
1 INTRODUCTION 
We consider a framework of uncertainty representa-
tion with two hierarchical levels (Limbourg & de 
Rocquigny 2010), in which risk analysis models of 
aleatory (i.e., random) events (e.g., failures) contain 
parameters (e.g., probabilities, failure rates, …) that 
are epistemically-uncertain, i.e., known with poor 
precision due to lack of knowledge and information. 
Traditionally, both types of uncertainty are repre-
sented by probability distributions (USNRC 2009) 
and Bayes’ rule is useful for updating the (probabil-
istic) epistemic uncertainty representation as new in-
formation (e.g., data) becomes available (Kelly & 
Smith 2011). 

However, in some situations, insufficient 
knowledge, information and data impairs a probabil-
istic representation of epistemic uncertainty. A num-
ber of alternative representation frameworks have 
been proposed for such cases, e.g., e.g., fuzzy set 
theory, evidence theory, possibility theory and inter-
val analysis (Aven & Zio 2011). 

In this paper, we adopt possibility distributions to 
describe epistemic uncertainty (Baudrit & Dubois 
2006, Baudrit et al. 2008) and address the issue of 
updating, in a Bayesian framework, the possibilistic 
representation of the epistemically-uncertain pa-
rameters of (aleatory) probability distributions. We 
take an approach of literature based on a purely 
possibilistic counterpart of the classical, well-

grounded probabilistic Bayes’ theorem: it requires 
the construction of a possibilistic likelihood function 
which is used to revise the prior possibility distribu-
tions of the uncertain parameters (determined on the 
basis of a priori subjective knowledge and/or data) 
(Lapointe & Bobee 2000). To the best of the authors’ 
knowledge, this is the first time that the above men-
tioned technique is applied to risk assessment prob-
lems where hybrid uncertainty is separated into two 
hierarchical levels. To keep the analysis simple and 
retain a clear view of each step, the investigations 
are carried out with respect to a simple literature 
case study involving the risk-based design of a flood 
protection dike (Limbourg & de Rocquigny 2010). 

Other methods have been proposed in the litera-
ture to revise, in a Bayesian framework, non-
probabilistic representations of epistemic uncertain-
ty. In (Stein et al. 2013) a modification of the Bayes’ 
theorem is presented to account for the presence of 
fuzzy data and fuzzy prior PDFs. Finally, in (Smets 
1993) a Generalized Bayes Theorem (GBT) is pro-
posed within the framework of evidence theory: this 
approach is applied by (Le-Duy et al. 2011) to up-
date the estimates of the failure rates of mechanical 
components in the context of nuclear Probabilistic 
Risk Assessment (PRA). 

The remainder of the paper is organized as fol-
lows. In Section 2, the representation of aleatory 
(probabilistic) and epistemic (possibilistic) uncer-
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tainties in a “two-level” framework is provided; in 
Section 3, the method employed in this paper for the 
Bayesian update of the possibilistic parameters of 
aleatory probability distributions is described in de-
tails; in Section 4, the case study concerning the 
risk-based design of a flood protection dike is pre-
sented; in Section 5, the method of Section 3 is ap-
plied to the case study of Section 4; finally, some 
conclusions are drawn in the last Section 6. 

2 REPRESENTATION OF ALEATORY AND 
EPISTEMIC UNCERTAINTIES IN A TWO-
LEVEL FRAMEWORK 

In all generality, we consider an uncertain variable 
Y , whose uncertainty is described by the Probability 
Distribution Function (PDF) )|( �ypY , where 

}...,, ..., , ,{ 21 Pm θθθθ=�  is the vector of the corre-

sponding internal parameters. In a two-level frame-
work, the parameters �  are themselves affected by 
epistemic uncertainty (Limbourg & de Rocquigny 
2010). In the present work, we describe these uncer-
tainties by the (generally joint) possibility distribu-
tion )(���  (Baudrit et al. 2008). 

For clarification by way of example, we may con-
sider the generic uncertain variable Y  described by a 
Gumbel PDF, i.e., Y ~ )|( �ypY  = ( )�Gum  = 

( )21  ,θθGum  = ( )δγ  ,Gum  = ),|( δγypY . Parameter 

2θδ =  is a fixed point-wise value ( 2θδ =  = 100), 

whereas parameter 1θγ =  is epistemically-uncertain. 
By hypothesis, the only information available on 

1θγ =  is that it is defined on interval [a�, b�] = [900, 
1300] and its most likely value is c� = 1100. This 
limited state of knowledge about 1θγ =  can be de-

scribed by a triangular possibility distribution )(γπγ  
with core c� = 1100 and support [a�, b�] = [900, 
1300] (Figure 1, top) (Baudrit & Dubois 2006). 

