates of Fig. 2, extend horizontally on the upper and lower CDFs ( )i

Z zF i  and 

( )i

Z zF i , i = 1, 2 (solid lines), and then drop vertically to the abscissas to produce the 

intervals ( ) ( ) ( ) ( )]95.0,95.0[
11

11
−− ZZ FF  = [617.55, 868.93] and ( ) ( ) ( ) ( )]95.0,95.0[

11
22

−− ZZ FF  

= [28.59, 46.32], respectively. The similarity between the results obtained the hybrid 

MC-FIA and MC-based DS-IRS approaches may be explained as follows. In the hybrid 

MC-FIA approach, the plausibility Pl(A) and belief Bel(A) functions of a given set A = (–

�, z] are calculated as �
1

0

)( αα dAPl  and �
1

0

)( αα dABel , respectively, i.e., as the integrals 

over � ∈  (0, 1] of the different plausibility and belief functions, Pl�(A) and Bel�(A), 

respectively, obtained by fuzzy interval analysis at different possibility levels � ∈  (0, 1] 

(see Sec. 2.2 and Appendix B for details).24,86,87 Instead, in the MC-based DS-IRS 

approach, Pl(A) and Bel(A) can be computed as ( )�
=

=
e

e

e

N

i
i

e

APl
N

APl
1

1
)(  and 

( )�
=

=
e

e

e

N

i
i

e

ABel
N

ABel
1

1
)( , respectively, i.e., as the arithmetic means of the different 

plausibility and belief functions ( )APl
ei

 and ( )ABel
ei

, ie = 1, 2, …, Ne, obtained in 

correspondence of the Ne different random combinations of the independent focal sets 

representing the epistemically-uncertain distribution parameters (see Sec. 2.3 and 

Appendix C for details).23,24 It is arguable that the different assumptions of 

(in)dependence between the epistemically-uncertain parameters affect the “distributions” 

of the plausibility and belief functions generated in correspondence of different 

“realizations” of epistemic uncertainty: in other words, the set of plausibility (resp., 

belief) functions Pl�(A) (resp., Bel�(A)), � ∈  (0, 1], produced by the hybrid MC-FIA 

                                                                                                                         
quantities is not reported here for brevity sake; the corresponding quantitative indicators are summarized in 
Table 3. 



24  
 

method (assuming total dependence) will be substantially different from the set ( )APl
ei

 

(resp., ( )ABel
ei

), ie = 1, 2, …, Ne, generated by the MC-based DS-IRS approach 

(assuming independence). However, the differences in the “distributions” of such sets of 

functions may be averaged (i.e., in some cases cancelled out) when the synthetic 

indicators Pl(A) and Bel(A) are computed as integrals (in the hybrid MC-FIA method) or 

arithmetic means (in the MC-based DS-IRS approach) over the different “realizations” of 

epistemic uncertainty. 

 

Then, in order to highlight the effects of the different assumptions about the 

(in)dependence relationships between the epistemically-uncertain parameters, the upper 

and lower CDFs, ( )95.095.0

i

Z zF i  and ( )95.0
95.0

i

Z zF i , respectively, of the 95-th quantile 95.0

iZ  of 

the model output Zi, i = 1, 2, are further analyzed. Fig. 3 top shows the bounding CDFs 

for 95.0

1Z  (left) and 95.0

2Z  (right), produced by the hybrid MC-FIA (solid lines) and the 

MC-based DS-IRS (dashed lines) approach; for illustration purposes, Fig. 3 bottom 

shows the possibility distributions ( )95.0

1

95.0
1 zZπ  (left) and ( )95.0

2

95.0
2 zZπ  (right) that correspond 

to the CDFs by means of the relations ( )95.095.0

i

Z zF i  = ( ){ }95.095.0

95.095.0

sup i

Z

i
zZ

zi

ii

π
≤

 and ( )95.0
95.0

i

Z zF i  = 

( ){ }95.095.0

95.095.0

sup1 i

Z

i
zZ

zi

ii

π
>

− , i = 1, 2.23 
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Fig. 3. Top: comparison of the upper and lower CDFs ( )95.095.0

i

Z zF i  and ( )95.0
95.0

i

Z zF i  of the 95-th quantile 
95.0

iZ , i = 1, 2, of the model outputs Z1 = Y1·Y2·Y3 (left) and Z2 = Y1·Y2/Y3 (right) obtained by the hybrid MC-
FIA (solid lines) and MC-based DS-IRS (dashed lines) approaches. Bottom: possibility distributions 
( )95.0

1

95.0
1 zZπ  (left) and ( )95.0

2

95.0
2 zZπ  (right) of 95.0

1Z  and 95.0
2Z , respectively, corresponding to ( )95.095.0

i

Z zF i  
and ( )95.0

95.0

i

Z zF i , i = 1, 2 

It can be seen that the hybrid MC-FIA method produces a larger gap between the 

upper and lower CDFs ( )95.095.0

i

Z zF i  and ( )95.0
95.0

i

Z zF i  than the MC-based DS-IRS approach 

in the regions where the cumulative probabilities are close to “extreme” values, i.e., 

where ( )95.095.0

i

Z zF i  � 0 and ( )95.0
95.0

i

Z zF i  � 1. This is explained as follows. Notice that the 

values of 95.0
iZ  for which ( )95.095.0

i

Z zF i  � 0 and ( )95.0
95.0

i

Z zF i  � 1 correspond to the lower and 

upper bounds, respectively, of the �-cut of level � ≈  0 of the possibility distribution 

( )95.095.0

i

z ziπ . For illustration purposes, by way of example the �-cut 
95.0

1

05.0

ZA  of level � = 0.05 

of the possibility distribution ( )95.0
1

95.0
1 zZπ  produced by the hybrid MC-FIA is indicated by 

arrows in Fig. 3 bottom, left; the corresponding lower and upper bounds, i.e., 548.2 and 
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1031.1, respectively, are shown to correspond to the cumulative probabilities 

( )1.1031
95.0

1ZF  = ( ){ }1.1031sup1
95.0

1

95.0
1

95.0
1

1

Z

zZ

π
>

−  = 1 – � = 1 – 0.05 = 0.95 and ( )2.548
95.0

1ZF  = 

( ){ }2.548sup
95.0

1

95.0
1

95.0
1

1

Z

zZ

π
≤

 = � = 0.05 in Fig. 3 top, left. All this considered, it should be noticed 

that the �-cut 
95.0

1

0

ZA  of level � = 0 of the possibility distribution ( )95.0
1

95.0
1 zZπ  can be 

generated only by “combining” and propagating through the model function Z1 = Y1�Y2�Y3 

the �-cuts of level � = 0 of all the possibilistic parameters �1 = �1,1, �2 = �2,2 and m = �3,2 

of the model inputs Y1, Y2 and Y3 (see Sec. 2.2 and Appendix B). Such combination of �-

values, i.e., {�1 = 0, �2 = 0, �3 = 0}, is always “processed” by fuzzy interval analysis in 

the hybrid MC-FIA method, due to the underlying assumption of total dependence 

between the information sources (e.g., the experts or observers) that supply the 

parameters possibility distributions: actually, the same possibility (resp. confidence) level 

α  (resp., 1 – �) is chosen to build the �-cuts for all the epistemically-uncertain 

parameters (see Sec. 2.2 and Appendix B). On the contrary, such combination of 

possibility (resp., confidence) values, i.e., {�1 = 0, �2 = 0, �3 = 0} (resp., {1-�1 = 1, 1-�2 = 

1, 1-�3 = 1}), cannot be obtained easily (i.e., with high probability) by the MC-based DS-

IRS approach, which performs a plain random sampling among independent intervals. 

This is coherent with the real processes of expert elicitation, in that it is difficult to find 

different (independent) experts that provide estimates about different uncertain 

parameters with the same (and, in this case, maximal) confidence. 

The higher conservatism of the hybrid MC-FIA approach is reflected by the values of 

the quantitative indicators [ ]*95.095.0

ii zZP >  and [ ] 95.095.0

iZ , i = 1, 2, reported in Table 3. For 

example, referring only to output Z1 for brevity, it can be seen that [ ]*95.0

1

95.0

1 zZP >  ranges 

within [0, 0.1500] for the hybrid MC-FIA method, whereas it is 0 for the MC-based DS-

IRS approach: thus, the assumption of independence between the epistemically-uncertain 

parameters leads to a dramatic underestimation of the exceedance probability. In 

addition, the quantile [ ] 95.095.0

1Z  ranges within [668.52, 1031.00] for the hybrid MC-FIA-

method, whereas it ranges within [641.80, 977.25] for the MC-based DS-IRS approach: 

again, the assumption of independence leads to underestimating the upper bound of the 

quantile by about 5.5%. 
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The same conclusions can be drawn by the analysis of the 2.5-th and 97.5-th 

percentiles ( )i

Z zF i 025.0,  and ( )i

Z zF i 975.0,  of the CDF ( )i

Z zF i  of Zi, i = 1, 2 (Fig. 4, left and 

right). It can be seen that the CDFs produced by the hybrid MC-FIA approach (solid 

lines) completely envelop those produced by the MC-based DS-IRS method (dashed 

lines) (i.e., they represent more conservative estimates of the bounding distributions). As 

before, this is explained by the difficulty of plain MC simulation of randomly and 

independently sampling “extreme” (and more conservative) combinations of possibility 

(resp., confidence) levels � (resp., 1 – �) when processing epistemic uncertainty. 

