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ABSTRACT: Risk analysis models describing aleatory (i.e.dcem) events contain parameters (e.g., a-
bilities, failure rates, ...) that are epistemicalhycertain, i.e., known with poor precision. Wherpasbability
distributions are always used to describe aleatocgrtainty, alternative frameworks of represeatatnay be
considered for describing epistemic uncertaintpeteling on the information and data available.

In this paper, we use possibility distributionsd@scribe the epistemic uncertainty in the parameatéithe
(aleatory) probability distributions.

We address the issue of updating, in a Bayesiamefnark, the possibilistic representation of the
epistemically-uncertain parameters of (aleatorgbpbility distributions as new information (e.gatal) be-
comes available. A purely possibilistic countermdrthe classical, well-grounded probabilistic Bayleeorem
is adopted.

The feasibility of the method is shown on a litaratcase study involving the risk-based design fibed
protection dike.

1 INTRODUCTION grounded probabilistic Bayes’ theorem: it requires
We consider a framework of uncertainty representathe construction of a possibilistic likelihood fiion
tion with two hierarchical levels (Limbourg & de which is used to revise the prior possibility distr
Rocquigny 2010), in which risk analysis models oftions of the uncertain parameters (determined on the
aleatory (i.e., random) events (e.g., failures) aont basis of a priori subjective knowledge and/or data)
parameters (e.g., probabilities, failure rates,that (Lapointe & Bobee 2000). To the best of the authors
are epistemically-uncertain, i.e., known with poorknowledge, this is the first time that the abovenme
precision due to lack of knowledge and informationtioned technique is applied to risk assessment prob-
Traditionally, both types of uncertainty are repre-lems where hybrid uncertainty is separated into two
sented by probability distributions (USNRC 2009)hierarchical levels. To keep the analysis simple and
and Bayes'’ rule is useful for updating the (probabi retain a clear view of each step, the investigations
istic) epistemic uncertainty representation as imew are carried out with respect to a simple literature
formation (e.g., data) becomes available (Kelly &case study involving the risk-based design of adlo
Smith 2011). protection dike (Limbourg & de Rocquigny 2010).
However, in some situations, insufficient Other methods have been proposed in the litera-
knowledge, information and data impairs a probabilture to revise, in a Bayesian framework, non-
istic representation of epistemic uncertainty. A aum probabilistic representations of epistemic uncertai
ber of alternative representation frameworks havey. In (Stein et al. 2013) a modification of theyBa’
been proposed for such cases, e.g., e.g., fuzzy dbeorem is presented to account for the presence of
theory, evidence theory, possibility theory aneint fuzzy data and fuzzy prior PDFs. Finally, in (Smets
val analysis (Aven & Zio 2011). 1993) a Generalized Bayes Theorem (GBT) is pro-
In this paper, we adopt possibility distributions t posed within the framework of evidence theory: this
describe epistemic uncertainty (Baudrit & Duboisapproach is applied by (Le-Duy et al. 2011) to up-
2006, Baudrit et al. 2008) and address the issue ofate the estimates of the failure rates of mechnic
updating, in a Bayesian framework, the possibdisti components in the context of nuclear Probabilistic
representation of the epistemically-uncertain paRisk Assessment (PRA).
rameters of (aleatory) probability distributionseW  The remainder of the paper is organized as fol-
take an approach of literature based on a purelpws. In Section 2, the representation of aleatory
possibilistic counterpart of the classical, well-(probabilistic) and epistemic (possibilistic) uncer



tainties in a “two-level” framework is provided; in (dashed segment in Figure 1, top) and so on.  thi

Section 3, the method employed in this paper fer thyjew, the possibility distribution?” ) an be inter-

