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INTRODUCTION

We consider a framework of uncertainty representation with two hierarchical levels [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF], in which risk analysis models of aleatory (i.e., random) events (e.g., failures) contain parameters (e.g., probabilities, failure rates, …) that are epistemically-uncertain, i.e., known with poor precision due to lack of knowledge and information. Traditionally, both types of uncertainty are represented by probability distributions [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF] and Bayes' rule is useful for updating the (probabilistic) epistemic uncertainty representation as new information (e.g., data) becomes available [START_REF] Kelly | Bayesian Inference for Probabilistic Risk Assessment: A Practitioner's Guidebook[END_REF].

However, in some situations, insufficient knowledge, information and data impairs a probabilistic representation of epistemic uncertainty. A number of alternative representation frameworks have been proposed for such cases, e.g., e.g., fuzzy set theory, evidence theory, possibility theory and interval analysis [START_REF] References Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF].

In this paper, we adopt possibility distributions to describe epistemic uncertainty [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF]) and address the issue of updating, in a Bayesian framework, the possibilistic representation of the epistemically-uncertain parameters of (aleatory) probability distributions. We take an approach of literature based on a purely possibilistic counterpart of the classical, well-grounded probabilistic Bayes' theorem: it requires the construction of a possibilistic likelihood function which is used to revise the prior possibility distributions of the uncertain parameters (determined on the basis of a priori subjective knowledge and/or data) (Lapointe & Bobee 2000). To the best of the authors' knowledge, this is the first time that the above mentioned technique is applied to risk assessment problems where hybrid uncertainty is separated into two hierarchical levels. To keep the analysis simple and retain a clear view of each step, the investigations are carried out with respect to a simple literature case study involving the risk-based design of a flood protection dike [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF].

Other methods have been proposed in the literature to revise, in a Bayesian framework, nonprobabilistic representations of epistemic uncertainty. In [START_REF] Stein | Bayesian Approach for Inconsistent Information[END_REF]) a modification of the Bayes' theorem is presented to account for the presence of fuzzy data and fuzzy prior PDFs. Finally, in [START_REF] Smets | Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF] a Generalized Bayes Theorem (GBT) is proposed within the framework of evidence theory: this approach is applied by (Le- [START_REF] Duy | A study on updating belief functions for parameter uncertainty representation in Nuclear Probabilistic Risk Assessment[END_REF] to update the estimates of the failure rates of mechanical components in the context of nuclear Probabilistic Risk Assessment (PRA).

The remainder of the paper is organized as follows. In Section 2, the representation of aleatory (probabilistic) and epistemic (possibilistic) uncer-Bayesian update of the parameters of probability distributions for risk assessment in a two-level hybrid probabilistic-possibilistic uncertainty framework N. Pedroni, E. Zio Ecole Centrale Paris, Chatenay-Malabry, France & Supelec, Gif-Sur-Yvette, France A. Pasanisi, M. Couplet Electricitè de France, Chatou, France ABSTRACT: Risk analysis models describing aleatory (i.e., random) events contain parameters (e.g., probabilities, failure rates, …) that are epistemically uncertain, i.e., known with poor precision. Whereas probability distributions are always used to describe aleatory uncertainty, alternative frameworks of representation may be considered for describing epistemic uncertainty, depending on the information and data available. In this paper, we use possibility distributions to describe the epistemic uncertainty in the parameters of the (aleatory) probability distributions. We address the issue of updating, in a Bayesian framework, the possibilistic representation of the epistemically-uncertain parameters of (aleatory) probability distributions as new information (e.g., data) becomes available. A purely possibilistic counterpart of the classical, well-grounded probabilistic Bayes theorem is adopted. The feasibility of the method is shown on a literature case study involving the risk-based design of a flood protection dike.

