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Abstract. Mathematical models of plant growth are generally characterized by a large num-
ber of interacting processes, a large number of model parameters and costly experimental data
acquisition. Such complexities make model parameterization a difficult process. Moreover, there
is a large variety of models that coexist in the literature with generally an absence of bench-
marking between the different approaches and insufficient model evaluation. In this context,
this paper aims at enhancing good modelling practices in the plant growth modeling community
and at increasing model design efficiency. It gives an overview of the different steps in modelling
and specify them in the case of plant growth models specifically regarding their above mentioned
characteristics.

Different methods allowing to perform these steps are implemented in a dedicated platform
PYGMALION (Plant Growth Model Analysis, Identification and Optimization). Some of these
methods are original. The C++ platform proposes a framework in which stochastic or determin-
istic discrete dynamic models can be implemented, and several efficient methods for sensitivity
analysis, uncertainty analysis, parameter estimation, model selection or data assimilation can
be used for model design, evaluation or application.

Finally, a new model, the LNAS model for sugar beet growth, is presented and serves to
illustrate how the different methods in PYGMALION can be used for its parameterization, its
evaluation and its application to yield prediction. The model is evaluated from real data and is
shown to have interesting predictive capacities when coupled with data assimilation techniques.

Keywords and phrases: good modelling practice, sensitivity analysis, uncertainty analysis,
parameter estimation, particle filtering, data assimilation, plant growth models, LNAS model
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1. Introduction

Mechanistic modelling of plant growth is a relatively recent research field, and has gained an increasing
interest in the last decade, with the sophistication of the description of plant-environment interactions
in crop models (also named agro-environmental models) (see for example APSIM [34] or STICS [6]),
the development of Functional-Structural Plant Models (FSPM), which combine the description of plant
structural development and the biophysical processes of photosynthesis and growth within potentially
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complex structures (see [63], [29] for recent reviews), and at cellular level the progress made in the
description of the complex processes of evolution and geometry of morphogenesis [7].

Some common characteristics can be underlined in the plant growth modelling community and the
modelling approaches developed:

– complexity of the models regarding the number of interacting processes described and the number of
model parameters,

– difficulty of model parameterization resulting from both model complexity (as specified above) and
the costly experimental data acquisition,

– an increasing need in sophisticated computational science, mathematics and statistics to simulate and
analyze these systems,

– the large variety of models that coexist in the literature with generally an absence of benchmarking
between the different approaches (very few statistical comparisons of different models).

Classical numerical and statistical software solutions (MATLAB R©, R - http://www.r-project.org/) that
generally provide efficient and sophisticated methods for model analysis and parameter estimation do not
however propose a framework which is always adequate for the development and analysis of such complex
models: specific data structures (different from vectors or matrices) generally need to be developed by
the user, as well as specific encapsulation methods in order to make the generic analysis and estimation
methods applicable. Moreover, improving the computational performances (which is generally a necessity
when facing complex biophysical models) requires heavy work, and the use of distributed computation
to speed up performances is far from straightforward.

On the other hand, other software applications are dedicated to the development of complex models
(see for example GroIMP [30] or OpenAlea [53] platforms more specifically in the context of plant growth
models), and provide useful tools to build and simulate models, as well as interactive tools for the
visualization of results. They prove to be very useful in the first steps of the modelling process, specifically
the conceptual work to derive a systematic and analytic approach from the biological understanding of
the biophysical processes, and the preliminary validation thanks to powerful visualization tools. However,
they do not provide statistical tools for the parameterization and evaluation of models.

Software was also developed coupling both the simulation of a generic model and the implementation
of statistical estimation methods for its parameterization (OptimiSTICS package for the STICS model
[66] or Digiplant software for the GreenLab model [17], [18]). However, the strong imbrication of a specific
model and the methods restrict the potential use and limit the full evaluation of models since they do
not allow model comparison or benchmarking.

In this context, our research objective is double. First, we aim at specifying good modelling practices
[61] for plant growth models, and more generally for complex biophysical dynamic models, that is to say
introducing a proper mathematical methodology to help for a rigorous model development and evaluation,
as well as specific methods adapted to this type of models. Second, we develop a software platform
dedicated to the easy implementation of this methodology for discrete dynamic models. The platform
name is PYGMALION, (Plant Growth Model Analysis, Identification and Optimization). It is developed
in C++ and has the following properties:

– it implements a template class for models of dynamical systems, which is generic and simply requires
from the user the specification of parameters, state variables, external variables and state functions;

– it proposes a generic and flexible data structures adapted to the observation of complex systems,
and particularly biological systems: diversity of observed variables and environmental conditions,
irregularity and heterogeneity of observations;

– it implements the statistical methods corresponding to the comprehensive methodology of model de-
velopment (sensitivity analysis, parameter estimation, model evaluation and selection) and adapted
to the specificity of plant growth dynamic models - some methods are original and some others are
classical, but all are fully re-developed and adapted to the platform framework;

– it provides a framework for model simulation that makes distributed computation compatible with
most expensive computational methods of sensitivity analysis and parameter estimation.
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Our objective in this paper is thus to describe a comprehensive methodology for model development and
evaluation, to give an overview of the classical or original methods implemented in the PYGMALION
platform for this purpose and adapted to discrete dynamic models of plant growth (and more generally of
complex biophysical systems), and to apply the methodology through a typical example: the analysis and
parameterization of a new model of plant growth, the LNAS (Log Normal Allocation and Senescence)
model, applied here to sugar beet. The model itself is original, while remaining simple enough for the
sake of paper clarity. It describes biomass production and allocation processes for crops at compartment
level, and can be seen as a simplification of the GreenLab model [72] which describes the same processes
at plant organ level. In the sugar beet case, the LNAS model also borrows some ecophysiological concepts
from the SUCROS model [25]. The interest of the model is that the experimental data necessary for its
parameterization are not too heavy and generally available in classical breeding programs. Moreover, it
shows an interesting level of robustness and its relative simplicity regarding its number of state variables
and parameters makes it well adapted to data assimilation. However, the methodology and the platform
are also suitable for the study of more complex models (with large number of parameters and state
equations, as tested for example for the NEMA model [4] or the STICS model [6]), provided of course
that the necessary data are available for model evaluation.