 

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Model output, Z1 = Y1*Y2*Y3

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

 FZ
1
,0.025 and FZ

1
,0.975 for Z1 = Y1*Y2*Y3 - Non-probabilistic epistemic uncertainty

MC-based DS-IRS: FZ
1
,0.025

MC-based DS-IRS: FZ
1
,0.975

Hybrid MC-FIA: FZ
1
,0.975

Hybrid MC-FIA: FZ
1
,0.025

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Model output, Z2
 = Y1

*Y2
/Y3

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

 FZ
2
,0.025 and FZ

2
,0.975 for Z2

 = Y1
*Y2

/Y3
 - Non-probabilistic epistemic uncertainty

MC-based DS-IRS: FZ
2
,0.025

MC-based DS-IRS: FZ
2
,0.975

Hybrid MC-FIA: FZ
2
,0.975

Hybrid MC-FIA: FZ
2
,0.025

 

Fig. 4. Comparison of the 2.5-th and 97.5-th percentiles ( )i

Z zF i 025.0,
 and ( )i

Z zF i 975.0,
 of the CDF ( )i

Z zF i , 
i = 1, 2, of the model outputs Z1 = Y1·Y2·Y3 (left) and Z2 = Y1·Y2/Y3 (right) obtained by the hybrid MC-FIA (solid 

lines) and MC-based DS-IRS (dashed lines) approaches 

Some considerations are in order with respect to the results obtained. The first 

comparison (between methods (i.a) and (i.b)) shows that the results produced by the 

double MC approach are strongly conditioned by the particular characteristics of the 

model function at hand (i.e., whether the function is increasing in all the variables or not, 

whether it is monotonic or not, …): thus, different states of dependence between the 

epistemically-uncertain parameters of the input probability distributions produce 

completely different results also when applied to the same model function: for example, 

for model (1) (resp., (2)) independence (resp., total dependence) leads to less 

conservative results than total dependence (resp., independence). Thus, in a hypothetic 

risk assessment problem the analyst should know a priori the shape of the model function 
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in order to guarantee conservatism. This raises serious concerns from the point of view of 

safety: actually, in the risk assessment of real safety-critical systems, most of the model 

functions adopted are not represented by explicit mathematical expressions, but rather by 

black boxes (i.e., implicit functions implemented in complex simulation codes). In such 

cases, the analyst must be aware of the fact that a probabilistic representation of 

epistemic uncertainty may fail to produce reliable and conservative results. 

The second comparison (between methods (ii) and (iii)) shows instead that the state 

of dependence between the parameters is less critical when the representation of 

epistemic uncertainty is non-probabilistic: actually, the CDFs of the model outputs 

produced by the hybrid MC-FIA and the MC-based DS-IRS approaches are almost 

identical. However, the analysis of other quantitative indicators (e.g., the distribution of a 

given quantile of the output) shows that the hybrid MC-FIA method produces a larger 

separation between the plausibility and belief functions (i.e., more conservative results) 

than the MC-based DS-IRS approach (in particular, in the range of small probabilities 

that are of particular interest in the risk assessment of complex, highly reliable systems); 

in addition, contrarily to the double MC approach, the results produced by these methods 

do not seem to be affected by the characteristics of the model function at hand. Thus, in a 

non-probabilistic framework of epistemic uncertainty representation, the assumption of 

total dependence between the epistemically-uncertain parameters can be considered 

always more conservative than that of independence. 

4.1.2 Probabilistic/possibilistic representation of the epistemically-uncertain 

distribution parameters 

In this Section, we perform comparisons between approaches (i.a) and (ii) and between 
approaches (i.b) and (iii), i.e., approaches that assume the same state of dependence 
between the epistemically-uncertain parameters, but represent epistemic uncertainty in 
different ways: in particular, in both hybrid MC-FIA (ii) and MC-based DS-IRS (iii) 
methods, possibility distributions are employed which identify a family of probability 
distributions for the epistemically-uncertain parameters;h on the contrary, in the double 
MC approach ((i.a) and (i.b)), only a single probability distribution is assigned to 
represent the epistemic uncertainty associated to the parameters. 

 
h Recall that in the MC-based DS-IRS approach the possibility distributions are discretized into focal sets (see 
Sec. 2.3 and Appendix C for details). 
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Fig. 5 shows the upper and lower Cumulative Distribution Functions (CDFs), 

( )i

Z zF i  and ( )i

Z zF i , respectively, of the model outputs Z1 = Y1�Y2�Y3 (left) and Z2 = 

Y1�Y2/Y3 (right) obtained by the double MC approach assuming total dependence between 

the uncertain parameters (case (i.a), solid lines) and the plausibility and belief functions, 

( ]( )ii zZPl ,∞−∈  = ( )i

Z zF i  and ( ]( )ii zZBel ,∞−∈  = ( )i

Z zF i , i = 1, 2, respectively, 

produced by the hybrid MC-FIA approach (case (ii), dashed lines). 
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Fig. 5. Comparison of the upper and lower CDFs ( )i

Z zF i  and ( )i

Z zF i , i = 1, 2, of the model outputs Z1 = 
Y1·Y2·Y3 (left) and Z2 = Y1·Y2/Y3 (right) obtained by a two-dimensional MC method considering total 

dependence between the epistemically-uncertain parameters (solid lines) and the hybrid MC-FIA approach 
(dashed lines) 

It can be seen that for model function Z1 = Y1·Y2·Y3 (1) (Fig. 5, left) the CDFs 

produced by the double MC method completely envelop those obtained by the hybrid 

MC-FIA approach. Referring to Sec. 4.1.1, these results can be explained as follows. The 

highest possible values for the model output Z1 are obtained with a combination of high 

values of random variables Y1 and Y2 and Y3 (which are favored on their turn by high 

values of the corresponding epistemically-uncertain parameters �1 = �1,1 and �2 = �2,2 and 

m = �3,2); conversely, the lowest possible values for the model output Z1 are obtained with 

a combination of low values of Y1 and Y2 and Y3 (which are favored on their turn by low 

values of the corresponding epistemically-uncertain parameters �1 = �1,1 and �2 = �2,2 and 

m = �3,2). In a double MC framework, these “extreme” situations (which give rise to the 

largest separation between the upper and lower cumulative distribution functions, i.e., to 

the most conservative case) are favored, i.e., are randomly sampled with high probability, 
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when total dependence is assumed between the epistemically-uncertain parameters (see 

Sec. 4.1.1). Thus, it is very likely that the upper and lower CDFs produced by the double 

MC method assuming total dependence are obtained in correspondence of “extreme” 

combinations of epistemically-uncertain parameter values (i.e., combinations of values 

close to the extreme bounds of the ranges of variability of the epistemically-uncertain 

parameters). On the contrary, in the hybrid MC-FIA approach ( )i

Z zF i  = 

( ]( )ii zZPl ,∞−∈  and ( )i

Z zF i  = ( ]( )ii zZBel ,∞−∈ , i = 1, 2, are obtained by averaging 

the different plausibility and belief functions (i.e., Pl�(Zi ∈  (–�, zi]) and Bel�(Zi ∈  (–�, 

zi]), respectively) generated at different possibility levels � ∈  (0, 1] (in other words, by 

averaging the different contributions to the plausibility and belief functions produced by 

different �-cuts of the epistemic parameters) (see Sec. 2.2 and Appendix B). Although 

this procedure is shown to provide the best bounds for the model outputs,24 it obviously 

prevents obtaining the “largest” possible bounds: actually, these extreme bounds are 

represented by Pl0(Zi ∈  (–�, zi]) and Bel0(Zi ∈  (–�, zi]), i.e., by the plausibility and 

belief functions generated in correspondence of the combination of the �-cuts of level � = 

0 (that are the largest possible). 

The situation is reversed for model function Z2 = Y1·Y2/Y3 (2) (Fig. 5, left). Actually, 

in this case, the assumption of total dependence between the epistemically-uncertain 

parameters prevents the double MC method from obtaining conservative bounds because 

only a limited set of combinations of uncertain parameter values can be randomly 

explored (see the explanation above and Sec. 4.1.1). 

 

As a final comparison, Fig. 6 shows the upper and lower CDFs, ( )i

Z zF i  and ( )i

Z zF i , 

i = 1, 2, respectively, of the model outputs Z1 = Y1·Y2·Y3 (left) and Z2 = Y1·Y2/Y3 (right) 

obtained by the two-dimensional MC approach, considering independence between the 

epistemically-uncertain parameters (solid lines) and the MC-based DS-IRS approach 

(dashed lines). 
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Fig. 6. Comparison of the upper and lower CDFs ( )i

Z zF i  and ( )i

Z zF i , i = 1, 2, of the model outputs Z1 = 
Y1·Y2·Y3 (left) and Z2 = Y1·Y2/Y3 (right) obtained by the two-dimensional MC approach, considering 

independence between the epistemically-uncertain parameters (solid lines) and the MC-based DS-IRS approach 
(dashed lines) 

The results are absolutely comparable: in particular, in the case of model function Z1 