Given the possibility distribution of 1θγ = , we 

can define its �-cut sets γ
αA  = { γ : )(γπγ  � α }, 

with 0 ≤ α  � 1. For example, γ
5.0A = [1000, 1200] is 

the set of γ  values for which the possibility function 
is greater than or equal to 0.5 (dashed segment in 
Figure 1, top). Notice that the �-cut set γ

αA  of pa-

rameter � can be interpreted also as the (1 – �)�100% 
Confidence Interval (CI) for �, i.e., the interval such 
that αγ γ

α −≥∈ 1][ AP . For example, γ
0A  = [900, 

1300] is the (1 – 0)�100% = 100% CI for �, i.e., the 
interval that contains the “true” value of � with cer-
tainty (solid segment in Figure 1, top); γ 5.0A  = [1000, 

1200] (⊂  γ
0A ) is the (1 – 0.5)�100% = 50% CI 

(dashed segment in Figure 1, top) and so on. In this 
view, the possibility distribution )(γπγ  can be inter-
preted as a set of nested CIs for parameter � (Baudrit 
& Dubois 2006). 

For each possibility (resp., confidence) level � 
(resp., 1 – �) in [0, 1], a bundle of Cumulative Dis-
tribution Functions (CDFs) for Y, namely 

( ){ }
α

δγ,|yF Y , can be generated by letting the 

epistemically-uncertain parameter γ  range within 

the corresponding �-cut set γ
αA , i.e., ( ){ }

α
δγ,|yF Y  = 

( ){ }100,:,| =∈ σγδγ γ
αAyFY . This family of CDFs 

(of level �) is bounded above and below by the up-

per and lower CDFs, ( )yF Y
α  and ( )yF Y

α , defined as 

( )yF Y
α  = ( ){ }100,|sup =

∈
δγ

γ
αγ

yF Y

A

 and ( )yF Y
α  = 

( ){ }100,|inf =
∈

δγ
γ
αγ

yF Y

A
, respectively. Since )(γπγ  

can be interpreted as a set of nested CIs for parame-
ter � (see above), it can be argued that the �-cuts of 

)(γπγ  induce also a set of nested pairs of CDFs 

( ) ( )( ){ }10:, ≤≤ ααα yFyF YY  which bound the “true” 

CDF ( )yFY  of Y with confidence larger than or 

equal to (1 – �), i.e., 

( ) ( ) ( ) ααα −≥≤≤ 1][ yFyFyFP YYY , with 0 ≤ α  � 1 

(Baudrit et al. 2008). In passing, notice that the up-

per and lower CDFs (of level �), ( )yF Y
α  and ( )yF Y

α , 

can be referred to as the plausibility and belief func-
tions (of level �) of the set Z = (��, y], i.e., 

( ) ( )ZPlyF YY
αα =  and ( ) ( )ZBelyF YY

αα = , respectively. 

For illustration purposes, Figure 1, bottom, shows 
the bounding upper and lower CDFs of Y, ( )ZPlY

α  

and ( )ZBelYα , built in correspondence of the �-cuts 

of level � = 0 (solid lines), 0.5 (dashed lines) and 1 
(dot-dashed line) of the possibility distribution 

)(γπγ  of parameter � (Figure 1, top). 
Finally, the set of nested pairs of CDFs 

( ) ( )( ){ }10:, ≤≤ ααα ZPlZBel YY , Z = (��, y], can be 

synthesized into a single pair of plausibility and be-

lief functions as ( ) ( )�=
1

0

αα dZPlZPl YY  and 

( ) ( )�=
1

0

αα dZBelZBel YY , respectively (dotted lines in 

Figure 1, bottom). The plausibility and belief func-
tions ( )ZPlY  and ( )ZBelY , Z = (��, y], are shown to 
represent the “best bounds” for the “true” CDF 



( )yFY  of the uncertain variable Y (Baudrit et al. 