Bayesian update of the possibilistic parameters of .
aleatory probability distributions is describedde- ~ Preted as a set astedCls for parametey (Baudrit

tails; in Section 4, the case study concerning th& Dubois 2006). ,

risk-based design of a flood protection dike is-pre For each possibility (resp., confidence) level

sented; in Section 5, the method of Section 3 is afresp., 1 —o) in [0, 1], a bundle of Cumulative Dis-
plied to the case study of Section 4; finally, somdribution Functions (CDFs) for Y, namely

conclusions are drawn in the last Section 6. {FY(y|y, 5)} , can be generated by letting the
epistemically-uncertain parametgr range within
2 REPRESENTATION OF ALEATORY AND the corresponding-cut setA’, i.e., {FY(y|y, 5)}a =
EPISTEMIC UNCERTAINTIES IN A TWO- . .

In all generality, we consider an uncertain vaeabl (of level «) is bounded above and below by the up-
Y, whose uncertainty is described by the Probabilityer and lower CDFSE (y) and F!(y), defined as

. . . . Y
Distribution Function | (PDF) p'(y|€), where lfaY(y) _ sup{FY(yly,5:100)} and EZ(Y) -
0={6,6,,..6,...,6.} is the vector of the corre- VO,
sponding internal parameters. In a two-level frame-infy{FY(y|V,5=100)}, respectively. Sincerr” y( )
work, the parameterg are themselves affected by ,

can be interpreted as a set of nested Cls for garam

epistemic uncertainty (Limbourg & de Rocquigny .
2010). In the present work, we describe these uncetrleT:y (sge dabovel), It can bfe arguzd th.atdl;mjts of
tainties by the (generally joint) possibility diftu- (») induce also asetof nested pairsof CDFs

tion 7’ (9) (Baudrit et al. 2008). {FX(y)FY(y)):0c @ <1} which bound the “true”
For clarification by way of example, we may con- CDF FY(y) of Y with confidence larger than or
sider the generic uncertain variabdedescribed by a equal to (1 _ a), ie.
Gumbel PDF, i.e.Y ~ p'(y|0) = Gun(ﬂ) = P[E:f,(y)sFY(y)slfay(y)]zl—a, with 0< a <1
Gun(g,,6,) = Gun{y,d) = p'(y|y.0). Parameter (Baudrit et al. 2008). In passing, notice that tipe
J=6, is a fixed point-wise valued=6, = 100), per and lower CDFs (of leve), F,'(y) and F)(y),

whereas parameter=6, is epistemically-uncertain. can be referred to as tipausibility andbelief func-
By hypothesis, the only information available ontions (of level «) of the setZ = (-, V], ie,,

y =46, is that it is defined on intervaa] b,] = [900, FY (y): PIY (Z) and EZ (y): Bel! (Z)' respectively.
1300] and its most likely value i = 1100. This  For illustration purposes, Figure 1, bottom, shows
limited state of knowledge aboyt=6, can be de- the bounding upper and lower CDFs Yif PIY(Z)
scribed by a triangular possibility distributiont’ y () 544 BeIZ(Z)
with corec, = 1100 and supportaf, b,] = [900,
1300] (Figure 1, top) (Baudrit & Dubois 2006).
Given the possibility distribution ofy=6,, we 77 (y) of parametey (Figure 1, top).
can define itsa-cut sets Ay = {y: 7'(y) =z a}, Finally, the set of nested pairs of CDFs
with 0< o < 1. For example A%, = [1000, 1200] is {(Bel}(z), p|;(z));ogag]}, Z = (<0, y], can be
the set ofy values for which the possibility function synthesized into ainglepair of plausibility and be-
is greater than or equal to 0.5 (dashed segment in . y -
Figure 1, top). Notice that the-cut set AY of pa- lIf functions as Pl (Z):jpla (Z)da  and
rametery can be interpreted also as the (@)-200% 1 ’
Confidence Interval (CI) foy, i.e., the interval such Bel (Z):J'BeI;(Z)da, respectively (dotted lines in
that P[yOA/1=1-a. For example, A = [900, 0
1300] is the (1 — @100% = 100% ClI fop, i.e., the Figure 1, bottom). The plausibility and belief func
interval that contains the “true” value pivith cer-  tions PI¥(Z) and Bel"(Z), Z = (-, y], are shown to
tainty (solid segment in Figure 1, top), = [1000, represent the beest bounds for the “true” CDF