= Y1·Y2·Y3 (Fig. 6, left), the MC-based DS-IRS approach (dashed lines) is slightly more 

conservative than the double MC method (solid lines), whereas in the case of model 

function Z2 = Y1·Y2/Y3 (Fig. 6, right) the opposite situation occurs. This similarity can be 

explained by the common assumption of independence between the epistemically-

uncertain parameters and by the (similar) characteristics of the two algorithms used to 

propagate the uncertainties. In the MC-based DS-IRS approach, the focal sets generated 

by the discretization of the possibility distributions are selected randomly and 

independently by MC (step (2) of the procedure in Sec. 2.3 and Appendix C). Then, the 

minimum and maximum values of the model output of interest are identified letting the 

uncertain parameters range independently within the corresponding focal sets: thus, once 

the focal sets are selected, all possible combinations of parameter values can be explored, 

since the focal sets of all the parameters are exhaustively searched to maximize/minimize 

the model output. Similarly, in the double MC approach, a plain random sampling is 

performed from the probability distribution of the epistemically-uncertain parameters, 

which are considered independent: as a consequence of this independence, in principle all 

possible combinations of values of the parameters can be sampled, since the entire ranges 

of variability of the parameters are explored randomly and independently. 
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In order to highlight the effects of different representations of epistemic uncertainty, 

the upper and lower CDFs, ( )95.095.0

i

Z zF i  and ( )95.0
95.0

i

Z zF i , respectively, of the 95-th quantile 

95.0

iZ  of the output Zi, i = 1, 2, are further analyzed. Fig. 7 shows the bounding CDFs 

( )95.095.0

i

Z zF i  and ( )95.0
95.0

i

Z zF i  for Z1 (left) and Z2 (right), produced by the hybrid MC-FIA 

method (solid lines) together with the single CDF ( )95.095.0

i

Z zF i  produced by the double MC 

method (assuming total dependence between the parameters) (dashed line); the 

corresponding quantities produced by the MC-based DS-IRS approach and the double 

MC method (assuming independence between the parameters) are not shown here for 

brevity sake. 
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Fig. 7. Comparison of the upper and lower CDFs, ( )95.095.0

i

Z zF i  and ( )95.0
95.0

i

Z zF i , respectively, of the 95-th 
quantile 95.0

iZ , i = 1, 2, of the model outputs Z1 = Y1·Y2·Y3 (left) and Z2 = Y1·Y2/Y3 (right) obtained by the 
double MC method assuming total dependence between the parameters (dashed lines) and the hybrid MC-FIA 

approach (solid lines) 

Obviously, the advantage of using a non-probabilistic representation of epistemic 

uncertainty lies in the possibility of providing conservative bounds on the estimates of the 

95-th quantile. For example, let us refer to the quantitative indicator [ ] 95.095.0
2Z  (Table 3): 

the point estimate provided by double MC is 36.65, whereas the interval produced by the 

hybrid MC-FIA approach is [33.28, 57.02]. It can be seen that the upper bound of the 

interval [33.28, 57.02] produced by the hybrid MC-FIA approach overestimates by about 

37.5% the corresponding point value generated by the double MC method. 
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The higher conservatism of the hybrid MC-FIA approach is also evidenced by the 

analysis of the 2.5-th and 97.5-th percentiles ( )i

Z zF i 025.0,  and ( )i

Z zF i 975.0,  of the CDF 

( )i

Z zF i  of the model output Zi, i = 1, 2. Fig. 8 shows the CDFs ( )i

Z zF i 025.0,  and 

( )i

Z zF i 975.0,  for Z1 (left) and Z2 (right) produced by the double MC method assuming total 

dependence between the epistemically-uncertain parameters (dashed lines) and the hybrid 

MC-FIA approach (solid lines); as before, the corresponding quantities produced by the 

MC-based DS-IRS approach and the double MC method (assuming independence 

between the epistemically-uncertain parameters) are not shown here for brevity sake. 
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Fig. 8. Comparison of the 2.5-th and 97.5-th percentiles, ( )i

Z zF i 025.0,
 and ( )i

Z zF i 975.0,
, respectively, of the 

CDF ( )i

Z zF i , i = 1, 2, of the model outputs Z1 = Y1·Y2·Y3 (left) and Z2 = Y1·Y2/Y3 (right) obtained by the 
double MC method assuming total dependence between the parameters (dashed lines) and the hybrid MC-FIA 

approach (solid lines) 

It can be seen that the CDFs produced by the hybrid method envelop those obtained 

by the purely probabilistic approach in all the cases considered. Particularly dramatic is 

the case of Z2 = Y1�Y2/Y3 (Fig. 8, right), where the gaps between the CDFs are 

impressively different. This is reflected by the values of the corresponding quantitative 

indicators (Table 3). For example, the estimates for the interval 

( ) ( ) ( ) ( )]95.0,95.0[
1025.0,1975.0, 22

−− ZZ FF  of the 95-th quantile 95.0
2Z  are [22.50, 57.02] and 

[32.24, 37.15], for the hybrid MC-FIA and double MC approaches, respectively: thus, the 

width of the interval provided by the double MC method is 7 times smaller than that 

produced by the hybrid MC-FIA approach, which causes a serious underestimation of the 
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quantile 95.0

2Z . In addition, the estimates for the interval ( ) ( )[ ]*

2

025.0,*

2

975.0, 22 , zFzF ZZ  of 

[ ]*

22 zZP >  are [0.0190, 0.3245] and [0.0625, 0.1050] for the MC-FIA and double MC 

approaches, respectively: again, the width of the interval provided by the double MC 

method is 7.2 times smaller than that produced by the hybrid approach, with a significant 

underestimation of the exceedance probability. 

 

A final remark is in order with respect to the results obtained. The first comparison 

(between methods (i.a) and (ii)) shows that when there is total dependence between the 

epistemically-uncertain parameters, the effect of different representations of epistemic 

uncertainty on the conservatism of the results is not univocal, but rather it is related to the 

characteristics of the model function at hand. For example, in case of model function (1), 

a probabilistic representation of epistemic uncertainty provides a larger gap between the 

upper and lower CDFs of the model output (i.e., more conservative results) than a non-

probabilistic representation; on the contrary, for model function (2), the opposite situation 

occurs. As a consequence, embracing one representation of epistemic uncertainty instead 

of the other may significantly change the outcome of a decision making process in a risk 

assessment problem involving uncertainties: this is of paramount importance in systems 

that are critical from the safety view point, e.g., in the nuclear, aerospace, chemical and 

environmental fields. 

The second comparison (between methods (i.b) and (iii)) shows instead that when 

there is independence between the epistemically-uncertain parameters, probabilistic and 

non-probabilistic representations of epistemic uncertainty produce absolutely comparable 

results: thus, in this case, embracing one representation of uncertainty instead of the other 

would not change significantly the final decision. 

However, it is worth remembering that the considerations made above are valid if the 

analyst is interested only in the estimation of the upper and lower CDFs of the model 

output, but they do not hold in general for other quantities of interest in risk assessment 

(e.g., the distributions of a given quantile or the percentiles of the CDF of the model 

output). In these cases, a non-probabilistic representation of epistemic uncertainty always 

produces more reliable and conservative results than a probabilistic one, irrespective of 

(i) the state of dependence between the epistemically-uncertain parameters and (ii) the 
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characteristics of the model function at hand. Therefore, even if the double MC approach 

purposedly tries to separate variability from imprecision, in many cases it fails to produce 

reliable and conservative results, which can raise great concerns from the safety point of 

view. This leads to conclude that when the state of dependence between the 

epistemically-uncertain parameters is not known to the analyst (which is far from unlikely 

in practice), a non-probabilistic representation of epistemic uncertainty may represent in 

most cases the “safest” choice. 

 

Table 3. Values of the quantitative indicators of Sec. 
3.3 produced by the double MC, hybrid MC-FIA and 
MC-based DS-IRS approaches in the joint hierarchical 
propagation of hybrid uncertainty through the model 
functions Z1 = Y1·Y2·Y3 (1) and Z2 = Y1·Y2/Y3 (2) of 
Sec. 3.1 

 
Z1 = Y1·Y2·Y3 

Methods 

Quantitative indicators Double MC  
(dep.) 

Double MC  
(indep.) MC-FIA MC-based  

DS-IRS 
1ZF , 1Z

F  
P(Z1>z1

*) [0.0006, 0.0342] [0.0004, 0.0092] [0.0013, 0.0199] [0.0010, 0.0194] 
Z1

0.95 [566.86, 932.13] [613.58, 816.07] [617.55, 868.93] [604.31, 867.44] 

( )
1

,0.025Z zF 1 , 

( )
1

,0.975Z zF 1  

P(Z1>z1
*) [0.0006, 0.0305] [0.0010, 0.0125] [0.0002, 0.0611] [0.000, 0.0378] 

Z1
0.95 [606.20, 925.50] [633.45, 823.70] [548.10, 1031.00] [567.40, 977.25] 

0.95
1ZF , 

0.95
1Z

F  
P(Z1

0.95>z1
0.95*) 0.000 0.000 [0.000, 0.1500] [0.000, 0.000] 

[Z1
0.95]0.95 892.61 809.45 [668.52, 1031.00] [641.80, 977.25] 

 
Z2 = Y1·Y2/Y3 

Methods 

Quantitative indicators Double MC  
(dep.) 

Double MC  
(indep.) 