The paper is organized as follows: section 2 introduces the mathematical formalism and the general
class of methods of interest in the different steps of model design; section 3 introduces the LNAS model
that will serve as the test case to illustrate how the platform and the implemented methods can be
used in the modelling process. Sections 4, 5, 6, 7, 8 present the different steps: respectively sensitivity
analysis, parameter estimation, uncertainty analysis, model selection and data assimilation for LNAS;
finally section 9 discusses the perspectives of development for this modelling framework.

2. Basic Concepts in Modelling

2.1. Good Modelling Practice

With the increasing development of modelling in all fields of science, and sometimes a lack of precautions
in the way models are developed and used, some authors tried to define and promote good modelling
practices, see for example [61] for environmental sciences or [14] in physiology and medicine, by proposing
different steps in the modelling process, from conceptual work to model applications. An attempt was
made to describe how these different steps could be translated in the context of plant growth modelling
[63], even though the methodology was not applied, nor detailed regarding the mathematical steps of the
modelling process.

The first step in modelling is the conceptual work that consists in first defining properly the objective
of the model, the scientific hypotheses on which it relies, and the mathematical formalism to describe it.
Once the equations are written (or the model structure of equations are defined), the following steps of
the good modelling practice can be summarized from our point of view into three main steps:

1. Model analysis: this step corresponds to the study of the general model behavior, theoretically or
more generally numerically by the way of simulation, and the mathematical properties of the model
structure, specifically model identifiability, to determine the necessary experimental data for model
parameterization and specification, and parameter sensitivity analysis, to assess the relative importance
of the different parameters in the model.

2. Model identification: it is generally based on confronting the model to experimental data. It can include
two steps, model structure identification (identify in a family of models which specific structure is the
best one) and parametric identification (for a given model structure, estimate the values of model
parameters).

3. Model evaluation: this step tries to check qualitatively (by checking the model behavior, its ability
to simulate expected phenomena) and quantitatively (by comparing the model outputs to real data)
whether the model adequately fulfills its initial objectives. It implies checking the goodness-of-fit for
the experimental data set, as well as testing its predictive capacity on a validation experimental data
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set and assessing the model uncertainty. This step may also imply comparing different models and
choosing the best regarding their adequacy to the assigned objectives by the mean of selection criteria.

The modelling process is not linear and implies feedback between the different steps, for example parame-
ter sensitivity analysis can be used in the first modelling step to check the validity of the general structure
of model parameterization, but also in the third step after parameter estimation from real experimental
data: sensitivity analysis is then applied with the specific model parameter distributions and can thus be
used to improve the parameterization by factor fixing, or variance cutting (see [13] for more details).

2.2. Discrete Dynamic Models

The models considered in our study are Markovian models in discrete time, which take values in general
state-space as described for example by [12]. Let (tn)n∈[0;N ] be the finite sequence of successive times
corresponding to the evolution steps. We denote by Xn ∈ Rd the set of characteristic system variables
at tn (Xn = X (tn)), Un ∈ Ru, the set of exogenous variables (entries, controls...) at tn, and P ∈ Rp,
the vector of model parameters. As for most biological systems, Xn may not be fully accessible to
observation, thus Yn, taking values in Rqn , denotes the system observation vector at time tn. We will
denote Y = (Yn)0≤n≤N . The initial density function for X0 is µP , and the Markov transition density at
each time step is fn,P,Un :

X0 ∼ µP (.) and Xn+1|(Xn = x) ∼ fn,P,Un
(.|x), ∀n ∈ [0;N − 1]. (2.1)

The observation Yn depends on the state Xn and the conditional density is given by gn,P :

Yn| (Xn = x) ∼ gn,P (.|x). (2.2)

This stochastic framework also includes the deterministic discrete dynamic models, which can classically
be written in the form: {

Xn+1 = Fn (Xn, Un, P )
Yn = Gn (Xn, P )

. (2.3)

[16] describes how an important category of plant growth models can be set in this framework. For
example, for functional-structural models that describe biomass budget during plant growth (see for
example LIGNUM [52] or GREENLAB [46]), the state variables correspond to daily biomass accumulation
and to masses of plant organs according to their categories, the parameters are genotype specific, and the
external variables Un correspond to environmental variables (radiation, temperature, soil water content
...).

Generally, not all the state variables can be observed experimentally (for example daily biomass pro-
duction) and the experimentation being heavy (specifically when it comes to the masses of individual
organs), observations are not done at all time steps. If we denote by O the set of all time step indexes
corresponding to observation stages:

O = {i ∈ [1;N ] such that ti is an observation time} (2.4)

we then have qi > 0 if and only if i ∈ O (where we recall that qi is the dimension of Yi). Note also that
the non-zero qi have no reason to be identical (as illustrated for example in [45] for a model of maize
growth, in which at some stages individual plants were measured at organ level, and at other stages only
compartment data were available, corresponding to different Gi).