tainties in a "two-level" framework is provided; in Section 3, the method employed in this paper for the Bayesian update of the possibilistic parameters of aleatory probability distributions is described in details; in Section 4, the case study concerning the risk-based design of a flood protection dike is presented; in Section 5, the method of Section 3 is applied to the case study of Section 4; finally, some conclusions are drawn in the last Section 6. [1000,1200] is the set of γ values for which the possibility function is greater than or equal to 0.5 (dashed segment in Figure 1, top). Notice that the 3-cut set γ α A of parameter 2 can be interpreted also as the (1 -3)3100% Confidence Interval (CI) for 2, i.e., the interval such that α γ
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. For example, γ 0 A = [900, 1300] is the (1 -0)3100% = 100% CI for 2, i.e., the interval that contains the "true" value of 2 with certainty (solid segment in Figure 1
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) is the (1 -0.5)3100% = 50% CI (dashed segment in Figure 1, top) and so on. In this view, the possibility distribution ) (γ π γ can be interpreted as a set of nested CIs for parameter 2 [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF].

For each possibility (resp., confidence) level 3 (resp., 1 -3) in [0, 1], a bundle of Cumulative Distribution Functions (CDFs) for Y, namely
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, can be generated by letting the epistemically-uncertain parameter γ range within the corresponding 3-cut set γ α A , i.e., ( )
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can be interpreted as a set of nested CIs for parameter 2 (see above), it can be argued that the 3-cuts of ) (γ π γ induce also a set of nested pairs of CDFs
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, with 0 ≤ α 2 1 [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF]. In passing, notice that the upper and lower CDFs (of level 3), 
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of variable Y (built on the basis of a priori subjective engineering knowledge and/or data). For example, in the risk assessment context of this paper Y may represent the yearly maximal water flow of a river described by a Gumbel distribution:

thus, Y ~ ) | ( 1 y p Y = Gum(1) = Gum(4 1 , 4 2 ) = Gum(2, 5) = ) , | ( δ γ y p Y and ) (1 1 1 = ) , ( , δ γ δ γ 1 . Moreover, let ] ..., , ..., , , [ 2 1 D k y y y y = y
be a vector of D observed pieces of data representing the new information/evidence available for the analysis: referring to the example above, y may represent a vector of D values collected over a long period time (e.g., many years) of the yearly maximal water flow of the river under analysis. The objective of the Bayesian analysis is to update the a priori representation ) (1 
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) of 1 after y is obtained. The method considered in this paper is based on a purely possibilistic counterpart of the classical, probabilistic Bayes' theorem (Lapointe & Bobée 2000):

{ } ) ( ) | ( sup ) ( ) | ( ) | ( 1 y 1 1 y 1 y 1 1 1 1 1 1 1 1 1 1 1 1 L L ⋅ ⋅ = , (1) where 
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is the possibilistic likelihood of the parameter vector 1 given the newly observed data y, and quantities

) | ( y 1 1 1 and ) (1 1 1 are defined above. Notice that { } ) ( ) | ( sup 1 y 1 1 1 1 1 1 L ⋅ is a normal- ization factor such that { } ) | ( sup y 1 1 1 1 = 1, as re-
quired by possibility theory [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF].

It is worth mentioning that forms of the possibilistic Bayes' theorem alternative to (1) can be constructed as a result of other definitions of the operation of 'conditioning' with possibility distributions: the reader is referred to (Lapointe & Bobée 2000) for technical details. In this paper, expression (1) has been chosen because "it satisfies desirable properties of the revision process and lead to continuous posterior distributions" (Lapointe & Bobée 2000).

The possibilistic likelihood

) | ( y 1 1 L 1 is here ob- tained by transforming the classical probabilistic likelihood function ) | ( y 1 1 L through normalization, i.e., ) | ( y 1 1 L 1 = { } ) | ( sup / ) | ( y 1 y 1 1 1 1 L L
. This choice has been made for the following main reasons: (i) the transformation is simple and can be straightforwardly applied to any distribution; (ii) the resulting possibilistic likelihood is very closely related to the classical, purely probabilistic one (which is theoretically well-grounded) by means of the simple and direct operation of normalization that preserves the "original structure" of the experimental evidence;

(iii) it can be easily verified that the resulting possibilistic likelihood keeps the sequential nature of the updating procedure typical of the standard Bayes' theorem. On the other hand, it has to be also admitted that the resulting possibility distributions do not in general adhere to the probability-possibility consistency principle [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF].