MC-FIA MC-based  
DS-IRS 

1ZF , 1Z

F  
P(Z2>z2

*) [0.0626, 0.1108] [0.0318, 0.1640] [0.0426, 0.1944] [0.0436, 0.1728] 
Z2

0.95 [32.12, 38.05] [26.36, 45.03] [28.59, 46.32] [28.77, 44.71] 

( )
1

,0.025Z zF 1 , 

( )
1

,0.975Z zF 1  

P(Z2>z2
*) [0.0625, 0.1050] [0.0385, 0.1639] [0.0190, 0.3245] [0.0225, 0.2850] 

Z2
0.95 [32.24, 37.15] [27.69, 43.25] [22.50, 57.02] [23.54, 49.84] 

0.95
1ZF , 

0.95
1Z

F  
P(Z2

0.95>z2
0.95*) 0.000 0.000 [0.000, 0.1500] [0.000, 0.000] 

[Z2
0.95]0.95 36.65 41.76 [33.28, 57.02] [32.85, 49.84] 

 

4.2. Inclusion of unknown dependences between the aleatory variables in a “level-
2” framework 

In this Section, the Dependency Bound Convolution (DBC) method69 is framed within a 
“level-2” setting of hybrid (i.e., probabilistic and possibilistic) uncertainty propagation: 
this allows accounting for all the (possibly unknown) dependences that may exist 
between the aleatory variables Y1, Y2 and Y3 (i.e., the inputs to model functions Z1 = 
Y1�Y2�Y3 (1) and Z2 = Y1·Y2/Y3 (2) of Sec. 3.1). 
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Fig. 9 shows the upper and lower CDFs ( )i

Z zF i  and ( )i

Z zF i , i = 1, 2, of the model 

outputs Z1 (left) and Z2 (right) obtained by the hybrid MC-FIA (dashed lines, Sec. 2.2 and 

Appendix B) and DBC-FIA (solid lines, Appendix D) approaches, which assume 

independence and unknown dependence, respectively, between the aleatory variables Y1, 

Y2 and Y3. 
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Fig. 9. Comparison of the upper and lower CDFs, ( )i

Z zF i  and ( )i

Z zF i , i = 1, 2, respectively, of the model 
outputs Z1 = Y1·Y2·Y3 (left) and Z2 = Y1·Y2/Y3 (right) obtained by the hybrid MC-FIA (dashed lined) and hybrid 
DBC-FIA (solid lines) approaches, assuming independence and unknown dependence, respectively, between 

the aleatory variables Y1, Y2 and Y3 

As expected, the inclusion of all kinds of possible dependences between the aleatory 

variables increases significantly the gap between the upper and lower CDFs of the model 

outputs (and, correspondingly, the conservatism of the results). This is confirmed by the 

analysis of the quantitative indicators [ ]*

ii zZP >  and 95.0

iZ , i = 1, 2. For example, the 

intervals for [ ]*

11 zZP >  and 95.0

1Z  are [0.0013, 0.0199] and [617.55, 868.93], 

respectively, in case of independence, whereas they are [0, 0.3460] and [242.36, 

1547.23], respectively, in case of unknown dependence: thus, the assumption of 

independence leads to underestimating the (upper bound of the) exceedance probability 

and the quantile by about 17 and 2 times, respectively. In addition, the intervals for 

[ ]*

22 zZP >  and 95.0

2Z  are [0.0426, 0.1944] and [28.59, 46.32], respectively, in case of 

independence, whereas they are [0, 0.5249] and [10.40, 104.15], respectively, in case of 

unknown dependence: again, the assumption of independence leads to underestimating 
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the (upper bound of the) exceedance probability and the quantile by about 3 and 2.3 

times, respectively. 

Based on the results above, it can be concluded that the use of the DBC approach 

within a “level-2” setting may be very useful to provide an initial  “worst-case” estimate 

of the risk associated to the system at hand when nothing is known about the real state of 

dependence between the input variables; however, in many realistic applications this 

would lead to excessively conservative (and thus pessimistic) results that would need to 

be refined by acquiring knowledge on the system and, in particular, on the actual state of 

dependence of the random variables of the model. 

5. Discussion and conclusions 

In the present paper, the two-dimensional MC, hybrid MC-FIA and MC-based DS-IRS 
approaches have been considered for the joint hierarchical propagation of hybrid 
(probabilistic and possibilistic) uncertainty within a “level-2” framework. Two examples 
have been taken as reference. Two issues have been addressed in the analyses: 
(i) the implicit assumptions about the (in)dependence relationships among parameters 

subject to epistemic uncertainty (e.g., the hybrid MC-FIA approach assumes total 

dependence, whereas the MC-based DS-IRS method assumes random set 

independence); 

(ii)  the use of standard MC sampling to propagate the aleatory uncertainties, which 

implicitly assumes independence between the random variables. 

With respect to issue (i) above, the two-dimensional MC, hybrid MC-FIA and MC-

based DS-IRS approaches have been compared with the following objectives: 

(a) the study of the effects of dependence between the epistemically-uncertain 

parameters of the aleatory probability distributions when a probabilistic/non-

probabilistic representation of epistemic uncertainty is adopted: 

•  the comparison between two-dimensional MC approaches assuming total 

dependence and independence between the epistemically-uncertain parameters, 

respectively, has shown that the results produced by the double MC approach 

are strongly related to the particular characteristics of the model function at hand 

(i.e., whether the function is increasing in all the variables or not, whether it is 

monotonic or not, …): thus, different states of dependence between the 

epistemically-uncertain parameters of the input probability distributions may 
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give rise to completely different results also when applied to the same model 

function. In particular, when the output is increasing in each place with respect 

to the inputs (e.g., the model function contains only products), assuming total 

dependence between the epistemically-uncertain parameters leads to a larger gap 

between the upper and lower CDFs of the model output (i.e., to more 

conservative results); on the contrary, when the output is not increasing in each 

place with respect to the inputs (e.g., the model function contains both products 

and quotients), the opposite situation occurs: the assumption of total dependence 

typically produces a consistently smaller gap between the bounding CDFs of the 

model output (i.e., less conservative results); 

•  the comparison between hybrid MC-FIA and MC-based DS-IRS approaches has 

shown that the plausibility and belief functions of the model output produced by 

the two approaches are similar: in other words, the computation of the upper and 

lower CDFs of the output is not significantly influenced by the different 

assumptions of (in)dependence between the epistemically-uncertain parameters. 

This is due to the fact that the different CDFs generated in correspondence of 

different (dependent or independent) “realizations” of epistemic uncertainty by 

the hybrid MC-FIA and MC-based DS-IRS approaches, respectively, are 

averaged to obtain the plausibility and belief functions of the model output: such 

procedure typically “cancels out” the effect of the particular state of dependence 

between the epistemically-uncertain parameters. However, this is not the case 

for other quantities of interest in risk assessment, e.g., the distributions of a 

given quantile or the percentiles of the CDF of the model output: in these cases, 

the hybrid MC-FIA method produces more conservative results than the MC-

based DS-IRS approach. Actually, in processing epistemic uncertainty the 

assumption of total dependence allows selecting “extreme” combinations of �-

cuts (e.g., the combination of all the �-cuts with possibility level � = 0) that 

cannot be easily obtained by plain random sampling of independent sets: this 

produces conservative estimates, in particular in the range of extreme 

cumulative probabilities (i.e., around 0 and 1). 

•  contrarily to probabilistic approaches, the results produced by hybrid methods do 

not seem to be affected by the characteristics of the model function at hand. 
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Based on the considerations above, it can be concluded that: 

•  when the representation of epistemic uncertainty is probabilistic, the state of 

dependence between the epistemically-uncertain parameters of the aleatory 

probability distributions becomes a critical factor in risk-informed decisions 

because the effect of different (in)dependence assumptions on the conservatism 

of the estimates is closely related to the structure of the model function at hand. 

This raises serious concerns from the point of view of safety: actually, in the risk 

assessment of real safety-critical systems, many of the model functions adopted 

are not represented by explicit mathematical expressions, but rather by black 

boxes (i.e., implicit functions implemented in complex simulation codes). In such 

cases, two options are suggested: (1) the analyst performs a sensitivity study to 

gather the largest amount possible of information about the characteristics of the 

model function at hand; on the basis of the indications obtained, he/she 

“artificially” selects the state of the dependence between the epistemically-

uncertain parameters that produces the most conservative results; (2) the analyst 

assumes independence between the epistemically-uncertain parameters, which 

has been shown to produce more conservative results than total dependence 

when the model function is not increasing in each place with respect to the 

inputs; 

•  when the representation of the epistemically-uncertain parameters is non-

probabilistic, the state of dependence between the epistemically-uncertain 

parameters of the aleatory probability distributions is less critical. However, the 

hybrid MC-FIA method may be preferred to the MC-based DS-IRS approach 

because it provides more conservative results in the estimation of (i) the 

distributions of a given quantile of the model output and (ii) the percentiles of the 

CDF of the output. In addition, this higher conservatism is particularly evident in 

the range of extreme probabilities (i.e., around 0 and 1) that are of paramount 

importance in realistic risk assessment applications involving complex, highly 

reliable engineering systems. 

(b) the study of the effect of the probabilistic/non-probabilistic representation of 

epistemic uncertainty when the state of dependence between the epistemically-

uncertain parameters is defined: 
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•  the comparison between the MC-based DS-IRS approach and the two-

dimensional MC approach assuming independence between the epistemically-

uncertain parameters has shown that in the case studies considered the upper and 

lower CDFs of the model output produced by the two approaches are similar. 