2.3. Mathematical Methods Implemented in PYGMALION

In order to allow modelers to implement fully the different steps described in section 2.1, generic numerical
and mathematical methods were implemented in the PYGMALION platform to make them available to
a large variety of models, provided they can be described in the general state space form described in 2.2.
These methods are: simulation, parameter estimation, sensitivity analysis, uncertainty analysis, model
selection and data assimilation.
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2.3.1. Simulation

It simply consists in computing the sequences (Xn)0≤n≤N and (Yn)0≤n≤N , given the initial state (or
initial probability density), the parameter vector P and the external variables (Un)0≤n≤N .

2.3.2. Parameter Estimation

Given the context of a specific experimentation, characterized by the initial condition X0 and the external
variables (Un)0≤n≤N , and given Y, the field data from experimentation, the objective of parameter
estimation is to estimate the parameters P . Two general approaches are possible and are implemented
in PYGMALION.

– The frequentist approach considers the existence of a true parameter vector P , and aims at approxi-
mating P from the given sample of data [24]. A classical way is maximum likelihood estimation that
consists in finding P̂ maximizing h(P ) = v (Y|P ), where v (Y|P ) is the likelihood of the experimental
data Y given P , and can be deduced from Equations (2.1,2.2). Under some hypotheses, the maximum
likelihood estimator can be equivalent to the ordinary least-square estimator or to the generalized
least-square estimator [24]. In PYGMALION, modelers can easily define their own model for the
covariance matrix of the model errors. Some simple model of covariance matrices are also available.
Different numerical optimization methods are implemented to solve the maximization problem (Quasi-
Newton and Gauss-Newton [67] for local maximization, simulated annealing [35] and particle swarm
optimization [57] for global maximization).

– The Bayesian approach considers on the contrary that the parameter vector is a random variable
[51]. Starting from a prior density distribution g(P ) (normally resulting from past studies or expert
knowledge), we update this distribution based on the experimental data Y to compute the posterior
distribution g(P |Y). In most cases, the posterior distribution can only be approximated. Unscented
Kalman Filtering (UKF) [33] and Convolution Particle Filtering (CPF) [54] are implemented in PYG-
MALION for this purpose. Both methods aim at the joint estimation of parameters and hidden states.
The CPF proves superior in terms of accuracy compared to UKF, even though it is more compu-
tationally expensive. CPF is a variant of the classical particle filtering based on convolution kernel
approximation techniques. An improvement of this method based on multiple iterations of CPF was
proposed in [15]: it takes into account the information obtained by the former iteration in order to im-
prove the precision of the estimates. A conditional version of the method is also derived for stochastic
dynamic systems : in the first place, model parameters and hidden states are jointly estimated condi-
tionally on the noise parameters; in the second place, the latter are estimated based on the estimation
of the hidden states. Both steps can be repeated until convergence.

Note that it may be interesting to use different sets of experimental data for the identification of the
same system. In plant growth modelling, that corresponds for example to different experiments for a
similar genotype (different locations, different cultural treatments - with and without water stress for
example, different seasons ...). Let k be the number of experimental data sets, and Yj the observation
vector for experiment j (for all 1 ≤ j ≤ k), characterized by initial condition Xj

0 and external variables(
U jn
)
0≤n≤Nj . We thus simply choose the full observation vector Y as Y =

(
Y1, . . . ,Yk

)
. Note that the

observation functions gn,P or Gn (see Equation 2.2) may be very different for every experiment.

2.3.3. Uncertainty and Sensitivity Analysis

Given the distributions of inputs of the models (parameters, initial conditions, external variables ...),
uncertainty analysis aims at computing the distribution of a model output (a state variable or an ob-
servation) [48]. Several methods exist, in PYGMALION, uncertainty analysis can be achieved by plain
MonteCarlo simulations or unscented transform [33], by propagating the uncertainty in the dynamic
system.

Reversely, sensitivity analysis aims at establishing the relative importance of model inputs (parameters,
exogenous variables, initial conditions ...) on the output of interest [56]. A large variety of methods exist
for this purpose, and can be used according to a typology of models and problems addressed [13], [47].
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Contrary to local methods, global approaches estimate the effect on the output of a factor keeping all
the others varying. Generally, global approaches use model-independent methods while not requiring
assumptions of additivity or linearity, and are now widely used.

In the PYGMALION platform, the objective was not to propose a complete panel of the most classical
methods but a set of efficient methods covering all the different uses of sensitivity analysis for models
of different levels of complexity. For this purpose, we identified 3 methods that efficiently cover most
situations.

The Standardized Regression Coefficients method:
The Standardized Regression Coefficients (SRC) are computed from the linear approximation of the

model based on Monte Carlo simulations. The method can be viewed as an interesting trade-off between
local and global methods, regarding the accuracy of the analysis and the computing cost. Another
important index produced by this method is the model coefficient of determination, R2, which represents
the fraction of the output variance explained by the linear regression model itself. It provides an indicator
of the degree of nonlinearity of the model, thus representing the level of interaction between parameters
and how this interaction contributes to the variance of the output. When R2 = 1, the system is linear
and the SRCs can totally explain the variance of the output affected by each factor. Even when models
are moderately nonlinear (i.e. > 0.9), the SRCs can provide valid qualitative information, but they are no
longer reliable when R2 gets smaller. If the evaluation cost of the model is important, the SRC method
can be used as a first step before resorting to more complex methods if necessary.