2008). 
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Figure 1. Top: triangular possibility distribution )(γπγ  of the 

uncertain parameter � of the Gumbel PDF of Y ~ 
( )100,| =δγypY ; in evidence the �-cuts of level � = 0 (solid 

segment), 0.5 (dashed segment) and 1 (dot). Bottom: bounding 
upper and lower CDFs of Y, ( )ZPlY

α  and ( )ZBelYα , Z = (��, y], 

built in correspondence of the �-cuts of level � = 0 (solid lines), 
0.5 (dashed lines) and 1 (dot-dashed line) of )(γπγ ; the plau-

sibility and belief functions ( )ZPl Y  and ( )ZBelY , Z = (��, y], 

are also shown (dotted lines) 

3 BAYESIAN UPDATE OF THE POSSIBILISTIC 
PARAMETERS OF ALEATORY 
PROBABILITY DISTRIBUTIONS 

Let )(���  be the (joint) prior possibility distribution 

for the parameters ]...,, ..., , ,[ 21 Pm θθθθ=�  of the 

PDF )|( �ypY  of variable Y (built on the basis of a 

priori subjective engineering knowledge and/or da-
ta). For example, in the risk assessment context of 
this paper Y may represent the yearly maximal water 
flow of a river described by a Gumbel distribution: 
thus, Y ~ )|( �ypY  = Gum(�) = Gum(�1, �2) = 

Gum(�, �) = ),|( δγypY  and )(���  = ),(, δγδγ� . 

Moreover, let ]...,,...,,,[ 21 Dk yyyy=y  be a vector of 

D observed pieces of data representing the new in-
formation/evidence available for the analysis: refer-
ring to the example above, y  may represent a vector 

of D values collected over a long period time (e.g., 
many years) of the yearly maximal water flow of the 
river under analysis. The objective of the Bayesian 
analysis is to update the a priori representation 

)(���  = ),(, δγδγ�  of �  = [�, �] on the basis of the 
new evidence acquired, i.e., to calculate the posteri-
or possibility distribution )|( y���  (i.e., 

)|,(, yδγδγ� ) of �  after y  is obtained. 
The method considered in this paper is based on a 

purely possibilistic counterpart of the classical, 
probabilistic Bayes’ theorem (Lapointe & Bobée 
2000): 

{ })()|(sup

)()|(
)|(

�y�

�y�
y�

��

�

��
�

��

��
�

L

L

⋅
⋅= , (1) 

where )|( y��

L�  is the possibilistic likelihood of 
the parameter vector �  given the newly observed da-
ta y, and quantities )|( y���  and )(���  are defined 

above. Notice that { })()|(sup �y�
��

�

��L ⋅  is a normal-

ization factor such that { })|(sup y�
�

�

�  = 1, as re-

quired by possibility theory (Baudrit & Dubois 
2006). 

It is worth mentioning that forms of the 
possibilistic Bayes’ theorem alternative to (1) can be 
constructed as a result of other definitions of the op-
eration of ‘conditioning’ with possibility distribu-
tions: the reader is referred to (Lapointe & Bobée 
2000) for technical details. In this paper, expression 
(1) has been chosen because “it satisfies desirable 
properties of the revision process and lead to contin-
uous posterior distributions” (Lapointe & Bobée 
2000). 

The possibilistic likelihood )|( y��

L�  is here ob-
tained by transforming the classical probabilistic 
likelihood function )|( y��L  through normalization, 

i.e., )|( y��

L�  = { })|(sup/)|( y�y�
�

�

� LL . This choice 

has been made for the following main reasons: (i) 
the transformation is simple and can be straightfor-
wardly applied to any distribution; (ii) the resulting 
possibilistic likelihood is very closely related to the 
classical, purely probabilistic one (which is theoreti-
cally well-grounded) by means of the simple and di-
rect operation of normalization that preserves the 
“original structure” of the experimental evidence; 
(iii) it can be easily verified that the resulting 
possibilistic likelihood keeps the sequential nature 
of the updating procedure typical of the standard 
Bayes’ theorem. On the other hand, it has to be also 
admitted that the resulting possibility distributions 



do not in general adhere to the probability-possibility 
consistency principle (Baudrit & Dubois 2006). 

It is worth noting that other techniques of trans-
formation of probability density functions into pos-
sibility distributions exist, but the corresponding de-
tails are not given here for brevity sake: the 
interested reader is referred to (Flage et al. 2013) for 
some proposed techniques, e.g., the principle of 
maximum specificity and the principle of minimal 
commitment. Also, it has to be noticed that other 
techniques are available to construct possibility dis-
tributions (and, thus, possibilistic likelihood func-
tions) directly from rough experimental data (i.e., 
without resorting to probability-possibility transfor-
mations): see, e.g., (Serrurier & Prade 2011). 