This is due to (i) the common assumption of independence between the 

epistemically-uncertain parameters; (ii) the similar characteristics of the two 

algorithms used to propagate the uncertainties and (iii) the fact that the 

computation of the bounding CDFs of the model output in the double MC 

approach is strongly influenced by the occasional random sampling of 

“extreme” combinations of values of the epistemically-uncertain parameters; 

•  the comparison between the hybrid MC-FIA method and the two-dimensional 

MC approach assuming total dependence between the epistemically-uncertain 

parameters has shown that the conservatism of the results depends on the 

structure of the model function at hand. In particular, when the model function is 

not increasing in each place with respect to the inputs (e.g., it contains both 

multiplications and quotients), the gap between the plausibility and belief 

functions of the output produced by the hybrid approach is typically larger than 

the gap between the upper and lower CDFs produced by the two-dimensional 

MC method. This is explained by the fact that in the two-dimensional MC 

approach the assumption of total dependence prevents the random sampling of 

“extreme” combinations of epistemically-uncertain parameters. On the contrary, 

in the hybrid MC-FIA method, an exhaustive interval analysis is performed for 

different �-cuts of the possibility distributions: the result is that the hybrid 

approach is able to explore a larger set of combinations of epistemically-

uncertain parameter values than the double MC approach, thus producing more 

conservative results. 

Instead, when the model function is increasing in each place with respect to the 

inputs (e.g., it contains only multiplications), the opposite situation occurs: 

actually, in this case the two-dimensional MC approach assuming total 

dependence is very likely to sample “extreme” combinations of the 

epistemically-uncertain parameters; 
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•  both non-probabilistic approaches (i.e., the hybrid MC-FIA and the MC-based 

DS-IRS methods) always lead to more conservative results than the probabilistic 

approaches (i.e., the two-dimensional MC method assuming total dependence 

and independence) in the estimation of quantities like the distribution of a 

quantile of the output or the percentiles of the CDFs of the output (i.e., those 

quantities whose computation is not influenced by the occasional random 

sampling of “extreme” combinations of values of the epistemically-uncertain 

parameters). In particular, (i) the non-probabilistic approaches are able to 

produce upper and lower distributions for all the quantiles of the output, whereas 

the two-dimensional MC method provides only a single probability distribution; 

(ii) the percentiles of the CDFs of the output produced by the non-probabilistic 

approaches completely envelop those generated by the probabilistic approaches. 

Based on the considerations above, it can be concluded that: 

•  if the analyst is interested only in the estimation of the upper and lower CDFs of 

the model output: 

o when there is total dependence between the epistemically-uncertain 

parameters, a probabilistic representation of the epistemically-uncertain 

parameters of the aleatory probability distributions may fail to produce 

reliable and conservative results, which raises concerns from the point of 

view of safety; 

o when there is independence between the epistemically-uncertain 

parameters, both probabilistic and non-probabilistic representations of the 

epistemically-uncertain parameters may be chosen since they may 

(occasionally) produce comparable results; 

•  if the analyst is interested in the estimation of quantities like the distribution of a 

given quantile or the percentiles of the CDFs of the output, a non-probabilistic 

representation of epistemic uncertainty is in general suggested because it 

provides more conservative results. 

The findings of the comparison show that adopting different methods for jointly 

propagating aleatory and epistemic uncertainties may generate different results and 

possibly different decisions in risk problems involving uncertainties: this is of paramount 

importance in systems that are critical from the safety viewpoint, e.g., in the nuclear, 
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aerospace, chemical and environmental fields. In particular, it seems advisable to suggest 

that, if nothing is known about the dependence relationship between the epistemically-

uncertain parameters, one should resort to the hybrid MC-FIA approach because its risk 

estimates are more conservative than (or at least comparable to) those obtained by the 

double MC approach assuming dependence (or independence) between the epistemically-

uncertain parameters: thus, a non-probabilistic representation of epistemic uncertainty 

represents in general a “safer” choice. 

 

With respect to issue (ii) above, the DBC method has been framed for the first time 

within a “level-2” setting of hybrid uncertainty propagation with the objectives of: (a) 

removing the assumption of independence between the aleatory variables (which is 

implicit in the adoption of standard MC sampling for the propagation of the aleatory 

uncertainties) and (b) accounting for all kinds of (possibly unknown) dependences 

between the aleatory variables, i.e., also those that cannot be modeled even within 

arbitrarily complex MC sampling frameworks (e.g., copulas). It has been shown that the 

upper and lower CDFs of the output produced by the hybrid DBC-FIA approach 

completely envelop those obtained by the hybrid MC-FIA method. Based on the results 

obtained, it can be concluded that the use of the DBC approach within a “level-2” setting 

may be very useful to provide an initial  “worst-case” estimate of the risk associated to the 

system at hand when nothing is known about the real state of dependence between the 

variables; however, in many realistic applications this would lead to excessively 

conservative (and thus pessimistic) results that need to be refined by acquiring further 

knowledge on the system, its model and the real state of dependence between the random 

variables. 

 

The findings and conclusions drawn by the comparisons performed in Sec. 4 are 

summarized in Table 4 for the sake of clarity. 
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Table 4. Comparisons performed in Sec. 4, and their 
relative findings 

Comparison between the uncertainty propagation methods (Sec. 4.1) 
Sec. 4.1.1 

  Representation of epistemic uncertainty  

  Probabilistic   Non-probabilistic 

State of epistemic  
dependence 

Independence Double MC (i.b.)  MC-based DS-IRS (iii.) 

 vs  vs 
Total  

dependence 
Double MC (i.a.)  Hybrid MC-FIA (ii.) 

 ����  ���� 

 Findings 

Method (i.a) vs (i.b): 
-The state of dependence between the parameters is critical because 
its effect on the conservatism of the estimates is related to the 
structure of the model function 
-Two options are suggested: 1) perform a sensitivity study to get 
information about the model function and “artificially” select the state 
of dependence that produces the most conservative results; 2) assume 
independence between the parameters, which is more conservative 
than total dependence when the model function is not increasing in 
each place with the inputs 
Method (ii) vs (iii): 
-The state of dependence is not so critical (e.g., it has almost no effect 
on the upper and lower CDFs of the model output) 
-Hybrid MC-FIA may be preferred to MC-based DS-IRS because it is 
more conservative in the estimation of i) the distributions of a given 
quantile of the model output and ii) the percentiles of the CDF of the 
output (in particular, in the range of extreme probabilities, i.e., around 
0 and 1) 

Sec. 4.1.2 
  State of epistemic dependence 
  Independence  Total dependence 

Representation of 
epistemic 

uncertainty 

Probabilistic Double MC (i.b.)  Double MC (i.a.) 

 vs  vs 
Non-

probabilistic 
MC-based DS-IRS (iii.)  Hybrid MC-FIA (ii.) 

 ����  ���� 

 Findings 

General: 
-In the estimation of quantities like the distribution of a given quantile 
or the percentiles of the CDFs of the output, a non-probabilistic 
representation of epistemic uncertainty is suggested because it 
provides more conservative results 
Method (i.b.) vs (iii): 
-In the estimation of the upper and lower CDFs of the output, both 
representations of epistemic uncertainty may be chosen since they 
may (occasionally) produce comparable results 
Method (i.a.) vs (ii): 
-In the estimation of the upper and lower CDFs of the output, a 
probabilistic representation of epistemic uncertainty may fail to 
produce reliable and conservative results 
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(Table 4. Continued). 

Unknown dependences between aleatory variables by DBC (Sec. 4.2) 

 
State of dependence between the aleatory variables 

Independence  Unknown dependence 

Methods Hybrid MC-FIA (ii.) vs Hybrid DBC-FIA (iv.) 

Findings 

-The upper and lower CDF of the output produced by hybrid DBC-FIA 
completely envelop those obtained by hybrid MC-FIA 
-Hybrid DBC-FIA is useful to provide an initial  “worst-case” estimate 
of risk when nothing is known about the real state of dependence 
between the random variables 
-In realistic applications hybrid DBC-FIA leads to excessively 
conservative (and thus pessimistic) results that need to be refined by 
acquiring further knowledge on the system, its model and the real state 
of dependence between the random variables 
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Appendix A.  Two-dimensional Monte Carlo method 

The main steps of the procedure are:5,32,33 
(1) set ie = 1 (outer loop processing epistemic uncertainty by MC simulation); 

(2) sample the ie-th set of random realizations eij� , j = 1, 2, …, n, of the epistemically-

uncertain parameter vectors j�  from the probability distributions )( j
j
�p� , j = 1, 2, 

…, n; 

(3) sample Na random realizations ea ii

jy , , ia = 1, 2, …, Na, j = 1, 2, …, n, of the 

“probabilistic” variables njYj ...,,2,1, = , from the probability distributions 

)( j

Y yp j

ei
j�

, j = 1, 2, …, n, conditioned at the values eij�  of the epistemically-uncertain 

parameters j�  sampled at step (2) above (inner loop processing aleatory uncertainty 

by MC simulation); 

(4) calculate the values ea iiz ,  of the model output Z  as =ea iiz ,  

( )eaeaeaea ii

n

ii

j

iiii yyyyf ,,,

2

,

1 ,...,,...,, , ia = 1, 2, …, Na, and build the ie-th empirical 

Cumulative Distribution Function (CDF) Z

ie
F  of Z; 

(5) if ie < Ne, set ie = ie + 1 and go back to step (2) above; otherwise, go to (6) below; 

(6) post-process the Ne empirical CDFs Z

ie
F , ie = 1, 2, …, Ne, thereby obtained in order 

to identify the upper and lower CDFs for Z  as ( ) ( ){ }i

Z

iNii

Z zFzF i

e
ee

i

...,,2,1
max

=
=  and 

( )i

Z zF i ( ){ }i

Z

iNi
zF i

e
ee ...,,2,1

min
=

= , respectively (i.e., as the two “extreme” CDFs that 

envelop all the Ne CDFs generated in correspondence of the Ne realizations of 

epistemic uncertainty). 