1200] (U A!) is the (1 — 0.5100% = 50% ClI

, built in correspondence of thecuts

of level « = 0 (solid lines), 0.5 (dashed lines) and 1
(dot-dashed line) of the possibility distribution



FY(y) of the uncertain variablyy (Baudrit et al.
2008).
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Figure 1. Top: triangular possibility distributior”(y) of the
uncertain parametery of the Gumbel PDF ofY -~

p’ (y | }/,5:100); in evidence the:-cuts of levela = 0 (solid
segment), 0.5 (dashed segment) and 1 (dot). Bottoomding
upper and lower CDFs of, PI(Z) and Bel'(2), Z = (-0, y],

built in correspondence of thecuts of levelk: = 0 (solid lines),
0.5 (dashed lines) and 1 (dot-dashed lineyrty) ; the plau-
sibility and belief functionsPl"(z) and Bel'(2), Z = (0, y],

are also shown (dotted lines)
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3 BAYESIAN UPDATE OF THE POSSIBILISTIC
PARAMETERS OF ALEATORY
PROBABILITY DISTRIBUTIONS

Let 7’ (@) be the (joint)prior possibility distribution
for the parameter#d =[4,,6,....,6,....6, bf the
PDF p'(y|#) of variableY (built on the basis of a

priori subjective engineering knowledge and/or da
ta). For example, in the risk assessment context

this papery may represent the yearly maximal water

flow of a river described by a Gumbel distribution:
thus, Y ~ p'(y|0) = Gum@) = Gum(&y, 6,) =

Gunly, ) = p'(yly.9) andz’ @) = z"°(y,9).
Moreover, lety =[V,, ¥, .-, Y, - Yp ]D€ & vector of

D observedpieces of data representing thew in-
formation/evidenceavailable for the analysis: refer-
ring to the example above, may represent a vector

of D values collected over a long period time (e.g.,
many years) of the yearly maximal water flow of the
river under analysis. The objective of the Bayesian
analysis is to update the a priori representation

7’ (0) = x"° (y,0) of @ = [y, 5] on the basis of the
new evidence acquired, i.e., to calculate fiheteri-
or possibility distribution 7’ 4 Yy ) (i.e.,
7"’ (y,0|y)) of @ after y is obtained.

The method considered in this paper is based on a
purely possibilistic counterpart of the classical,
probabilistic Bayes’ theorem (Lapointe & Bobée
2000):

7! 0]y) &’ (0)
sgp{n‘z ©|y)@’ @Oy

7’ 01y) = (1)

where 7! @ |y ) is the possibilistic likelihood of
the parameter vectd@ given the newly observed da-
tay, and quantitiest” @( \ Jand 7’ @ ) are defined

above. Notice thai;up{;rf @y =z’ (0)} is a normal-
0

ization factor such tha‘sudn" (0|y)} = 1, as re-
0

quired by possibility theory (Baudrit & Dubois
2006).

It is worth mentioning that forms of the
possibilistic Bayes’ theorem alternative to (1) ¢en
constructed as a result of other definitions ofdpe
eration of ‘conditioning’ with possibility distribu
tions: the reader is referred to (Lapointe & Bobée
2000) for technical details. In this paper, expi@Ess
(1) has been chosen because “it satisfies desirable
properties of the revision process and lead toigont
uous posterior distributions” (Lapointe & Bobée
2000).