It is worth noting that the application of the ap-
proach always produces a joint P-dimensional poste-
rior possibility distribution )|( y���  (whatever the 
state of dependence between the priors), character-
ized by P-dimensional �-cuts y�|

αA , with 0 < � < 1: 

as a consequence, there is an interactive dependence 
between the values that parameters {�m: m = 1, 2, …, 
P} can take when ranging within a given �-cut y�|

αA . 

From )|( y���  it is straightforward to obtain the 
marginal posterior possibility distribution 

)|( ym
�
�� m  for each parameter �m as )|( ym

�
�� m  = 

)}|({max
,

y�
��

mj� j ≠ℜ∈
, ℜ∈∀ mθ , m = 1, 2, …, P: 

)|( ym
�
�� m  is the projection of )|( y���  onto the m-

th axis. The (one-dimensional) �-cut y|m�Aα  = 

]|,|[ ,, yy mm αα θθ  of the marginal possibility distribu-

tion )|( ym
�
�� m  is then related to the (P-

dimensional) �-cut y�|
αA  of the joint possibility dis-

tribution )|( y���  by the following straightforward 

relation, i.e., y|m�Aα  = ]|,|[ ,, yy mm αα θθ  = 

}]{max},{min[
|| m

A
m

A yy
θθ

αα
��

�� ∈∈
. In this view, notice that the 

use of the P-dimensional �-cut y�|
,CartAα  constructed by 

the Cartesian product of the (one-dimensional) �-
cuts y|m�Aα  of the marginal distributions, m = 1, 2, …, 

P (i.e., y�|
,CartAα  = y|1�Aα  x y|2�Aα  x … x y|m�Aα  x … x 

y|P�Aα ) would (incorrectly) imply independence be-

tween the posterior estimates of the parameters {�m: 
m = 1, 2, …, P}; however, since y�|

,CartAα  completely 

contains y�|
αA  (i.e., by definition y�|

αA  ⊂  y�|
,CartAα ), 

then conservatism would be still guaranteed (Stein et 
al. 2013). 

4 CASE STUDY: FLOOD PROTECTION RISK-
BASED DESIGN 
The maximal water level of the river (i.e., the 

output variable of the model, cZ ) is given as a func-
tion of several (and some uncertain) parameters (i.e., 
the inputs to the model) (Limbourg & de Rocquigny 
2010): 

( ) ( )654321 ,,,,,,,,,, YYYYYYfLBKZZQfZ svmc ==  (2) 

where: Y1 = Q  is the yearly maximal water dis-
charge [m3/s]; Y2 = mZ and Y3 = vZ are the riverbed 
levels [m asl] at the upstream and downstream parts 
of the river under investigation, respectively; Y4 = 

sK  is the Strickler friction coefficient; Y5 = B  and 
Y6 = L  are the width and length of the river part [m], 
respectively. Quantities Y5 = B (= 300m) and Y6 = L 
(= 5000m) are constant parameters, whereas quanti-
ties Y1 = Q , Y2 = mZ , Y3 = vZ , Y4 = sK  are uncer-
tain variables. 

The n = 4 input variables Yi, i = 1, 2, 3, 4, are af-
fected by aleatory and epistemic uncertainties. The 
aleatory part of the uncertainty is described by prob-
ability distributions of defined shape. The parame-
ters of the probability distributions describing the 
aleatory uncertainty are themselves affected by epis-
temic uncertainty and represented in terms of possi-
bility distributions. 

The aleatory uncertainty in the yearly maximal 
water flow Y1 = Q is well described by a Gumbel 
probability distribution ( )δγ ,qpQ  = ( )δγ ,Gum  = 

��

�
��

� −
�
�

�
�
�

�
�
	

A
B
C

D −−
δ

γ
δ

γ
δ

qq
expexpexp

1
 (Limbourg & de 

Rocquigny 2010). The extreme physical bounds on 
variable Q  are 10min =Q m3/s (which is a typical 

drought flow level) and maxQ  = 10000 m3/s (which is 

three times larger than the maximal flood ever oc-
curred). The prior possibility distributions )(γπγ  

and )(δπδ  for the epistemically-uncertain parame-
ters γ  and δ  are subjectively chosen as triangular 
functions TR(a�, c�, b�) and TR(a�, c�, b�), respective-
ly, with cores (i.e., preferred or most likely values) c� 
= 955m3/s and c� = 600m3/s, and supports [a�, b�] = 
[869, 1157] m3/s and [a�, b�] = [455, 660] m3/s, re-
spectively. The Bayesian update of these uncertainty 
representations (based on prior subjective 
knowledge) is realized with the aid of a vector y1 = q 
= [q1, q2, …, qk, …, q149] of D1 = 149 (independent 
and identically distributed – iid) values of the annual 

maximal flow of the river. The point estimates MLEγ̂  

and MLEδ̂  for γ  and δ  obtained by the classical, 
purely probabilistic Maximum Likelihood Estima-
tion (MLE) method are 1013.21 m3/s and 558.21 
m3/s, respectively. 