As highlighted in Sec. 2.1, the random samplings performed at steps (2) and (3) 

above may account for possible dependences existing between the epistemically-

uncertain parameters (step (2)) and between the aleatory variables (step (3)), respectively; 

on the other hand, such dependences can be obviously included in the analysis, only if 

they can be modeled within a classical MC framework.63 
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By way of example and only for illustration purposes, let us consider two random 

variables Y1 and Y2 that are described by probability distributions )( 1
1

1
ypY

�
 and )( 2

2

2
ypY

�
 

(resp., CDFs )( 1
1

1
yF Y

�
 and )( 2

2

2
yF Y

�
) whose parameter vectors 1�  and 2�  are themselves 

affected by epistemic uncertainty. In particular, Y1 is represented by a lognormal 

distribution LN(�1) = LN(�1,1, �1,2) = LN(�1, �1), where �1,2 = �1 = 1.5 and �1,1 = �1 is 

described on its turn by a normal probability distribution ( )1,1
1,1 θθp  = ( )1

1 µµp  (resp., CDF 

( )1,1
1,1 θθF  = ( )1

1 µµF ) with mean equal to 8, standard deviation equal to 1 and support [6, 

10]; Y2 is represented by a lognormal distribution LN(�2) = LN(�2,1, �2,2) = LN(�2, �2), 

where �2,2 = �2 = 1.7 and �2,1 = �2 is described on its turn by a normal probability 

distribution ( )1,2
1,2 θθp  = ( )2

2 µµp  (resp., CDF ( )1,2
1,2 θθF  = ( )2

2 µµF ) with mean equal to 

2.2, standard deviation equal to 1 and support [0, 4.5]. In Figs. A.1 and A.2 the 

procedures for sampling the random realizations ea iiy ,

1  and ea iiy ,

2  for Y1 and Y2, 

respectively, are illustrated with respect to different assumptions of (in)dependence 

between the epistemically-uncertain parameters �1,1 = �1 and �2,1 = �2. In Fig. A.1, we 

assume total dependence between the epistemically-uncertain parameters �1,1 = �1 and 

�2,1 = �2 and independence between the random variables Y1 and Y2. With reference to the 

procedure outlined above, a random vector { }ee ii rr 1,21,1 ,  is sampled to process epistemic 

uncertainty (step (2)); in case of total dependence between the epistemically-uncertain 

parameters �1,1 = �1 and �2,1 = �2 the vector { }ee ii rr 1,21,1 ,  has to be such that ee ii rr 1,21,1 =  (e.g., 

9.01,21,1 == ee ii rr  in Fig. A.1, top). The corresponding realizations ee ii

11,1 µθ =  and ee ii

21,2 µθ =  

for �1,1 = �1 and �2,1 = �2 are then found by the inverse transform method as [ ] ( )eirF 1,1

1
1,1

−θ  = 

[ ] ( )eirF 1,1

1
1

−µ  (= 9.18 in Fig. A.1, top left) and [ ] ( )eirF 1,2

1
1,2

−θ  = [ ] ( )eirF 1,2

1
2

−µ  (= 3.44 in Fig. 

A.1, top right), respectively. The CDFs 1

1

YF
�

 = 1

1,1

YFθ  = 1

1

YFµ  and 2

2

YF
�

 = 1

1,2

YFθ  = 2

2

YFµ  for the 

random variables Y1 and Y2, respectively, are constructed using the values sampled (at 

step (2) above) for �1,1 = �1 and �2,1 = �2, i.e., ee ii

11,1 µθ =  = 9.18 and ee ii

21,2 µθ =  = 3.44 (Fig. 

A.1 bottom). Then, since independence is assumed between the random variables Y1 and 

Y2, two (possibly different) random numbers aiu1  and aiu2  (e.g., aiu1  = 0.2 and aiu2  = 0.95 in 
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Fig. A.1 bottom) are sampled from a uniform distribution in [0,1) and the corresponding 

realizations ea iiy ,

1  and ea iiy ,

2  of Y1 and Y2 are computed as ( )a

ei

iY uF 1

1][ 1

1,1

−
θ  = ( )a

ei

iY uF 1

1][ 1

1

−
µ  = 

( )2.0][ 1
18.9
1 −YF  (= 7.91 in Fig. A.1, bottom left) and ( )a

ei

iY uF 2
1][ 2

1,2

−
θ  = ( )a

ei

iY uF 2

1][ 2

2

−
µ  = 

( )95.0][ 1
44.3
2 −YF  (= 6.65 in Fig. A.1, bottom right), respectively. 

A different situation arises in Fig. A.2, where independence is now assumed between 

the epistemically-uncertain parameters �1 = �1,1 and �2 = �2,1 (whereas independence is 

still assumed between the random variables Y1 and Y2). In this case, the random vector 

{ }ee ii rr 1,21,1 ,  sampled to process epistemic uncertainty (step (2) above) is such that eir 1,1  is 

possibly different from eir 1,2  (e.g., 2.01,1 =eir  and 75.01,2 =eir  in Fig. A.2, top). The 

corresponding realizations ee ii

11,1 µθ =  and ee ii

21,2 µθ =  for �1,1 = �1 and �2,1 = �2 are then 

found as [ ] ( )eirF 1,1

1
1,1

−θ  = [ ] ( )eirF 1,1

1
1

−µ  (= 7.21 in Fig. A.2, top left) and [ ] ( )eirF 1,2

1
1,2

−θ  = 

[ ] ( )eirF 1,2

1
2

−µ  (= 2.86 in Fig. A.2, top right), respectively. The CDFs 1

1

YF
�

 = 1

1,1

YFθ  = 1

1

YFµ  and 

2

2

YF
�

 = 1

1,2

YFθ  = 2

2

YFµ  for Y1 and Y2, respectively, are constructed using the values sampled 

for �1,1 = �1 and �2,1 = �2, i.e., ee ii

11,1 µθ =  = 7.21 and ee ii

21,2 µθ =  = 2.86 (Fig. A.2 bottom). 

Then, since independence is still assumed between Y1 and Y2, as above two random 

numbers aiu1  and aiu2  (e.g., aiu1  = 0.35 and aiu2  = 0.60 in Fig. A.2 bottom) are sampled 

from a uniform distribution in [0,1) and the corresponding realizations ea iiy ,

1  and ea iiy ,

2  of 

Y1 and Y2 are computed as ( )a

ei

iY uF 1
1][ 1

1,1

−
θ  = ( )a

ei

iY uF 1

1][ 1

1

−
µ  = ( )35.0][ 1

21.7
1 −YF  (= 6.51 in Fig. A.2, 

bottom left) and ( )a

ei

iY uF 2
1][ 2

1,2

−
θ  = ( )a

ei

iY uF 2

1][ 2

2

−
µ  = ( )60.0][ 1

86.2
2 −YF  (= 2.83 in Fig. A.2, bottom 

right), respectively. 
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Fig. A.1. Top: PDFs ( )
1

1 µµp  (left) and ( )
2

2 µµp  (right) of the epistemically-uncertain parameters �1 and �2 of the 
(aleatory) PDFs of the random variables Y1 and Y2, respectively; in evidence, two realizations ei

1
µ  = 9.18 and 

ei

2
µ  = 3.44 sampled assuming total dependence between the parameters. Bottom: CDFs 1

1

YF
µ

 (left) and 2

2

YF
µ

 
(right) of Y1 and Y2 built in correspondence of ei

1
µ  = 9.18 and ei

2
µ  = 3.44, respectively; in evidence, two 

realizations ea iiy ,

1
 = 7.91 and ea iiy ,

2
 = 6.65 sampled assuming independence between Y1 and Y2 
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Fig. A.2. Top: PDFs ( )
1

1 µµp  (left) and ( )
2

2 µµp  of the epistemically-uncertain parameters �1 and �2 of the 
(aleatory) PDFs of the random variables Y1 and Y2, respectively; in evidence, two realizations ei

1
µ  = 7.21 and 

ei

2
µ  = 2.86 sampled assuming independence between the parameters. Bottom: CDFs 1

1

YF
µ

 (left) and 2

2

YF
µ

 (right) 
of Y1 and Y2 built in correspondence of ei

1
µ  = 7.21 and ei

2
µ  = 2.86; in evidence, two realizations ea iiy ,

1
 = 6.51 and 

ea iiy ,

2
 = 2.83 sampled assuming independence between Y1 and Y2 

Appendix B.  Hybrid Monte Carlo and Fuzzy Interval Analysis approach 

The main steps of the procedure are:24,34-51 
(1) set � = 0 (outer loop processing epistemic uncertainty by fuzzy interval analysis); 

(2) select the �-cuts jmjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α , j = 1, 2, …, n, of the possibility distributions 

)( j
j
��

�  = ( ) ( ) ( ){ } ,...,, ,2,1,

,2,1,

j

jmjjj

mjjj θπθπθπ θθθ  of the parameters j� , j = 1, 2, …, n; 

(3) sample Na random intervals ],[ ,,

aa i

j

i

j
yy αα

, aa Ni  ..., ,2 ,1= , j = 1, 2, …, n, of the 

“probabilistic” variables jY , j = 1, 2, …, n, letting parameters j�  range within the 

corresponding �-cuts jmjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α , j = 1, 2, …, n (found at step (2) above) 

(inner loop processing aleatory uncertainty by standard MC simulation); 
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(4) find the smallest and largest values of ( )nYYYfZ  ..., , , 21= , denoted by aizα  and aizα , 

respectively, letting variables jY  range within the intervals ],[ ,,

aa i

j

i

j
yy αα

, 

aa Ni  ..., ,2 ,1= , nj  ..., ,2 ,1=  (found at step (3) above). Notice that if the function 