The possibilistic likelihoodz! & y )is here ob-
tained by transforming the classical probabilistic
likelihood functionL’ @ |y ) throughnormalization

e, z! @ly)=L"@|y)/sudLl’@]y)}. This choice
0
has been made for the following main reasons: (i)

the transformation is simple and can be straightfor
wardly applied to any distribution; (ii) the resoy

(Hossibilistic likelihood isvery closely relatedo the

classical, purely probabilistic one (which is thetor
cally well-grounded) by means of the simple and di-
rect operation of normalization that preserves the
“original structuré of the experimental evidence;
(i) it can be easily verified that the resulting
possibilistic likelihood keeps thsequentialnature

of the updating procedure typical of the standard
Bayes’ theorem. On the other hand, it has to be als
admitted that the resulting possibility distriburso



do not in general adhere to the probability-po$isjbi
consistency principle (Baudrit & Dubois 2006).

It is worth noting that other techniques of trans-

formation of probability density functions into pos
sibility distributions exist, but the correspondidg-

4 CASE STUDY: FLOOD PROTECTION RISK-
BASED DESIGN
The maximal water level of the river (i.e., the
output variable of the modeL, ) is given as a func-
tion of several (and some uncertain) parametezs (.

tails are not given here for brevity sake: thethe inputs to the model) (Limbourg & de Rocquigny

interested reader is referred to (Flage et al. P63

some proposed techniques, e.g., the principle oy _ ¢
maximum specificity and the principle of minimal ¢
commitment. Also, it has to be noticed that other

techniques are available to construct possibilisy di
tributions (and, thus, possibilistic likelihood func
tions) directly from rough experimentadlata (i.e.,
without resorting to probability-possibility tramst
mations): see, e.g., (Serrurier & Prade 2011).

2010):
(Q'Zmlzv' Ks, B, L) = f(Y1'Y2'Y3'Y4’Y5'Y6) (2

where:Y; = Q is the yearly maximal water dis-
charge [n¥s]; Y. = Z_andYs = Z,are the riverbed
levels [m asl] at the upstream and downstream parts
of the river under investigation, respectively =

K is the Strickler friction coefficientys = B and

Ys = L are the width and length of the river part [m],

It is worth noting that the application of the ap-respectively. Quantitie¥s = B (= 300m) andvg = L

proachalwaysproduces goint P-dimensional poste-
rior possibility distributionz’ € J ) (whateverthe

state of dependence between the priors), characte

ized byP-dimensionala-cuts A”Y, with 0 <a < 1:

as a consequence, there isirteractive dependence
between the values that parametés in=1, 2, ...,

P} can take when ranging within a givercut A’

From 7° @ |y) it is straightforward to obtain the

marginal  posterior  possibility  distribution
(6 ]y) for each parametet, as 2’0, |y) =
max {z’ @|y)}, 06,00, m =1, 2, ..., P:

05 O, j#Zm

7’ (6,,]y) is the projection oft’” & y )onto them-
th axis. The (one-dimensionaly-cut A™Y =
[Ena Y §mya | y] of the marginal possibility distribu-
the P{
dimensional)a-cut A’Y of the joint possibility dis-

tion z°"(0,|y) is then related to

tribution 7’ @ |y) by the following straightforward

relation, AT = (O 1Y.6na Y] =
[min{8.}, maX§d. }] . In this view, notice that the
o0A) o0AYY

oly

i.e.,

use of theP-dimensionak-cut A%, constructed by

the Cartesian product of the (one-dimensional)
cuts A" of the marginal distributionsn=1, 2, ...,

P (e, Al = AV x A x ... x AP x ... x
A would (incorrectly) implyindependencée-
tween the posterior estimates of the paramet@gs {
m=1, 2, ...,P}; however, sinceA]” . completely
contains A’ (i.e., by definition A?Y 1 A ),

then conservatism would be still guaranteed (Sgein
al. 2013).

(= 5000m) areconstantparameters, whereas guanti-
tiesY1=Q,Y.=2Z,,Ys=2Z,, Y4 = K, areuncer-
tF\_in variables.