The aleatory part of the uncertainty in the up-
stream riverbed level Y2 = Zm is represented by a 
normal distribution, i.e., mZ  ~ )( ZmZmm

Z zp m σµ ,|  = 

)( ZmZmN σµ ,  (Limbourg & de Rocquigny 2010). 

This distribution is truncated at the minimum and 
maximum physical bounds on Zm, i.e., 

5.53min, =mZ m (given by plausible lower geomor-

phologic limits to erosion) and 57max, =mZ m (given 

by plausible upper geomorphologic limits to sedi-
mentation), respectively. The prior possibility distri-
butions for Zmµ  and Zmσ  are the triangular functions 

)( Zm
Zm µπµ  = TR(

Zm
aµ , 

Zm
cµ , 

Zm
bµ ) = TR(54.78, 

54.93, 55.28) and )( Zm
Zm σπσ  = TR(

Zm
aσ , 

Zm
cσ , 

Zm
bσ ) 

= TR(0.33, 0.51, 0.58), respectively. The Bayesian 
update of these uncertainty representations is carried 
out using a vector y2 = zm = [zm,1, zm,2, …, zm,k, …, 
zm,29] of D2 = 29 (iid) values of the upstream riv-
erbed level. The MLE estimates of the parameters 

are MLE
Zmµ̂  = 50.19 m and MLE

Zmσ̂  = 0.38 m, respective-

ly. 
As for Y2 = Zm, the aleatory part of the uncertainty 

in the downstream riverbed level Y3 = Zv is repre-
sented by a normal distribution, i.e., vZ  ~ 

)( ZvZvv
Z zp v σµ ,|  = )( ZvZvN σµ , , truncated at 

48min, =vZ m and 51max, =vZ m. As before, the prior 

possibility distributions are triangular functions, i.e., 
)( Zv

Zv µπµ  = TR(
Zv

aµ , 
Zv

cµ , 
Zv

bµ ) = TR(49.98, 50.11, 

50.40) and )( Zv
Zv σπσ  = TR(

Zv
aσ , 

Zv
cσ , 

Zv
bσ ) = 

TR(0.23, 0.45, 0.54). These representations are up-
dated by means of a vector y3 = zv = [zv,1, zv,2, …, zv,k, 
…, zv,29] of D3 = 29 (iid) values of the downstream 
riverbed level. The MLE estimates of the parameters 

are MLE
Zvµ̂  = 55.03 m and MLE

Zvσ̂  = 0.45 m, respective-

ly. 
The Strickler friction coefficient Y4 = sK  is the 

most critical source of uncertainty because it is usu-
ally a simplification of a complex hydraulic model. 
The absolute physical limits of sK  are 5 and 60, re-

spectively (Limbourg & de Rocquigny 2010). The 
friction coefficient sK  is affected by random events 

modifying the river status (e.g., erosion, sedimenta-
tion, …): the corresponding variability is typically 
described by a normal distribution, i.e., sK  ~ 

)( KsKss
K kp s σµ ,|  = )( KsKsN σµ ,  (Limbourg & de 

Rocquigny 2010). However, the parameters of this 
normal distribution are difficult to estimate because 

data can only be obtained through “indirect calibra-
tion characterized by significant uncertainty” 
(Limbourg & de Rocquigny 2010): the uncertainty in 
these parameters is described by triangular possibil-
ity distributions. The possibilistic functions 

)(
s

sK

Kµπµ
 and )( Ks

Ks σπσ  used to represent the a 

priori knowledge on KsKs σµ and  are TR(
Ks

aµ , 
Ks

cµ , 

Ks
bµ ) = TR(21.37, 25.23, 34.23) and TR(

Ks
aσ , 

Ks
cσ , 

Ks
bσ ) = TR(1.16, 6.91, 9.37), respectively. The 

Bayesian revision of these a priori representations is 
performed by means of a vector y4 = ks = [ks,1, ks,2, 
…, ks,k, …, ks,5] of D4 = 5 (iid) values of the Strickler 
friction coefficient. The MLE estimates of the pa-

rameters are MLE
Ksµ̂  = 27.8 and MLE

Ksσ̂  = 5.26, respec-

tively. 