( )nYYYfZ  ..., , , 21=  is non-monotonic, the smallest and largest values of Z , i.e., 

aizα  and aizα , have to be found by performing an exhaustive search within the 

intervals ],[ ,,

aa i

j

i

j
yy αα

 (e.g., by means of optimization algorithms, Monte Carlo 

Simulation, …). Instead, when ( )nYYYfZ  ..., , , 21=  is monotonic (like in the case 

studies of Sec. 3), aizα  and aizα  can be found analytically in correspondence of the 

extreme bounds of the intervals ],[ ,,

aa i

j

i

j
yy αα

: for example, if Z = Y1�Y2/Y3, then aizα  = 

aaa iii yyy ααα ,3,2,1
/⋅  and aizα  = aaa

iii yyy
ααα ,3,2,1 /⋅ ; 

(5) take the values aizα  and aizα  found in (4) above as the lower and upper limits of the Na 

�-cuts aiZA ,

α  of Z, aa Ni  ..., ,2 ,1= . A probability mass ( ) a

iZ NAm a 1, =α  is associated 

at each �-cut aiZA ,

α , aa Ni  ..., ,2 ,1= ; 

(6) for each set A of interest in the universe of discourse ZU  of Z , calculate the 

plausibility Pl�(A) and belief Bel�(A) of level � as �
≠∩

=
0

,

 ,

)()(
AA

iZ

aiZ

aAmAPl
α

αα  and 

�
⊆

=
AA

iZ

aiZ

aAmABel
,

)()( ,

α

αα , respectively. 

(7) if 1<α , then set ααα ∆+=  (e.g., 05.0=∆α  in this paper) and return to step (2) 

above; otherwise, go to (8) below; 

(8) calculate the plausibility Pl(A) and belief Bel(A) for A  as �
1

0

)( αα dAPl  � 

�
=

∆⋅+

q

i
i

e

e
APl

q 0

)(
1

1
α  and �

1

0

)( αα dABel  � �
=

∆⋅+

q

i
i

e

e
ABel

q 0

)(
1

1
α , respectively, where (q 

+ 1)= (1/�� + 1) = 21 is the total number of �-cuts processed in the analysis.24,39 

As highlighted in Sec. 2.2, it is worth noting that performing an interval analysis on 

�-cuts assumes total dependence between the epistemically-uncertain parameters. 

Actually, this procedure implies strong dependence between the information sources 
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(e.g., the experts or observers) that supply the input possibility distributions, because the 

same confidence level (1 – α ) is chosen to build the �-cuts for all the epistemically-

uncertain parameters.23 In addition, notice that the random sampling performed at step 

(3) above may account for possible dependences existing between the aleatory variables; 

on the other hand, such dependences can be obviously included in the analysis, only if 

they can be modeled within a classical MC framework:63 in this work, standard MC 

simulation is used to propagate the aleatory uncertainties, which presupposes 

independence between the random variables. Finally, as highlighted in Ref. 23, it is 

worth noting that this hybrid propagation method clearly assumes independence between 

the group of probabilistic (i.e., aleatory or random) variables and the group of the 

possibilistic (i.e., epistemically-uncertain) parameters of the aleatory probability 

distributions. 

By way of example and only for illustration purposes, let us consider two random 

variables Y1 and Y2 that are described by probability distributions )( 1
1

1
ypY

�
 and )( 2

2

2
ypY

�
 

(resp., CDFs )( 1
1

1
yF Y

�
 and )( 2

2

2
yF Y

�
) whose parameter vectors 1�  and 2�  are themselves 

affected by epistemic uncertainty. In particular, Y1 is represented by a lognormal 

distribution LN(�1) = LN(�1,1, �1,2) = LN(�1, �1), where �1 = �1,2 = 1.5 and �1,1 = �1 is 

described by a triangular possibility distribution ( )1,1
1,1 θπθ  = ( )1

1 µπ µ  = TR(a1, c1, b1) with 

core c1 = 8 and support [a1, b1] = [7, 10]; Y2 is represented by a lognormal distribution 

LN(�2) = LN(�2,1, �2,2) = LN(�2, �2), where �2,1 = �2 = 9 and �2,2 = �2 is described by a 

triangular possibility distribution ( )2,2
2,2 θπθ  = ( )2

2 σπσ  = TR(a2, c2, b2) with core c2 = 1.7 

and support [a2, b2] = [1, 2]. In Fig. B.1 the procedure for sampling the ia-th random 

intervals ],[ ,1,1

aa ii yy αα
 and ],[ ,2,2

aa ii yy αα
 for the aleatory variables Y1 and Y2, respectively, is 

illustrated. A single possibility value � (e.g., � = 0.2 in Fig. B.1, top) is selected and the 

corresponding �-cuts 1,1θ
αA  = 1µ

αA  = 1

2.0

µA  and 2,2θ
αA  = 2σ

αA  = 2

2.0

σA  for �1,1 = �1 and �2,2 = �2 

are found as ],[],[ ,1,1,1,1,1,1 αααα µµθθ =  = [7.2, 9.6] and ],[],[ ,2,2,2,2,2,2 αααα σσθθ =  = [1.14, 

1.94], respectively. Then, since independence is assumed between Y1 and Y2, two random 

numbers aiu1  and aiu2  (e.g., aiu1  = 0.45 and aiu2  = 0.85 in Fig. B.1, bottom) are sampled 

from a uniform distribution in [0,1) and the intervals ],[ ,1,1

aa ii yy αα
 and ],[ ,2,2

aa ii yy αα
 are 
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computed as [ ] ( ) [ ] ( )�
�

�
�
�

� −

∈

−

∈

aa iYiY uFuF 1

1

],[
1

1

],[

1

1
,1

,11

1

1
,1

,11

sup ,inf
�

���

�
���

α
α

αα

 = 

[ ] ( ) [ ] ( )�
�

�
�
�

� −

∈

−

∈

aa iYiY uFuF 1

1

],[
1

1

],[

1

1

,1,11

1

1
,1,11

sup ,inf µ
µµµ

µµµµ
αα

αα

 = [ ] ( ) [ ] ( )��
�

��

� −

∈

−

∈
45.0sup ,45.0inf

1

]6.9,2.7[

1

]6.9,2.7[

1

1

1

1

1
1

YY FF µ
µ

µµ
 = 

[6.86, 9.31] and [ ] ( ) [ ] ( )�
�

�
�
�

� −

∈

−

∈

aa iYiY uFuF 2

1

],[
2

1

],[

2

2
,2

,22

2

2
,2

,22

sup ,inf
�

���

�
���

α
α

αα

 = 

[ ] ( ) [ ] ( )�
�

�
�
�

� −

∈

−

∈

aa iYiY uFuF 2

1

],[
2

1

],[

2

2

,2,22

2

2
,2,22

sup ,inf σ
σσσ

σσσσ
αα

αα

 = [ ] ( ) [ ] ( )��
�

��

� −

∈

−

∈
85.0sup ,85.0inf

1

]94.1,14.1[

1

]94.1,14.1[

2

2

2

2

2
2

YY FF σ
σ

σσ
 = 

[10.19, 11], respectively. 
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Fig. B.1. Top: possibility distributions ( )
1

1 µπµ  (left) and ( )
2

2 σπσ  (right) of the epistemically-uncertain 
parameters �1 and �2 of the (aleatory) PDFs of the random variables Y1 and Y2, respectively; in evidence the �-
cuts of level � = 0.2 1µ

αA  = ],[
,1

,1
αα

µµ  = [7.2, 9.6] and 2σ

αA  = ],[
,2,2 αα

σσ  = [1.14, 1.94], respectively. Bottom: 
upper and lower CDFs of Y1 (left) and Y2 (right) built in correspondence of the extreme values 

α
µ

,1
 = 7.2 and 

αµ
,1

 = 9.6 of the �-cut 1µ

αA and the extreme values 
α

σ
,2

 = 1.14 and ασ
,2

 = 1.94 of the �-cut 2σ

αA , respectively; in 
evidence, two random intervals ],[

,1
,1

aa ii

yy αα
 = [6.86, 9.31] and ],[

,2
,2

aa ii

yy αα
 = [10.19, 11] sampled assuming 

independence between Y1 and Y2 
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Appendix C.  Monte Carlo-based Dempster-Shafer approach employing 
Independent Random Sets 

In the MC-based DS-IRS approach, the possibility distribution of a generic epistemically-
uncertain parameter � is encoded into discrete (focal) sets ] ,[

ttt
A ααα θθ= ,  qt ..., 2, 1,=  

(where 0...1 121 =>>>>= +qq αααα ) whose masses are 1+−=∆= tttt
m αααα  (see 

Sec. 2.3). In this paper, q = 20 and 1+−=∆= tttt
m αααα  = 0.05 for the sake of 

comparison with the hybrid MC-FIA approach of Sec. 2.2 and Appendix B. 
The main steps of the procedure are:52,53 

(1) set ie = 1 (outer loop processing epistemic uncertainty by standard MC simulation); 

(2) sample the values { }ei

ij ,α , jmi  ..., ,2 ,1= , nj  ..., 2, 1,= , from the discrete distribution 

( ) } ..., ,2 ,1:,{
 , , , , qtm
tijtij =αα : these sampled values represent the α  levels of the 

focal sets jmj

ei
ij

j

ei
ij

j

ei
ij

AAA ,

,

2,

,

1,

,

 ,... , ,
θ

α

θ

α

θ

α , jmi  ..., ,2 ,1= , nj  ..., 2, 1,= , of the discretized 

possibility distributions )( j
j
��

�  of the parameters j� , nj  ..., 2, 1,= ; 