Then = 4 input variabley;, i = 1, 2, 3, 4, are af-
fected by aleatory and epistemic uncertainties. The
aleatory part of the uncertainty is described bpr
ability distributions of defined shape. The parame-
ters of the probability distributions describingeth
aleatory uncertainty are themselves affected bg-epi
temic uncertainty and represented in terms of possi
bility distributions.

The aleatory uncertainty in the yearly maximal
water flow Y; = Q is well described by a Gumbel

probability distribution p®(qly,8) = Gum(y,s) =

1ex —exp{y;qj exp{y;q} (Limbourg & de
o o o

Rocquigny 2010)The extreme physical bounds on
variable Q are Q. =10m¥s (which is a typical
drought flow level) andQ,.. = 10000 n¥s (which is
three times larger than the maximal flood ever oc-
curred). The prior possibility distributions?”” ) )

and 77° @) for the epistemically-uncertain parame-
ters y and J are subjectively chosen as triangular
functionsTR(a,, ¢, b)) andTR(ay, c;, b;), respective-

ly, with cores (i.e., preferred or most likely vas)c,

= 955n/s andc; = 600n/s, and supportsaj, b)] =
[869, 1157] n¥s and &, bs] = [455, 660] nils, re-
spectively. The Bayesian update of these unceytaint
representations (based on prior subjective
knowledge) is realized with the aid of a vegtoE g
=[qu, 92 .-+, Oks ---» Onag Of D1 = 149 (independent
and identically distributed — iid) values of thenaal

maximal flow of the river. The point estimatg¥""

and ™€ for y and & obtained by the classical,

purely probabilistic Maximum Likelihood Estima-
tion (MLE) method are 1013.21 %s and 558.21
m3/s, respectively.



The aleatory part of the uncertainty in the up-data can only be obtained through “indirect calibra
stream riverbed leveY, = Z, is represented by a tion characterized by significant uncertainty”
normal distribution, i.e.Z_ ~ p* (Zm |yZm,JZm) = (Limbourg & de Ro.cquigny'2010): the uncertainty |n
N(/'IZm’JZm) (Limbourg & de Rocquigny 2010). these parameters is described by triangular pdssibi

T . ity distributions. The possibilistic functions
This distribution is truncated at the minimum andnﬂK ’
maximum  physical bounds onZ, ie., (4,) and 717 (0, ) used to represent the a
C

Z =535m (given by plausible lower geomor- priori knowledge ony, ando,, areTR(a, , ¢, ,
phologic limits to erosion) and = &7 (given b, ) =TR21.37, 25.23, 34.23) antR(a,, , C,, .

m max Ks
by plausible upper geomorphologic limits to sedi-b, ) = TR1.16, 6.91, 9.37), respectively. The
mentation), respectively. The prior possibilitytdis  gayesian revision of these a priori representatisns
butionsfor 14, and g, are the triangular functions performed by means of a vectpy = ks = [Ks1, Ks2,

m,min

o () = TR@, , ¢, , b, ) = TRBE478, - ks .., kss] Of Ds =5 (iid) values of the Strickler
54.93, 55.28) andr’ (0, ¥ TR(a, .c. .b, ) friction coefflAchlﬁst. The MLEA(heAitzlmates of the pa-
o e U:” o rameters argll = 27.8 andd, = 5.26, respec-

= TR(0.33, 0.51, 0.58), respectively. The Bayesian,
update of these uncertainty representations isedarr :
out using a vectoy, = Zn = [Zn1, Zm2, -+» Zmk «-

Zm29 Of Do = 29 (iid) values of the upstream riv- 5 RESULTS

erbed level. The MLE estimates of the parameterg, o.der to simplify the notation, in what folloviest
are [l =50.19 m andi;, " = 0.38 m, respective- ¢ be one of the uncertain parameters of the PDFs of

|y Y]_:Q, Yo=7Zmn Y3=2, andY4=KS, i.e.,<9= V., 5,
As for Y, = Zy, the aleatory part of the uncertainty Uy Oy Hyys Oy M OF Oy, . Figure 2 illustrates

in the downstream riverbed lev& = Z, is repre- °

sented by a normal distribution, i.eZ, -~

pzV (Zv | :qu' JZV) = N (/'lZV' UZV) ’ truncated at
Z . =48mandZ, __ = 5. As before, the prior

v,min Vv max
possibility distributions are triangular functions.,
(i) =TRa, , ¢, , b, )=TR49.98, 50.11,