Sobol’s variance-based method:
The basic concept of this method is to decompose the output variance into the contributions imputable

to each input factor, and each combination of input factors [58], [31]. The different types of sensitivity
indices that it estimates can fulfill different objectives of sensitivity analysis: factor prioritization, factor
fixing, variance cutting or factor mapping [56]. It is a very informative method but potentially computa-
tionally expensive [27]. For a given factor Xi, the value of first-order Sobol’s index Si indicates whether
a factor is mainly influent, while an important difference between STi (Total order effect) and Si flags an
important role of interactions for that factor regarding the output. In this case, inspection of the second
order index Sij will help characterize the influence of the interaction of other factors Xj with Xi, i 6= j.

Different estimates exist to compute these indexes based on Monte Carlo simulations. In PYG-
MALION, we use an efficient improvement of Homma-Saltelli’s method [31] which allows a control on the
estimation error with respect to the number of samples and whose implementation details can be found
in [70].

Morris’s Method:
[49] proposed an effective screening sensitivity measure to identify the few important factors in models

with many factors. The method is based on computing for each input a number of incremental ratios,
namely elementary effects, which are then averaged to assess the overall importance of the input. Some
improvements of the method were proposed in [11]. Even though the method may lead to errors (specif-
ically in the case of non-monotonic models), it is particularly well-suited when the number of uncertain
factors is high and/or the model is expensive to compute and Sobol’s method is too prohibitive. For this
reason, the method is also implemented in PYGMALION.

2.3.4. Model Selection

For the evaluation and comparison of models, several criteria are computed in the parameter estimation
process (AIC, BIC, MDL criteria [8]) and when an independent data set is available for model validation,
the Mean Square Error of Prediction (MSEP) can also be computed to measure the predictive capacity
of a model [1].

2.3.5. Data Assimilation

If a dynamic model is used to predict some variables, the idea of data assimilation is to incorporate
dynamically observations into the model when they are available, in order to improve the model predictive
capacity. For this purpose, the method proposed in PYGMALION derives from the filtering approach
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that can also be used for parameter estimation. Given initial probability density functions for parameters
and initial state, we deduce the dynamic evolution of the probability density function of state variables,
giving the model prediction. These density functions of parameters and state variables can be updated
at each time tn for which observations Yn on the system are available. The dynamic evolution of the
updated density functions of state variables given the updated probability density functions of parameters
provides the updated prediction [23]. This is straightforwardly performed with the UKF and CPF
methods described in 2.3.2.

In the following, we will illustrate how these different methods can be used and taken advantage of in
the plant growth modelling process.

3. LNAS Model

For the clarity of presentation we choose to illustrate the methodology on a simple model, even though
some specific studies were performed in PYGMALION on more complex models (STICS [6], NEMA [4],
GreenLab [72]...) with up to 82 parameters for NEMA.

In this section, a Log Normal Allocation and Senescence (LNAS) daily crop model is introduced in its
stochastic version (with modelling and measurement errors). The equations are specifically derived for
the sugar beet, extrapolating the individual-based model to the field level per unit surface area, with two
kinds of organ compartments: foliage and root system. The equations can be adapted to other types of
plants without difficulty by specifying organ compartments.

3.1. Model Description

Biomass production: Q(t) is the biomass production on day t per unit surface area (g.m−2) and is
classically obtained by generalizing the Beer-Lambert law [50]: the fraction of intercepted radiation is
given by

(
1− e−λ·Qg(t)

)
, with λ (g−1.m2) a parameter and Qg(t) the total mass of green leaves on day t

(in g.m−2). The biomass production is then deduced by multiplying the fraction of intercepted radiation
with the total amount of absorbed photosynthetically active radiation per unit surface area (PAR, in
MJ.m−2) and an energetic efficiency µ (in g ·MJ−1·):

Q(t) =
(
µ · PAR(t)

(
1− e−λQg(t)

))
· (1 + ηQ(t)) (3.1)

with the modelling noise ηQ ∼ N (0, σ2
Q).

Allocation between the foliage and root compartments: The idea is to simplify the source-sink func-
tions of the GreenLab model [72], [28] for which allocation is computed at organ level. Let Qf (t) and
Qr(t) represent respectively the total foliage and root masses at day t:

Qf (t+ 1) = Qf (t) + γ(t) ·Q(t) (3.2)

Qr(t+ 1) = Qr(t) + (1− γ(t)) ·Q(t) (3.3)

The function γ is defined as:

γ(t) = (γ0 + (γf − γ0) ·Ga(τ(t))) · (1 + ηγ(t)) (3.4)

with τ(t) the thermal time (according to the accumulated daily temperature since emergence day), Ga
the cumulative distribution function of a log-normal law parameterized by its median µa and standard
deviation sa, and the modelling noise (process noise) ηγ(t) ∼ N (0, σ2

γ).
Senescence: The senescent foliage massQs is a proportion of the accumulated foliage mass determined

by another cumulative distribution of a log-normal law parameterized by its median µs and its standard
deviation ss:

Qs(t) = Gs(τ(t)− τsen)Qf (t) (3.5)

with τsen the thermal time at which senescence starts. The green foliage mass Qg is thus easily obtained:

Qg(t) = Qf (t)−Qs(t) (3.6)
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P.-H. Cournède, Y. Chen, Q. Wu, C. Baey, B. Bayol

3.2. Experimental Data for Model Evaluation

The data used in this paper for the evaluation of the model were obtained from experiments conducted in
2010 by the the French Institute for Sugar Beet Research (ITB) and presented in [2]. Field experiments
took place at La Selve, France, N49◦34’22”, E3◦59’24”, on a sandy loam soil. A commercial variety,
Python, was sown on April 15. The final plant density was estimated at 11.82 plants per square meter
(pl.m−2).