It is worth noting that other techniques of transformation of probability density functions into possibility distributions exist, but the corresponding details are not given here for brevity sake: the interested reader is referred to [START_REF] Flage | Probability and possibility-based representations of uncertainty in fault tree analysis[END_REF] for some proposed techniques, e.g., the principle of maximum specificity and the principle of minimal commitment. Also, it has to be noticed that other techniques are available to construct possibility distributions (and, thus, possibilistic likelihood functions) directly from rough experimental data (i.e., without resorting to probability-possibility transformations): see, e.g., [START_REF] Serrurier | Maximum-Likelihood Principle For Possibility Distributions Viewed As Families Of Probabilities[END_REF].

It is worth noting that the application of the approach always produces a joint P-dimensional posterior possibility distribution ) | ( y 1 1 1

(whatever the state of dependence between the priors), characterized by P-dimensional 3-cuts y 1| α A , with 0 < 3 < 1: as a consequence, there is an interactive dependence between the values that parameters {4 m : m = 1, 2, …, P} can take when ranging within a given 3-cut 
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then conservatism would be still guaranteed [START_REF] Stein | Bayesian Approach for Inconsistent Information[END_REF].

CASE STUDY: FLOOD PROTECTION RISK-BASED DESIGN

The maximal water level of the river (i.e., the output variable of the model, c Z ) is given as a function of several (and some uncertain) parameters (i.e., the inputs to the model) (Limbourg & de Rocquigny 2010):

( ) ( ) 
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Y 1 = Q , Y 2 = m Z , Y 3 = v Z , Y 4 = s K are uncer- tain variables.
The n = 4 input variables , i = 1, 2, 3, 4, are affected by aleatory and epistemic uncertainties. The aleatory part of the uncertainty is described by probability distributions of defined shape. The parameters of the probability distributions describing the aleatory uncertainty are themselves affected by epistemic uncertainty and represented in terms of possibility distributions.

The aleatory uncertainty in the yearly maximal water flow Y 1 = Q is well described by a Gumbel probability distribution The Bayesian update of these uncertainty representations (based on prior subjective knowledge) is realized with the aid of a vector y 1 = q = [q 1 , q 2 , …, q k , …, q 149 ] of D 1 = 149 (independent and identically distributed -iid) values of the annual maximal flow of the river. The point estimates The Strickler friction coefficient Y 4 = s K is the most critical source of uncertainty because it is usually a simplification of a complex hydraulic model. The absolute physical limits of s K are 5 and 60, respectively [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]. The friction coefficient s K is affected by random events modifying the river status (e.g., erosion, sedimentation, …): the corresponding variability is typically described by a normal distribution, i.e., 
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RESULTS

In order to simplify the notation, in what follows let 4 be one of the uncertain parameters of the PDFs of 

Y 1 = Q, Y 2 = Z m , Y 3 = Z v and Y 4 = K s , i.e., 4 = γ , δ , Zm µ , Zm σ , Zv µ , Zv σ , s K µ or Ks σ .
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of Y 2 = Z m andY 3 = Z v , respectively, are not shown due to space limitations. In particular, the prior possibility distributions ) (θ

π θ (= ) (γ π γ , ) (δ π δ , ) ( s s K K µ π µ and ) ( Ks Ks σ π σ
) are shown as solid lines, whereas the marginal posterior possibility distributions ) | ( y From a mere visual and qualitative inspection of Figure 2 it can be seen that the approach is suitable for revising the prior possibility distributions (based on a priori purely subjective knowledge) by means of empirical data. In particular, it is evident that: (i) the most likely (i.e., preferred) values c 4 of the epistemically-uncertain parameters (i.e., those values in correspondence of which the possibility function equals 1) are moved towards the MLE estimates MLE θ ˆ in all the cases considered; (ii) the area S 4 underlying the corresponding possibility distributions is significantly reduced: noting that this area is related to the imprecision in the knowledge of the possibilistic parameter (i.e., the larger the area, the higher the imprecision), it can be concluded that the approach succeeds in reducing the epistemic uncertainty. With respect to that, Table 1 It is evident that the method succeeds in moving the most likely values c 4 towards the corresponding MLE estimates MLE θ ˆ: actually, the values of dist R θ (3) range within 66.67% and 85.71%. From the analysis of quantitative indicator R 4 (4) it can be seen that the method produces a consistent reduction in the area underlying the possibility distributions of the uncertain parameters: in particular, R 4 (4) ranges between 8.76% and 30.49%. In addition, as expected, the strength of the approach in reducing epistemic uncertainty decreases with the size of the data set used to perform the Bayesian update. For example, the area S 2 underlying the possibility distribution of 2 (Figure 2 In order to show the effect that the reduction of the epistemic uncertainty in the distribution parameters has on the maximal water level of the river Z c (i.e., the model output), Figure 3 shows the upper and lower CDFs 