5 RESULTS 
In order to simplify the notation, in what follows let 
� be one of the uncertain parameters of the PDFs of 
Y1 = Q, Y2 = Zm, Y3 = Zv and Y4 = Ks, i.e., � = γ , δ , 

Zmµ , Zmσ , Zvµ , Zvσ , 
sKµ  or Ksσ . Figure 2 illustrates 

the possibility distributions of the epistemically-
uncertain parameters of the aleatory PDFs ( )δγ ,qpQ  

(top) and )( KsKss
K kp s σµ ,|  (bottom) of the uncertain 

input variables Y1 = Q and Y4 = Ks, respectively; the 
parameters of the PDFs )( ZmZmm

Z zp m σµ ,|  and 

)( ZvZvv
Z zp v σµ ,|  of Y2 = Zm andY3 = Zv, respectively, 

are not shown due to space limitations. In particular, 
the prior possibility distributions )(θπθ  (= )(γπγ , 

)(δπδ , )(
s

sK

Kµπµ
 and )( Ks

Ks σπσ ) are shown as 

solid lines, whereas the marginal posterior possibil-
ity distributions )|( yθπθ  (= )|( qγπγ , )|( qδπδ , 

)|( sk
s

sK

Kµπµ
 and )|( skKs

Ks σπσ ) obtained using D1 

= 149 and D4 = 5 pieces of data are shown in dashed 

lines, respectively; the point estimates MLEθ̂  (= 
MLEγ̂ , MLEδ̂ , MLE

Ks
µ̂  and MLE

Ksσ̂ ) produced by the clas-

sical MLE method are also shown for comparison 
(dots) (see Section 4). 
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Figure 2. Possibility distributions of the epistemically-uncertain parameters of the aleatory PDFs ( )δγ,qpQ  (top) and 

)( KsKss

K kp s σµ ,|  (bottom) of the uncertain input variables Y1 = Q and Y4 = Ks, respectively. Solid lines: priors; dashed lines: mar-

ginal posteriors. The point estimates of the parameters obtained by the classical MLE method are also shown for comparison (dots) 
 

 
From a mere visual and qualitative inspection of 

Figure 2 it can be seen that the approach is suitable 
for revising the prior possibility distributions (based 
on a priori purely subjective knowledge) by means 
of empirical data. In particular, it is evident that: (i) 
the most likely (i.e., preferred) values c� of the 
epistemically-uncertain parameters (i.e., those values 
in correspondence of which the possibility function 
equals 1) are moved towards the MLE estimates 

MLEθ̂  in all the cases considered; (ii) the area S� un-
derlying the corresponding possibility distributions 
is significantly reduced: noting that this area is relat-
ed to the imprecision in the knowledge of the 
possibilistic parameter (i.e., the larger the area, the 
higher the imprecision), it can be concluded that the 
approach succeeds in reducing the epistemic uncer-
tainty. With respect to that, Table 1 reports the most 
likely values c� and the areas S� underlying the (mar-
ginal) possibility distributions of the uncertain pa-
rameter � (= γ , δ , Zmµ , Zmσ , Zvµ , Zvσ , 

sKµ  and 

Ksσ ) before and after the Bayesian update; the point 

estimates MLEθ̂  obtained by the classical MLE meth-
od are also reported for completeness. In addition, in 
order to provide a more quantitative assessment of 
the “updating power” of the method, two indicators 
are defined: 

(i) the percentage relative difference distRθ  of the 

absolute distances, Priordθ  and Posteriordθ , between the 

prior and posterior most likely values, Priorcθ  and 
Posteriorcθ , respectively, of parameter � and the corre-

sponding MLE estimate MLEθ̂ , i.e.: 

( ) 100⋅−= PriorPosteriorPriordist dddR θθθθ , (3) 

where Priordθ  = |ˆ| MLEPriorc θθ − / MLEθ̂ and Posteriordθ  = 

|ˆ| MLEPosteriorc θθ − / MLEθ̂ . Obviously, the higher is 
distRθ  (i.e., the lower is Posteriordθ ) the closer is the 

most likely value Posteriorcθ  to the MLE estimate 
MLEθ̂ , i.e., the higher is the strength of the approach 

in updating the prior possibilistic distribution; 
(ii) the percentage relative difference R� between 

the areas underlying the possibility distribution of 
parameter � before and after the Bayesian update, 
namely PriorSθ  and PosteriorSθ , respectively: 

100/)( ⋅−= PriorPosteriorPrior SSSR θθθθ . (4) 

Again, the higher is R�, the higher is the reduction 
in the area (i.e., in the epistemic uncertainty) and, 
thus, the higher is the “updating strength” of the ap-
proach. 