Dry matter of root and leaves were collected on 50 plants at fourteen different dates:

O = {54, 68, 76, 83, 90, 98, 104, 110, 118, 125, 132, 139, 145, 160} ,

where the indices correspond to days after sowing, see (2.4)). The observation vector Yn is obtained
by averaging each data on the 50 samples and extrapolated at m2 level by multiplying by the observed
density.

Daily mean values of air temperature (◦C) and solar radiation (MJ.m−2) were obtained from French
meteorological advisory services (Météo France) near the experimental site. Thermal time was computed
using a base temperature of 0◦C [42].

For the test on predictive capacity and data assimilation in Section 8, we use older data obtained in
2008 in the Beauce plain near Pithiviers, France N48̊ 10’12’, E2̊ 15’7 and presented in [43]. A different
commercial cultivar, Radar, was sown on April 11. The final plant density was estimated at 10.9 pl.m−2.
The climatic data were also obtained from Météo France near the experimental site.

Dry matter of root and leaves were collected on 30 plants at seven different dates:

O = {39, 60, 67, 75, 88, 122, 158} ,

where the indices correspond to days after sowing. The observation vector Yn is obtained by averaging
each data on the 30 samples and extrapolated at m2 level by multiplying by the observed density.

Therefore the observation vector Y is given by the averaged leaf and root masses per m2. We introduce
some multiplicative observation noises:

Y |Qb, Qr ∼ N
((

Qb
Qr

)
;

(
η2bQ

2
b 0

0 η2rQ
2
r

))
(3.7)

4. Sensitivity Analysis

When a model contains a large number of parameters, as it is often the case for models of plant growth
in interaction with the environment, parametric identification from experimental data can be difficult or
impossible: experimental observations are generally heavy to perform and the available data may not be
sufficient to allow the differentiation between the parameter influences, making the model non-identifiable.

Sensitivity analysis methods study how the uncertainty in the output of a model can be apportioned
to different sources of uncertainty in the model inputs [56]. As such, they can serve to quantify the
influence of parameters on the model outputs corresponding to the available experimental data. Therefore,
sensitivity analysis is classically used to select the parameters to be estimated among those identified as
the most influential while those screened as the least influential ones can be fixed to any values in their
domains. In the context of sensitivity analysis, this method is called screening or factor fixing ([11], [13]).
[55] and [62] describe an application to the crop model STICS.

In the case of dynamic models with multivariate outputs, sensitivity analysis can be applied sequentially
at each time step, and for every output. It results in the computation of a large number of indexes from
which it can be difficult to select influential parameters, since the influence of the parameters may vary
with the time step and the considered output [11]. Several strategies can be used, for example screening
as non-influential factors only those that keep indexes below a given threshold for all time steps and
for all outputs. [9] introduced a method based on principle component analysis adapted to multivariate
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sensitivity analysis: sensitivity indexes are only computed on the principal components of the vector
output. This method was applied in the context of crop models in [38].

In PYGMALION, we adopt a different strategy. For the purpose of qualitative model analysis, it is
interesting for the modeler to get a general view of the evolution of the sensitivity indexes and of the
linearity index with time, and for each output. It generally provides useful insight in terms of model
diagnosis [71].

On the other hand, for the use of sensitivity analysis in the process of parameter estimation to select
the parameters to estimate, we choose to compute sensitivity indexes for an output linked to the chosen
estimator, like the likelihood if it is available or a generalized least-square criteria. It is important to note
however that in this case the sensitivity measures depend on the available experimental data.

We illustrate these two points - sensitivity analysis for model diagnosis and for model parameteriza-
tion - on the deterministic version of the LNAS model, by first computing the linearity index with the
SRC method and then computing the sensitivity indexes of all parameters with Sobol’s method for the
generalized least-square criteria.

A crucial point for sensitivity analysis is to define an appropriate distribution for the input factors.
It is not always easy when few sets of data exist in the literature, which is typically the case in the
construction process of new models, as it is the case for the LNAS model. However, since it bears some
similarities with the SUCROS model [25] or the GreenLab model [42], and since some parameters are
related to well-known biophysical processes, we managed to give reasonable variation intervals for the
parameters (see Table 1) and used the uniform law. The standard deviations of the Log-Normal laws
(sa and ss) have however large variation intervals corresponding to high uncertainty since few data were
available. Different variation intervals of comparable ranges were tested without affecting significantly
the results. In Figure 1, the evolution of the linearity index with time is shown for the variables Qg (green

Parameter Unit Variation interval (uniform distribution)

µ g.MJ−1 [3; 4]
λ g−1 [0.01; 0.014]
γ0 - [0.7; 1]
γf - [0.; 0.3]
µa - [400; 800]
sa - [200; 2000]
µs - [2000; 3000]
ss - [3000; 6000]

Table 1. Variation intervals for the parameters of the LNAS model

leaf mass) and Qr (root mass) corresponding to the experimental data available in our study. We recall
here that the smaller the linearity index, the stronger the non-linearity of the dynamic system. Even
though the linearity remains relatively high, we can observe a nonlinear stage of growth for both Qg and
Qr. As observed on other plants like maize [68], this is characteristic of some transition in the biomass
allocation process: in the early stage of the growth the priority is given to the vegetative part and later
(after canopy closure) to the root part. This result illustrates the kind of insight and model diagnosis
that sensitivity analysis can provide. To investigate further, one could try to understand the interactions
at stake in this nonlinear growth stage, by computing Sobol indexes: if the difference between the total
order and first order indexes of a parameter is non negligible, we may look for important secondary effect
indexes involving this parameter.