θ π θ (= ) | ( q γ π γ , ) | ( q δ π δ , ) | ( s k s s K K µ π
( ] ( ) c Z z Bel c , ∞ -
, respectively), of Z c obtained before (solid lines) and after the Bayesian update (dashed lines). Obviously, the gap between the plausibility and belief functions is larger before the Bayesian update: in particular, the 'prior' CDFs (solid lines) completely envelop the 'posterior' ones (dashed lines). This larger gap is explained by the larger area contained under the possibility distributions of the corresponding epistemically-uncertain parameters.

Then, in order to provide a fair and quantitative assessment of the approach adopted, proper indicators are computed. The final goal of the case study presented in Section 4 is to determine (i) the dike level necessary to guarantee a given flood return period or (ii) the flood risk for a given dike level. With respect to issue (i) above, the quantity of interest that is most relevant to the decision maker is the A fundamental remark has to be done with respect to the results obtained. If on one side a consistent reduction in the epistemic uncertainty is in general desirable in decision making processes related to risk assessment problems (since it significantly increases the analyst's confidence in the decisions), on the other side this reduction must be coherent with the amount of information available. In this view, an objection may arise in the present case: is the remarkable strength of the approach in reducing epistemic uncertainty (even with very few pieces of data) fully justified by such a small amount of data? In other words, is this considerable reduction of epistemic uncertainty coherent with the strength of the experimental evidence or is it too optimistic? With respect to that, it has to be admitted that the uncertainty reduction power of the purely possibilistic approach is strongly dependent on the shape of an artificially constructed possibilistic likelihood that could in principle bias the analysis. However: (i) in the present paper, this possibilistic function is very closely related to the classical, purely probabilistic one (which is theoretically wellgrounded) by a simple and direct operation of normalization that preserves the "original structure" of the experimental evidence; (ii) in general, a probability-to-possibility transformation (properly performed according to the rules of possibility theory) always introduces additional artificial epistemic uncertainty into the analysis, i.e., it does not artificially reduce it (because it replaces a single probabilistic distribution by a family of distributions) [START_REF] Flage | Probability and possibility-based representations of uncertainty in fault tree analysis[END_REF]. On the basis of considerations (i) and (ii) above, it seems unlikely that the purely possibilistic approach may produce results that are dangerously over-optimistic.

CONCLUSIONS

In this paper, we have considered a purely possibilistic counterpart of the classical probabilistic Bayes' theorem for the update of the possibilistic parameters of aleatory probability distributions, with exemplification on a case study concerning the riskbased design of a flood protection dike.

The findings of the work show that the strength of the approach in reducing epistemic uncertainty by means of data is considerable: this is important in decision making processes since reducing epistemic uncertainty significantly increases the analyst confidence in the decisions.