(3) perform the same steps (3) – (4) (inner loop processing aleatory uncertainty by 

standard MC simulation) as in the procedure of Appendix B to obtain ae iiz ,  and 

ae iiz  , , aa Ni  ..., ,2 ,1= , as the upper and lower limits of ( )nYYYfZ  ..., , , 21=  in 

correspondence of the ie-th random realization of epistemic uncertainty; 

(4) if ie < Ne, set ie = ie + 1 and go back to step (2) above; otherwise, go to (5) below; 

(5) the random sets [ ]aeaeae iiiiii zzE ,,, ,=  of Z  are obtained with the collection of the 

values ae iiz ,  and ae iiz  , , ie = 1, 2, …, Ne, aa Ni  ..., ,2 ,1= , found at step (3) above. A 

probability mass ( ) ( )eaii NNEm ae ⋅=1,  is associated at each random set ae iiE , , ie = 

1, 2, …, Ne, aa Ni  ..., ,2 ,1= ; 

(6) calculate the plausibility Pl(A) and belief Bel(A) for each set A  of interest contained 

in the universe of discourse ZU  of Z  as �
≠∩

=
0

 ,

 ,

)()(
AE

ii

aiei

aeEmAPl  and 

�
⊆

=
AE

ii

aiei

aeEmABel
 ,

)()(  , , respectively. 

Notice that, differently from the hybrid MC-FIA approach, at step (2) above a 

different possibility value (resp., confidence level) α  (resp., 1 – �) is randomly and 

independently sampled for each epistemically-uncertain parameter, i.e., random set 

independence is assumed between the epistemically-uncertain parameters. In addition, 
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notice that the random sampling performed at step (3) above may account for possible 

dependences existing between the aleatory variables; on the other hand, such 

dependences can be obviously included in the analysis, only if they can be modeled 

within a classical MC framework:63 in this work, standard MC simulation is used to 

propagate the aleatory uncertainties, which presupposes independence between the 

random variables. 

By way of example and only for illustration purposes, let us consider the two random 

variables Y1 and Y2 described in the previous Appendix B. In Fig. C.1 the procedure for 

sampling the ia-th random intervals ],[ 11

aa ii yy  and ],[ 22

aa ii yy  for the aleatory variables Y1 

and Y2, respectively, is illustrated. Since independence is now assumed between the 

epistemically-uncertain parameters �1,1 = �1 and �2,2 = �2, two possibly different 

possibility values ei

1,1α  and ei

2,2α  (e.g., ei

1,1α = 0.8 and ei

2,2α  = 0.1 in Fig. C.1, top) are 

randomly selected and the corresponding focal sets 1,1

1,1

θ
α ei

A  = 1

1,1

µ
α ei

A  = 1

8.0

µA  and 2,2

2,2

θ
α ei

A  = 2

2,2

σ
α ei

A  = 

2

1.0

σA  for �1,1 = �1 and �2,2 = �2 are found as ],[],[
1,11,11,11,1 ,1,1,1,1,1,1 eieieiei αααα µµθθ =  = [7.8, 8.4] and 

],[],[
2,22,22,22,2 ,2,2,2,2,2,2 eieieiei αααα σσθθ =  = [1.07, 1.97], respectively. Then, since independence is 

also assumed between Y1 and Y2, two random numbers aiu1  and aiu2  (e.g., aiu1  = 0.55 and 

aiu2  = 0.15 in Fig. C.1, bottom) are sampled from a uniform distribution in [0,1) and the 

intervals ],[ 11

aa ii yy  and ],[ 22

aa ii yy  are computed as [ ] ( )�
�

� −

∈

a

ei
ei

iY uF 1

1

],[

1

1
1,1,1

1,1,11

inf
�
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, 
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�
�
�
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�
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YY FF µ
µ

µµ
= [7.84, 8.46] and [ ] ( )�

�
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 = [7.02, 7.90], respectively. 
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Fig. C.1. Top: possibility distributions ( )
1

1 µπµ  (left) and ( )
2

2 σπσ  (right) of the epistemically-uncertain 
parameters �1 and �2 of the (aleatory) PDFs of the random variables Y1 and Y2, respectively; in evidence the �-
cuts 1

1,1

µ

α ei
A  = ],[

1,1
1,1

,1,1
ei

ei αα
µµ  = [7.8, 8.4] and 2

2,2

σ

α ei
A  = ],[

2,22,2 ,2,2 eiei αα
σσ  = [1.07, 1.97] of levels ei

1,1
α = 0.8 and ei

2,2
α  = 0.1 

for �1 and �2, respectively. Bottom: upper and lower CDFs of Y1 (left) and Y2 (right) built in correspondence of 
the extreme values 

α
µ

,1
 = 7.8 and αµ

,1
 = 8.4 of the �-cut 1µ

αA and the extreme values 
α

σ
,2

 = 1.07 and ασ
,2

 = 
1.97 of the �-cut 2σ

αA , respectively; in evidence, two random intervals ],[
,1

,1

aa ii

yy αα
 = [7.84, 8.46] and ],[

,2
,2

aa ii

yy αα
 = 

[7.02, 7.90] sampled assuming independence between Y1 and Y2, respectively 

Appendix D.  Hybrid Dependency Bound Convolution and Fuzzy Interval Analysis 
approach 

The Dependency Bound Convolution (DBC) method69 allows computing extreme upper 
and lower CDFs on the outputs of probabilistic models no matter what correlations or 
dependencies exist among the input variables; these bounds are also the “pointwise best 
possible.”17,68 

The method is based on the theorem of Frank et al., 1987,88 which provides the 

pointwise best possible bounds ZDBCF  and Z

DBCF  for the result Z = O(Y1, Y2) of a generic 

binary mathematical operation O(Y1, Y2) (which is non-decreasing in each place and 

continuous, except possibly at infinity) between almost surely positive random variables 

Y1 and Y2 of given Cumulative Distribution Functions (CDFs) 1YF  and 2YF .17,68 The 
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reader is referred to Refs. 17, 68 and 69 for the formal expressions of Z

DBCF  and 
Z

DBCF  

when O ∈  {+, –, *, /} and to Ref. 89 for the extension of these results to other operators 

such as power, logarithm, and so on. 

In this theoretical framework, Ref. 69 provides operative rules to explicitly determine 

the bounds Z

DBCF  and 
Z

DBCF  when O ∈  {+, –, *, /}. In particular, the main steps of the 

algorithm are: (i) discretize the CDFs 1YF  and 2YF  of the random variables Y1 and Y2 

into upper and lower CDFs 1YF , 2YF , 1YF , and 2YF , respectively (i.e., build probability 

boxes for Y1 and Y2); (ii) apply the mathematical formulas provided in Ref. 69 to obtain 

bounds [ ] 1−Z

DBCF  and [ ] 1−Z

DBCF  on the quantile function [ ] 1−ZF ; (iii) take the inverse of 

[ ] 1−Z

DBCF  and [ ] 1−Z

DBCF  to get the bounds Z

DBCF  and 
Z

DBCF  on the CDF ZF . The reader is 

referred to the seminal paper for further technical details. 

 

The characteristics of the algorithm described above are here exploited to join the 

Dependency Bound Convolution (DBC) method and the Fuzzy Interval Analysis (FIA) 

approach within a “level-2” framework of hybrid (probabilistic and possibilistic) 

uncertainty propagation. In synthesis, the main steps of the hybrid DBC-FIA algorithm 

are: 

(1) outer loop processing epistemic uncertainty by FIA: perform the same steps (1) and 

(2) of the procedure in Appendix B to get the �-cuts jmjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α  of the 

possibility distributions )( j
j
��

�  = ( ) ( ) ( ){ } ,...,, ,2,1,

,2,1,

j

jmjjj

mjjj θπθπθπ θθθ  of the 

parameters j� , j = 1, 2, …, n; 

(2) inner loop processing aleatory uncertainty by DBC: 

(i) letting parameters j�  range within the corresponding �-cuts jmjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α  

(found at step (1) above), build the upper and lower CDFs jYFα , jYF α  (i.e., the 

probability boxes) of level � for the “probabilistic” variables jY  as jYFα  = 

{ }j

j
j

j

Y

A

F
�

�
�

α∈
sup  and jYF α  = { }j

jj
j

Y

A
F
�

�
�

α∈
inf , j = 1, 2, …, n, where j

j

YF
�

 is the CDF of j

j

Yp
�

; 
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(ii)  apply the DBC rules to obtain the bounds of level � [ ] 1

,

−Z

DBCFα  and [ ] 1

,

−Z

DBCF α  on the 

quantile function [ ] 1−ZF  of the model output ( )nYYYfZ  ..., , , 21= ; 

(iii)  take the inverse of [ ] 1

,

−Z

DBCFα  and [ ] 1

,

−Z

DBCF α  to get the bounds of level � Z

DBCF ,α  and 

Z

DBCF ,α  on the CDF ZF  of the model output ( )nYYYfZ  ..., , , 21= . 

(3) repeat step (2) above for another possibility value � ∈  (0, 1]. 

The bounds Z

DBCF  and 
Z

DBCF  on ZF  can be computed as �=
1

0

, αα dFF Z

DBC

Z

DBC  and 

�=
1

0

, αα dFF Z

DBC

Z

DBC , respectively. 

 