Hzy

50.40) and 77°#(0,,) = TR@,,, ¢, , b, ) =

Ozv

vely.

the possibility distributions of the epistemically-
uncertain parameters of the aleatory Pm9£q| Y, 5)

(top) and p*- (kS | ,UKS,JKS) (bottom) of the uncertain
input variablesy; = Q andY,; = Kg, respectively; the
parameters of the PDF$*(z, |/ 0,,) and
p*(z, | ty,,0,,) Of Yo = Zyy andys = Z,, respectively,

. are not shown due to space limitations. In parigul
TR0.23, 0.45, 0.54). These representations are Upne prior possibility distributions?’ & Y= 7/ (y),

dated by means of a vecyr=2z,=[z,1, Zv2, ..., Zvk ’ y
..., Zu2q of D3 = 29 (iid) values of the downstream m°(d), (k) and 77 (0y, )) are shown as

riverbed level. The MLE estimates of the parametersolid lines, whereas thmarginal posterior possibil-

are IY° = 55.03 m anddp = = 0.45 m, respective- ity distributions 77° @ ly ) (= 77/ (v|q), 7°(J 1),

ly. s (K, k) and 777 (o, | K, )) obtained usind;
The Strickler friction coefficient', = K is the  _ 149 andD, = 5 pieces of data are shown in dashed

most critical source of uncertainty because itss-u lines, respectively; the point estimate@"-t (=

ally a simplification of a complex hydraulic model. ~we swe ~mE A MLE - ]
The absolute physical limits df_ are 5 and 60, re- » 077 Hi,~ and gy, ) produced by the clas

spectively (Limbourg & de Rocquigny 2010). The ?é%?ls)l\?sl‘eEe rgsct;r'gi(())(rj] j)re also shown for comparison
friction coefficient K, is affected by random events '

modifying the river status (e.g., erosion, sediraent
tion, ...): the corresponding variability is typioall
described by a normal distribution, i.eK, ~
sz(kslluKs’a-Ks) = N(/'IKS’JKS) (Limbourg & de

Rocquigny 2010). However, the parameters of this
normal distribution are difficult to estimate besau
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Figure 2. Possibility distributions of the episteaily-uncertain parameters of the aleatory PDE%(q|y, 5) (top) and
p* (ks |,uKS,c7KS) (bottom) of the uncertain input variablés= Q andY, = K, respectively. Solid lines: priors; dashed linesir-
ginal posteriors. The point estimates of the patarsebtained by the classical MLE method are sitexwn for comparison (dots)

. o . (i) the percentage relative differen&®™ of the
From a mere visual and qualitative inspection of

: Prior Posterior
Figure 2 it can be seen that the approach is steitababsome distances),™ and d, ' ben;yeen the
ror

for revising the prior possibility distributionsgbed prior and posterior most likely values,™ and
on a priori purely subjective knowledge) by meanscPoseior raspectively, of parametérand the corre-
of empirical data. In particular, it is evident th@)
the most likely (i.e., preferred) valuas of the
epistemically-uncertain parameters (i.e., thoseesl RYst = (ddf’riOf _dgostefior)/d;"m 100, (3)
in correspondence of which the possibility function A A

equals 1) are moved towards the MLE estimates whered]™ = |c)™ - |/6"F and d}°*"™" =

fMLIE'in alrl1 the cases cznsidered;'éi'il). thg_afgsml- | cPosieor _ GMLE |/ GMLE  Obyviously, the higher is
erlying the corresponding possibility distribution ., . . Posterior :
is significantly reduced: noting that this areaakt- R~ (i.e., the lower 'S(_j@ ) the closer is the
ed to the imprecision in the knowledge of themost likely value c;*** to the MLE estimate

p_ossibilistig parame;ter (!.e., the larger the atba, g e thehigher is thestrengthof the approach
higher the imprecision), it can be concluded that t , n4ating the prior possibilistic distribution:
approach succeeds in reducing the epistemic uncer- (ii) the percentage relative differenBe between
tainty. With respect to that, Table 1 reports th&SM o 4reas underlying the possibility distributioh o