 



Table 1. Most likely values c� of the parameters � = γ , δ , Zmµ , Zmσ , Zvµ , Zvσ , 
sKµ  and Ksσ  of the aleatory PDFs of Y1 = Q, Y2 = 

Zm, Y3 = Zv and Y4 = Ks and areas S� underlying the corresponding (marginal) possibility distributions before and after the Bayesian 

update. The point estimates MLEθ̂  are also shown for comparison together with the values of distRθ  (3) and R� (4) (parentheses) 
 

 
Possibility distributions update 

c� (
dist
�

R ) S� (R�) 

Yj � MLE�̂  Prior Posterior Prior Posterior 

Q 
� 1013.21 955.55 1002.70 (81.77) 144.65 100.55 (30.49) 
� 558.48 599.15 566.35 (80.65) 103.35 76.94 (25.56) 

Zm 
�Zm 55.03 54.93 55.00 (70.00) 0.25 0.190 (24.00) 
�Zm 0.45 0.51 0.47 (66.67) 0.12 0.110 (8.33) 

Zv 
�Zv 50.19 50.11 50.17 (75.00) 0.21 0.165 (21.43) 
�Zv 0.38 0.45 0.39 (85.71) 0.16 0.121 (24.38) 

Ks 
�Ks 27.80 25.24 26.95 (66.80) 6.45 5.40 (16.28) 
�Ks 5.26 6.89 5.54 (82.82) 4.11 3.75 (8.76) 

 
It is evident that the method succeeds in moving 

the most likely values c� towards the corresponding 

MLE estimates MLEθ̂ : actually, the values of distRθ  

(3) range within 66.67% and 85.71%. From the 
analysis of quantitative indicator R� (4) it can be 
seen that the method produces a consistent reduction 
in the area underlying the possibility distributions of 
the uncertain parameters: in particular, R� (4) ranges 
between 8.76% and 30.49%. In addition, as ex-
pected, the strength of the approach in reducing epis-
temic uncertainty decreases with the size of the data 
set used to perform the Bayesian update. For exam-
ple, the area S� underlying the possibility distribution 
of � (Figure 2, top left) is reduced by 30.49% with 
the aid of a large data set of size D1 = 149; on the 
contrary, the area 

Ks
Sσ  underlying the possibility dis-

tribution of �Ks (Figure 2, bottom right) is reduced 
only by 8.76% by means of D4 = 5 pieces of data. 

In order to show the effect that the reduction of 
the epistemic uncertainty in the distribution parame-
ters has on the maximal water level of the river Zc 
(i.e., the model output), Figure 3 shows the upper 

and lower CDFs ( )c
Z zF c  and ( )c

Z zF c  (i.e., the 

plausibility and belief functions, ( ]( )c
Z zPl c ,∞−  and 

( ]( )c
Z zBel c ,∞− , respectively), of Zc obtained before 

(solid lines) and after the Bayesian update (dashed 
lines). Obviously, the gap between the plausibility 
and belief functions is larger before the Bayesian 
update: in particular, the ‘prior’ CDFs (solid lines) 
completely envelop the ‘posterior’ ones (dashed 
lines). This larger gap is explained by the larger area 
contained under the possibility distributions of the 
corresponding epistemically-uncertain parameters. 