Regarding the parameterization issue, we compute the first and total order indexes of Sobol’s method
for the single output corresponding to the Generalized Least Square criteria for a diagonal variance matrix
with q distinct diagonal terms, for each biological type of observed data (in our case: q = 2, for root mass
and leaf mass), [60], [18], as described in section 5.1. The results are given in Figure 2. We recall here
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Figure 1. Evolution of the linearity index (y-axis) with time (x-axis) for the variables
Qg (green leaf mass) and Qr (root mass)

that the total order effect STi equals the first order effect Si plus the sum of all the interaction terms
involving parameter i. From these results, we screen the parameters sa, µsen, ssen since their total order

Figure 2. Comparison of the first and total order indexes for parameters: µ, λ, γ0, γf ,
µa, sa, µsen, ssen.
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indexes are all below 0.02. We fix the parameters to their mean values in the variation intervals. For the
senescence parameters, some complementary experimental data can be used to determine an appropriate
empirical function. For the five other parameters, their total order effects can not be neglected. Therefore,
these parameters should be estimated from experimental data. Moreover, since their first order indexes
are also non negligible, no potential identifiability problem is anticipated.

5. Parameter Identification

5.1. Generalized Least Squares

Generalized Least Squares estimation is a very classical method for the estimation of dynamic systems
when model state equations are formalized in a deterministic frame (that is to say V (Xn+1|Xn) = 0),
see for example [24]. The underlying error terms correspond to observation errors. It was used in the
context of plant dynamic systems in [18] with a simple heteroscedastic error model inspired by [60]. The
covariance matrix of the observation error is a diagonal matrix directly deduced from Equation (3.7),
we consider a multiplicative error, with all observation variables of the same type sharing the same
observation error variance.

In the case of the LNAS model, if {t1, t2, . . . , tN} are all the time steps corresponding to observation
stages, we have:

Y =



Qb (t1)
Qr (t1)
Qb (t2)
Qr (t2)
...
Qb (tN )
Qr (tN )


(1 + ε), with ε ∼ N (0;Σ), and Σ =



η2b 0 . . . 0
0 η2r 0

0 η2b 0
...

... 0 η2r 0
. . .

. . .
. . .

0 η2b 0
0 . . . 0 η2r


We use an iterative conditional estimation algorithm: as suggested by [60], we take as first estimates
of ηb and ηr, η̂

0
b and η̂0r the standard deviations computed for the experimental observations. We then

compute the estimates of the functional parameters (γ̂00 , µ̂
0, µ̂0

a, λ
0, γ̂0f ), conditionnally to η̂0b and η̂0r , that

is to say by minimizing:

J(P ) = (Y − Y (P ))
T
(
Σ̂0
)−1

(Y − Y (P ))

where

Y (P ) =


Qb (t1) |P
Qr (t1) |P

...
Qb (tN ) |P
Qr (tN ) |P


We then update the estimates of the error model parameters after convergence of the estimation for
the parameters of the functional part of the model (as described in [60], [18]) and repeat the two steps
(conditional estimation, update of the error model parameters) until convergence.

The results are shown in Table 2. The approximate standard deviation of the estimated value is
obtained from the approximate covariance matrix of the estimates [60]:

ΣP̂ =

((
∂Y

∂P

)T
Σ̂−1

(
∂Y

∂P

))−1

where Σ̂ is the error covariance matrix.
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Parameter Estimated Value Approximate Standard Deviation (Relative Error in %)
µ 3.59 0.030 (0.84%)
λ 0.0124 0.00120 (9.6%)
γ0 0.870 0.093 (10.7%)
γf 0.0920 0.00466 (5.1%)
µa 628 84.7 (13.5%)

Table 2. Estimated values and approximated estimation uncertainty evaluation with
the GLS estimator

The advantage of the method is its relative simplicity and its efficiency for a quick determination of
reasonable estimated values, providing generally acceptable goodness-of-fit. However, the initialization
of parameter values for the search algorithm may be an issue. It is implemented in the platform and can
be easily adapted to any model.

In the case of dynamical models of plant growth, considering a diagonal covariance matrix for the error
model of the observation vector appears as a strong limitation: plant architecture keeps the whole growth
history, so it is not realistic to consider that observation errors at different times are independent.

In the frame of Generalized Least Squares approaches, other variance models for the observation errors
are possible (and the platform actually allows modellers to specify their own covariance models) with
non-diagonal covariance matrix inducing dependence between the error terms (see [5] for examples of
more elaborate variance models for GLS estimation in ecological modelling), but that generally implies
more parameters to estimate.

5.2. Iterative Convolution Particle Filtering for Hidden Markov Models

As introduced in section 2.2, the framework of general state space hidden Markov models offers an
interesting alternative to take into account error correlations between model outputs, by considering both
model errors and observation errors. Several inference methods have been proposed, see for example [12]
for a review.

To take into account the specificity of plant growth models (irregular observations, data scarcity, model
nonlinearity), we turn to a variant of the regularized particle filtering method introduced by [41], and
further improved by for example by [54], [10] (who called it ’convolution particle filter’). The idea is
to simultaneously estimate hidden states and unknown parameters, both considered as an augmented
state vector. A convolution kernel approximation technique is used to estimate the joint conditional
probability density function of (Xk, Yk) given (Y )[1:k−1] at each prediction-correction step of the filter.