IiI.<eI>|/ valuegt():{;l'ancé'the.sre.asg unslerr]lying the (Mar-  Harameterd before and after the Bayesian update,
ginal) possibility distributions of the uncertain-pa namely S and S | respectively:

rameterd (= y, 0, My, Ogyi Myy» Ozys My, @nd _ _ _
o,.) before and after the Bayesian update; the poinf = (S, —S;7 ")/ 8" 1100. (4)

estimatesd'¢ obtained by the classical MLE meth-  Again, the higher i&, the higher is the reduction
od are also reported for completeness. In addition, In the area (i.e., in the epistemic uncertaintyl,an
order to provide a more quantitative assessment dpus, the higher is the “updating strength” of &pe
the “updating power” of the method, two indicatorsproaCh'

are defined:

sponding MLE estimaté™'€, i.e.:



Table 1. Most likely values, of the paramete®= y, J, l,,, 0., U, T4, K ando, of the aleatory PDFs of =Q, Y, =
Zn, Y3 =Z,andY,; = Ks and area$§, underlying the corresponding (marginal) possipitiistributions before and after the Bayesian
update. The point estimaté"® are also shown for comparison together with tHeesaof RS™ (3) andR, (4) (parentheses)

Possibility distributions update

¢ (R)™) S (Ro)
Y, 0 OME Prior Posterior Prior Posterior
0 y 1013.21 955,55 1002.70 (81.77) 144.65 100.55 (30.49
0 558.48 599.15 566.35 (80.65) 103.35 76.94 (25.56)
7 Hzm 55.03 54.93 55.00 (70.00) 0.25 0.190 (24.00)
m Ozm 0.45 0.51 0.47 (66.67) 0.12 0.110 (8.33)
7 Hzy 50.19 50.11 50.17 (75.00) 0.21 0.165 (21.43)
v oz 0.38 0.45 0.39 (85.71) 0.16 0.121 (24.38)
K Hxs 27.80 25.24 26.95 (66.80) 6.45 5.40 (16.28)
s Oks 5.26 6.89 5.54 (82.82) 4.11 3.75 (8.76)

It is evident that the method succeeds in movindevel necessary to guarantee a given flood retarn p
the most likely values, towards the corresponding riod or (ii) the flood risk for a given dike levalVith

MLE estimates6'%: actually, the values oRS®  respect to issue (i) above, the quantity of intettest

(3) range within 66.67% and 85.71%. From theiS most relevaqt to the deﬁcisio_n maker is the
analysis of quantitative indicatd®, (4) it can be /A-100%-th quantile oL (i.e., Z;'): this corresponds
seen that the method produces a consistent reductito the yearly maximal water level withgal00-year

in the area underlying the possibility distributiasfs return period. With respect to issue (ii) aboves th
the uncertain parameters: in particuldy,(4) ranges quantity of interest is the probability that thexina
between 8.76% and 30.49%. In addition, as exmal water level of the riverZ, exceeds a given
pected, the strength of the approach in reducing epithresholdz*, i.e., P[Z, = z, *]: in the present paper,
temic uncertaintylecreasesvith thesizeof the data ' o 1a

set used to perform the Bayesian update. For exan%* = 55.5 m (Table 2). The mterval{;F[ZC] (B).
ple, the are&, underlying the possibility distribution [cm]‘l(ﬂ)] for %, § = 0.05, 0.50 and 0.95, are

of y (Figure 2, top left) is reduced by 30.49% with >
the aid of aarge data set of siz®; = 149; on the [50.70, 51.67], [52.16, 53.46] and [54.13, 56.44},