Then, in order to provide a fair and quantitative 
assessment of the approach adopted, proper indica-
tors are computed. The final goal of the case study 
presented in Section 4 is to determine (i) the dike 

level necessary to guarantee a given flood return pe-
riod or (ii) the flood risk for a given dike level. With 
respect to issue (i) above, the quantity of interest that 
is most relevant to the decision maker is the 
�·100%-th quantile of Zc (i.e., β

cZ ): this corresponds 

to the yearly maximal water level with a �·100-year 
return period. With respect to issue (ii) above, the 
quantity of interest is the probability that the maxi-
mal water level of the river cZ  exceeds a given 

threshold *z , i.e., *][ cc zZP ≥ : in the present paper, 

*cz  = 55.5 m (Table 2). The intervals [[ ] ( )β1−
cZF , 

[ ] ( )β
1−

cZF ] for β
cZ , � = 0.05, 0.50 and 0.95, are 

[50.70, 51.67], [52.16, 53.46] and [54.13, 56.44], re-
spectively, before the Bayesian update; instead, they 
are [50.90, 51.56], [52.38, 53.23] and [54.21, 55.87], 
respectively, after the update. Also, the intervals 

[ ( )*1 c
Z zF c− , ( )*1 c

Z zF c− ] for P[Zc > zc*] are [0.0054, 

0.1092] and [0.0079, 0.0716], before and after the 
Bayesian update, respectively. Thus, the width of the 
intervals is reduced of 28.14�38.63%. 
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Figure 3. Plausibility and belief functions, ( ]( )c

Z zPl c ,∞−  and 

( ]( )c

Z zBel c ,∞− , of the maximal water level of the river Zc (i.e., 

the model output) before (solid lines) and after (dashed lines) 
the Bayesian update 



Table 2. Intervals for the �·100-th percentiles β
cZ , � = 0.05, 

0.50 and 0.95, of the maximal water level of the river Zc and for 
the exceedance probability P[Zc > zc* = 55.5m], before and af-
ter the Bayesian update. The percentage reduction in the width 
of the intervals is also shown in parentheses 

OUTPUT VARIABLE Zc 

Indicator Prior 
Posterior 

(% width reduction) 
Zc

0.05 [50.70, 51.67] [50.90, 51.56] (31.96) 
Zc

0.50 [52.16, 53.46] [52.38, 53.23] (34.62) 
Zc

0.95 [54.13, 56.44] [54.21, 55.87] (28.14) 
P[Zc > zc*] [0.8908, 0.9946] [0.9284, 0.9921] (38.63) 

 
A fundamental remark has to be done with re-

spect to the results obtained. If on one side a con-
sistent reduction in the epistemic uncertainty is in 
general desirable in decision making processes re-
lated to risk assessment problems (since it signifi-
cantly increases the analyst’s confidence in the deci-
sions), on the other side this reduction must be 
coherent with the amount of information available. 
In this view, an objection may arise in the present 
case: is the remarkable strength of the approach in 
reducing epistemic uncertainty (even with very few 
pieces of data) fully justified by such a small amount 
of data? In other words, is this considerable reduc-
tion of epistemic uncertainty coherent with the 
strength of the experimental evidence or is it too op-
timistic? With respect to that, it has to be admitted 
that the uncertainty reduction power of the purely 
possibilistic approach is strongly dependent on the 
shape of an artificially constructed possibilistic like-
lihood that could in principle bias the analysis. 
However: (i) in the present paper, this possibilistic 
function is very closely related to the classical, pure-
ly probabilistic one (which is theoretically well-
grounded) by a simple and direct operation of nor-
malization that preserves the “original structure” of 
the experimental evidence; (ii) in general, a proba-
bility-to-possibility transformation (properly per-
formed according to the rules of possibility theory) 
always introduces additional artificial epistemic un-
certainty into the analysis, i.e., it does not artificially 
reduce it (because it replaces a single probabilistic 
distribution by a family of distributions) (Flage et al. 
2013). On the basis of considerations (i) and (ii) 
above, it seems unlikely that the purely possibilistic 
approach may produce results that are dangerously 
over-optimistic. 

6 CONCLUSIONS 
In this paper, we have considered a purely 
possibilistic counterpart of the classical probabilistic 
Bayes’ theorem for the update of the possibilistic pa-
rameters of aleatory probability distributions, with 
exemplification on a case study concerning the risk-
based design of a flood protection dike. 

The findings of the work show that the strength of 
the approach in reducing epistemic uncertainty by 

means of data is considerable: this is important in 
decision making processes since reducing epistemic 
uncertainty significantly increases the analyst confi-
dence in the decisions. 

However, it has to be remarked that the construc-
tion of a possibilistic likelihood required by the 
method still represents an issue to be tackled from 
both the theoretical and practical viewpoint in order 
to avoid introducing biases in the analysis and to 
suggest the application of the approach for real risk 
assessment problems: with respect to that, future re-
search will be devoted to the investigation of addi-
tional methods, either resorting to probability-
possibility transformations or building possibilistic 
functions directly from rough experimental data. 
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