In the case of off-line estimation, [15] proposed a method based on the iterative version of convolution
particle filtering (Iterative Convolution Particle Filter - ICPF), that can be interpreted as an alternative
to smoothing methods [36]. The posterior distribution is used as the prior distribution for the next
iteration of the algorithm. A conditional version was also proposed and allowed the estimation of the
parameters of the error models, for both process and observation errors. With the parameterized error
model, we can deduce confidence intervals for the estimated parameters with parametric bootstrap [22]:
virtual experimental data (of the same type) are generated with the stochastic model, and new estimates
are computed from these virtual data, allowing an evaluation of the distribution of the estimates. [15]
showed that in the case of rare experimental data, such iteration of the filter increased its accuracy.

We show the results in Table 3. The standard deviations and confidence intervals are obtained from
200 estimations of the parametric bootstrap. In Table 4 are also given the parameters of the noise model
estimated by the conditional version of the algorithm implemented [15].

When there exists no valuable a priori distribution to initialize the particle sampling in the parameter
space, a uniform grid sampling of particles is used. However, in order to improve the convergence
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Parameter Estimated Value Approximate Standard Deviation 95% Confidence Interval
(Relative Error in %)

µ 3.55 0.16 (4.5%) [3.20;3.85]
λ 0.0124 0.00086 (6.9%) [0.0112;0.0154]
γ0 0.92.5 0.091 (10.3%) [0.70;1.06]
γf 0.0920 0.0046 (5.1%) [0.051;0.152]
µa 553 86.7 (14.0%) [474;862]

Table 3. Estimated values and confidence intervals for the ICPF estimator when esti-
mating 5 parameters

Parameter 5 Estimated Parameters 6 Estimated Parameters
ηQ 0.010 0.010
ηγ 0.014 0.017
ηb 0.14 0.14
ηr 0.16 0.17

Table 4. Estimated values for the noise parameters when estimating 5 or 6 parameters
(of the deterministic part of the model)

characteristics of the ICPF method, it is possible in PYGMALION to first compute a GLS estimation
and use these results to build a more informative a priori distribution.

Figure 3 shows the fitting results, comparing the simulated and experimental data for green leaf mass
Ql and root mass Qr.

Figure 3. Comparison of simulated leaf mass (on the left) and root mass (on the right)
with experimental data
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In order to illustrate the interest of parameter screening as described in section 4, we show in Table 5
the estimation results when estimating 6 parameters instead of 5 (µ, λ, µa, γ0, γf plus sa). We clearly
see a large increase of the standard error, corresponding to a larger estimation uncertainty.

Parameter Estimated Value Approximate Standard Deviation 95% Confidence Interval
(Relative Error in %)

µ 3.51 0.15 (4.1%) [3.29;3.86]
λ 0.0124 0.00134 (10.9%) [0.00980;0.0154]
γ0 0.945 0.10 (11.8%) [0.68;1.11]
γf 0.0980 0.010 (16.8%) [0.060;0.123]
µa 551 115 (18.0%) [439;924]
sa 1073 688 (55.6%) [322;3000]

Table 5. Estimated values and confidence intervals for the ICPF estimator when esti-
mating 6 parameters

In Table 4, we also see that the estimated noise parameters corresponding to the standard deviations
of model and observation perturbations are a bit bigger when the 6 parameters (µ, λ, µa, γ0, γf plus sa)
were estimated.

6. Uncertainty Analysis

From the estimation results, we can perform an uncertainty analysis: what is the prediction uncertainty
on the model outputs regarding the uncertainty of the inputs [19], [65]. Such analysis allows to study
the predictive ability of the model: from the covariance matrix of parameter estimates obtained from
the parametric bootstrap, we simulate the propagation of the uncertainty in the dynamic system. In
order to avoid mixing the effects of variability (resulting from the stochastic model) and uncertainty
(resulting from the inaccuracy of parameter estimation), we use the deterministic part of the dynamic
model. Here we simply use the direct Monte-Carlo approach even though other more efficient techniques
would be possible. As expected, the uncertainty is smaller when only the 5 most important parameters

Qg Qr
Model with 5 estimated parameters 87.3 (13.0%) 113 (4.7%)
Model with 6 estimated parameters 96.7 (13.1%) 155 (7.0%)

Table 6. Standard deviations of Ql and Qr (and relative uncertainty in %) at time 160

are estimated, illustrating the trade-off between bias and variance, and the importance of the preliminary
sensitivity analysis to improve parameterization.

7. Model Selection

In the modelling process, the comparison between models is an important step which is often neglected. It
can consist in comparing a new model to a reference one when it exists, or testing different formulations of
state equations when describing new processes. Some statistical criteria can be used for model selection.
The most famous one is the Akaike Information Criteria and its variants [8], which help characterize the
trade-off between bias and variance when fitting a model to real data.
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P.-H. Cournède, Y. Chen, Q. Wu, C. Baey, B. Bayol

In order to illustrate the usefulness of model selection, we show in Table 7 the evolution of the corrected
Akaike Information Criteria (AICc), when estimating from 1 to 6 parameters, according to the importance
ranking obtained with sensitivity analysis, see Figure 2. The parameters that are not estimated are fixed
to their mean values in the variation intervals (given in table 1). The model with 5 estimated parameters
is preferred (lower AICc).

Moreover, we also compute the AICc for the model obtained with 5 parameters estimated with GLS
(see section 5.1), and find a value of 344.5, also bigger than 343.0, the value obtained when considering
the full hidden Markov model and estimating 5 parameters. The difference is small but still illustrates
the interest of the hidden Markov model approach. Other criteria can be computed in PYGMALION,

Number of estimated parameters 1 2 3 4 5 6
AICc 351.5 346.9 346.0 348.2 343.0 346.0

Table 7. Corrected AIC for LNAS model with 1 to 6 estimated parameters

like the mean-square error of prediction (MSEP) testing the predictive capacity of a model, when two
independent data sets are available [64]. An example of use can be found in [2] for the benchmarking of
several plant models for sugar beet yield prediction.