. L spectively, before the Bayesian update; insteay; th
contrary, the ares,, underlying the possibility dis- . 151 90, 51.56), [52.38, 53.23] and [54.21, 55.8
tribution of ois (Figure 2, bottom right) is reduced respectively, after the update. Also, the intervals
only by 8.76% by means &f, = 5 pieces of data. _Fz (Zc) 1-F% (Zc)] for P[Z. > z*] are [0.0054

In order to show the effect that the reduction o
0.1092] and [0.0079, 0.0716], before and after the

the epistemic uncertainty in the distribution pagam : s ,
ters has on the maximal water level of the riger Bayesian update, respectively. Thus, the widtthef t
|ntervals is reduced of 28.128.63%.

(i.e., the model output), Figure 3 shows the uppe ‘
and lower CDFsF*(z) and F*(z) (.e., the

1l
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plausibility and belief functionsPI* ((~,z]) and ) (i

ility

(solid lines) and after the Bayesian update (dashect *°[ 7~~~ J j,?' ********
lines). Obviously, the gap between the plausibility g o5 1~ Y/ A
and belief functions is larger before the Bayesianzos - /A e
update: in particular, the ‘prior CDFs (solid Is)}e ~ ~ oa---—+-- , S —
completely envelop the ‘posterior’ ones (dashed .| . . // ' 7 -
lines). This larger gap is explained by the lar@gea
contained under the possibility distributions oéth | _ "
corresponding epistemically-uncertain parameters. S A
Then, in order to provide a fair and quantitativerigure 3. Plausibility and belief function®l* ((~»,z,]) and
assessment of the approach adopted, proper indiC@g| (-, 7. ]), of the maximal water level of the rivek (i.e.,

tors are co_mputed_. The _ﬁnal goal Of_the case Stl_Jthne model output) before (solid lines) and afteasfted lines)
presented in Section 4 is to determine (i) the dikeéhe Bayesian update

B e T S
I
I
I
A1 _L__
|
I
I
|

Bel*((-,z]), respectively), of. obtained before ~_°7-—-1---"--7 A

I




means of data is considerable: this is important in
decision making processes since reducing epistemic
uncertainty significantly increases the analystfieon
dence in the decisions.

However, it has to be remarked that the construc-

Table 2. Intervals for thg- 100-th percentileZ?, g = 0.05,

0.50 and 0.95, of the maximal water level of timer?Z, and for
the exceedance probabiliBfZ, > z* = 55.5m], before and af-
ter the Bayesian update. The percentage reductitimei width
of the intervals is also shown in parentheses

OUTPUT VARIABLE Z, tion of a possibilistic likelihood required by the

Posterior method still represents an issue to be tackled from

Indicator Prior . .

- (% width reduction) both the theoretical and practical viewpoint inesrd
?0_50 [22'12’ g;'i? [gg'gg' g;gg] (gi'gg) to avoid introducing biases in the analysis and to
Z°o_95 {54'13’ 56'44} E54'21’ 55'87} 228'14; suggest the application of the approach for resk ri

PlZ.>7"] [0.8908, 0.9946]  [0.9284,0.9921] (38.63) aSSessment problems: with respect to that, fuite r

search will be devoted to the investigation of addi
A fundamental remark has to be done with relional methods, either resorting to probability-

spect to the results obtained. If on one side a coP0SSibility transformations or building possibilest

sistent reduction in the epistemic uncertaintyris i functions directly from rough experimental data.

generaldesirablein decision making processes re-

lated to risk assessment problems (since it signifi

cantlyincreaseghe analyst’'sonfidencen the deci-

sions), on the other side this reduction must be

coherentwith the amount ofnformation available

In this view, an objection may arise in the present
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