However, it has to be remarked that the construction of a possibilistic likelihood required by the method still represents an issue to be tackled from both the theoretical and practical viewpoint in order to avoid introducing biases in the analysis and to suggest the application of the approach for real risk assessment problems: with respect to that, future research will be devoted to the investigation of additional methods, either resorting to probabilitypossibility transformations or building possibilistic functions directly from rough experimental data.
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  2) where: Y 1 = Q is the yearly maximal water discharge [m 3 /s]; Y 2 = m Z and Y 3 = v Z are the riverbed levels [m asl] at the upstream and downstream parts of the river under investigation, respectively; Y 4 = s K is the Strickler friction coefficient; Y 5 = B and Y 6 = L are the width and length of the river part [m], respectively. Quantities Y 5 = B (= 300m) and Y 6 = L (= 5000m) are constant parameters, whereas quantities

  s (which is a typical drought flow level) and max Q = 10000 m 3 /s (which is three times larger than the maximal flood ever occurred). The prior possibility distributions ) the epistemically-uncertain parameters γ and δ are subjectively chosen as triangular functions TR(a 2 , c 2 , b 2 ) and TR(a 5 , c 5 , b 5 ), respectively, with cores (i.e., preferred or most likely values) c 2 = 955m 3 /s and c 5 = 600m 3 /s, and supports [a 2 , b 2 ] = [869, 1157] m 3 /s and [a 5 , b 5 ] = [455, 660] m 3 /s, respectively.
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  γ and δ obtained by the classical, purely probabilistic Maximum Likelihood Estimation (MLE) method are 1013.21 m 3 /s and 558.21 m 3 /s, respectively.The aleatory part of the uncertainty in the upstream riverbed level Y 2 = Z m is represented by a normal distribution, i.e., de Rocquigny 2010). This distribution is truncated at the minimum and maximum physical bounds on Z m , i.e.TR(0.33, 0.51, 0.58), respectively. The Bayesian update of these uncertainty representations is carried out using a vector y2 = z m = [z m,1 , z m,2 , …, z m,k , …, z m,29 ] of D 2 = 29 (iid) values of the upstream riverbed level. The MLE estimates of the parameters are MLE Zm µ ˆ = 50.19 m and MLE Zm σˆ = 0.38 m, respectively.As for Y 2 = Z m , the aleatory part of the uncertainty in the downstream riverbed level Y 3 = Z v is represented by a normal distribution, i.e., 23, 0.45, 0.54). These representations are updated by means of a vector y 3
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  [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]. However, the parameters of this normal distribution are difficult to estimate because data can only be obtained through "indirect calibration characterized by significant uncertainty"[START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]: the uncertainty in these parameters is described by triangular possibility distributions. The possibilistic functions ) ( = TR(1.16, 6.91, 9.37), respectively. The Bayesian revision of these a priori representations is performed by means of a vector y 4 = k s = [k s,1 , k s,2 , …, k s,k , …, k s,5 ] of D 4 = 5 (iid) values of the Strickler friction coefficient. The MLE estimates of the pa-

  of the uncertain input variables Y 1 = Q and Y 4 = K s , respectively; the parameters of the PDFs

  D 4 = 5 pieces of data are shown in dashed lines, respectively; the point estimates MLE

Figure 2 .

 2 Figure 2. Possibility distributions of the epistemically-uncertain parameters of the aleatory PDFs

  , top left) is reduced by 30.49% with the aid of a large data set of size D 1 = 149; on the contrary, the area Ks S σ underlying the possibility distribution of 6 Ks (Figure 2, bottom right) is reduced only by 8.76% by means of D 4 = 5 pieces of data.
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 1 reports the most likely values c 4 and the areas S 4 underlying the (marginal) possibility distributions of the uncertain pa-Most likely values c 4 of the parameters 4 = γ , δ , Zm µ , Zm σ , Zv µ , Zv σ , Ks σ of the aleatory PDFs of Y 1 = Q, Y 2 = Z m , Y 3 = Z v and Y 4 = K s and areas S 4 underlying the corresponding (marginal) possibility distributions before and after the Bayesian update. The point estimates MLE
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 2 7•100%-th quantile of Z c (i.e., β Intervals for the 7•100-th percentiles β = 0.05, 0.50 and 0.95, of the maximal water level of the river Z c and for the exceedance probability P[Z c > z c * = 55.5m], before and after the Bayesian update. The percentage reduction in the width of the intervals is also shown in parentheses OUTPUT VARIABLE Z c

	c Z ): this corresponds

c Z , 7