8. Data Assimilation

The interest of data assimilation for crop models has long been acknowledged, with the use of remote
sensing to provide useful observations (like the leaf area index variable) [20, 26, 39]. However, the statis-
tical techniques generally used remain crude, like model re-parameterization or reinitialization. Here we
illustrate how the data assimilation technique can be used to improve the predictive capacity of a model.

Based on the parameter estimation results from the 2010 data, we compare the predictive capacity
of the model for 2008 experiment with and without data assimilation, for the two last dates of obser-
vations t122 and t158. The situation is interesting here because the two experiments are quite different:
very different locations, different years, slightly different cultivars. The direct prediction (without data
assimilation) is obtained by simulating crop growth with the parameters obtained from 2010 experiments
and 2008 environmental conditions (climatic variables, density, date of emergence). For the prediction
with data assimilation, we use the convolution particle filtering (with 10000 particles) to assimilate the
data obtained in approximately the first half of the growth (O = {39, 60, 67, 75, 88}) to update state and
parameter estimation and then run the simulations until t158 for the set of particles. The prediction is
given by the mean on all particles. The results are shown in Table 8, for the leaf mass Qb and the root
mass Qr. The results are clearly improved with data assimilation, and it is particularly spectacular for
the leaf mass prediction.

Qb (t122) Qr (t122) Qb (t158) Qr (t158)
Real Data 2008 374 1559 380 2327

Direct Prediction (relative error in %) 525 (40.4%) 1696 (8.6%) 497 (30.7%) 2399 (3.1%)
Prediction with Data Assimilation (relative error in %) 391 (4.5 %) 1603 (2.8%) 372(2.1%) 2284 (1.8%)

Table 8. Comparison of model prediction with and without data assimilation
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9. Conclusion and Perspectives

This paper described the different steps for a good modelling practice and the statistical and mathematical
methods of model analysis and evaluation implemented in the PYGMALION platform for this purpose.
An illustration of how the platform can be used in the process of model design was given with a detailed
analysis of the LNAS model for sugar beet. This simple stochastic model introduced in this paper
describes the major processes of crop growth (biomass production, allocation and senescence), is easy to
parameterize (both for the parameters of the biological laws and the parameters of the noise model) and
allows a precise quantification of parameter uncertainty. By applying data assimilation techniques, we
proved on a real test case its interesting predictive ability in experimental conditions that are very different
from those used for model calibration. Of course further experimental data and tests in different situations
should be performed to prove the interest of the model, whose principal quality for real applications
should rely on its simple parameterization and its adaptation to data assimilation. An application of the
model to maize is currently under investigation. Since the model can be seen as a simplification of the
GreenLab model, comparison of its performance against GreenLab in terms of predictive capacity would
be interesting.

The platform is currently developed and used in the laboratory of Applied Mathematics and Systems
at Ecole Centrale Paris, but is also tested by a few other labs. Provided some basic knowledge in C++,
it is very easy to implement models and to use the proposed methods: approximately 20 models of plant
growth in interaction with the environment and variants are currently implemented in the platform:
mostly in the GreenLab family [21] and variants of the STICS [6], CERES [32], SUNFLO [40] models,
for different species. As such, it provides an interesting tool in the process of model comparison and
benchmarking in the plant growth community as illustrated in [2]. Even if some specific classes of the
platform are specifically derived for plant growth models (environment class, specific plant architectural
class, some tools to handle experimental data ...) and the platform is so far exclusively used in the plant
growth modeling community, its scope is actually broader and could find applications for other discrete
dynamic models. A broader diffusion of the platform shall be done after further consolidation tests, and
an educative version is also tested in courses on ’Mathematical Modelling’ at master level. The detailed
description of software conception and engineering of the platform will be published in another article.

The current efforts to improve the platform first concern the implementation of new specific analysis
methods. Regarding sensitivity analysis, some works are currently done to extend Sobol’s method to
correlated inputs and to group analysis [71], a method particularly suited to models of complex systems
characterized by several sub-models. In terms of parameter estimation, a more general approach to
maximum likelihood estimation is also developed based on a stochastic variant of a generalized EM
(Expectation-Maximization) algorithm as described in [59]. An objective is also to be able to handle
mixed-effects models in order to describe plant populations and estimate the interindividual variability
as illustrated in [3]. Stochastic EM algorithms can also be used for this purpose [37].

From a computational point of view, our objective is to provide a stronger parallel implementation for
distributed computing. So far, only the bootstrap algorithm used to compute the confidence interval of
estimated parameters (see section 5.2) and Sobol algorithm (see section 2.3.3) can benefit from distributed
computing via MPI (Message Passing Interface) or OpenMP (Open Multiprocessing) approaches. The
objective is to enable the possibility of distributed computation at more elementary levels (each time step
for example) which would thus benefit to more methods, specifically the costly particle-based methods
like convolution particle filtering (see section 5.2) or sequential methods for stochastic EM.

More generally, the platform should evolve towards an EDSL (embedded domain-specific languages),
with the objective to ease the development of models, the calls of analysis methods and the use of parallel
architectures for computation.

Acknowledgements. We are grateful to our research colleagues at ITB (French Institute for Sugar Beet Research)
for providing experimental data for LNAS model evaluation.
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