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computation time was used by combining two filters consecutively activated in

the same iteration. Finally, we proposed to complete the lack of spatial infor-

mation of the sparse-observation network by adding a mobile sensor, which was

routed to the location where the cell-by-cell output estimation error was the

highest. Experimental results in the context of the standard lid-driven cavity

problem revealed the presence of few zones of interest, where fixed sensors can

be deployed to increase performances in terms of convergence speed and esti-

mation quality. Finally, the study showed the feasibility of introducing some

additional parameters which act as degrees of freedom, to perform large-eddy

simulation of turbulent flows without numerical instabilities.
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1. Introduction

This study aims to investigate spatio-temporal monitoring of fluid flow be-

havior by collecting data from a sensor network. In this kind of problem, flow

and concentration fields are usually computed using data assimilation tech-

niques. However, typical issues such as modeling, learning and sensor network

design are regularly encountered. Generally, the model based on physical knowl-

edge is supposed to be sufficiently refined and the spatial description of the study

area is well defined. When experimental data are approximate and uncertainties

result from the lack of sufficient physical knowledge, it is preferable to use an

adaptive model. We proposed to build an adaptive model by merging the de-

terministic knowledge of physics with the statistical knowledge of filtered data.

The main difference lay in the fact that the constructed model could be consid-

ered as a semi-physical model. Indeed, new degrees of freedom were added and

the model was able to adapt to different kinds of driving behavior with the help

of statistical methods. Our approach consisted in a state-space filtering problem

with the objective of learning the system parameters of a conventional compu-

tational fluid dynamic (CFD) model. The a priori knowledge of the physical
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laws that govern the studied system was introduced by a Navier-Stokes model

discretized by the lattice Boltzmann approach for fluid flow simulation [1], [2],

[3], [4], [5]. This deterministic model which operated in the forward direction,

was able to reproduce the macroscopic behavior of a fluid accurately by a micro-

scopic simulation of particle dynamics. Its alternative multiple-relaxation-time

form did not only improve the stability of the method [6], [7] but also allowed

the introduction of additional degrees of freedom which had to be identified

like the synaptic weights of a neural network. Local knowledge was then sta-

tistically inducted into the model by performing a sequential learning of these

new parameters and an estimation of the fluid flow velocity field directly from

measurements of the real environment. Our goal was to develop an efficient

method to incorporate measures so as to ensure that the semi-physical model

could adapt to the actual behavior of the system. The low spatial density of

measurements, the large amount of data inherent to environmental issues and

the nonlinearity of the LBM led us to use a sequential state-parameter estima-

tion technique based on the EnKF algorithm [8], [9], [10]. For that purpose,

a state-space representation of the GLBE has been defined for the recursive

estimation procedure [11]. Besides, to estimate both uncertain parameters and

state variables conjointly, a dual formulation based on the addition of a second

filter running simultaneously was proposed. This technique reduced the com-

putational cost in the presence of a large number of parameters compared to a

conventional joint estimation method [12]. Finally, to estimate the total num-

ber of variables in a suitably way, the lack of available information also had to

be considered. Consequently, a sensor network design strategy was developed

to collect relevant information on a given environment. The idea consisted in

adapting the observatory network in function of the cell-by-cell output estima-

tion error calculations. The lack of spatial information of a sparse-observation

network was completed by adding a mobile sensor which moved to the position

where the value of the analysis output error covariance matrix was high.

The structure of the article is the following. In section 2, the lattice Boltz-

mann model is derived under its generalized form and a mathematical standard
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state-space representation is defined in section 3. In section 4, the dual state-

parameter ensemble Kalman filter algorithm is studied and a compatible sensor

network deployment strategy is detailed. Then our proposed model fusion ap-

proach is applied in the case of lid-driven cavity flow in section 5. Finally,

concluding remarks and perspectives are given in section 6.

2. Lattice Boltzmann model

2.1. General framework

The LBM is a numerical method based on Boltzmann kinetic theory and can

be expressed in terms of the probability to find a fluid particle, in the vicinity

of a given location and time, that is moving in one of a number of discrete

directions. The particular structure considered in this work is the so called

D2Q9 model, which is a two-dimensional lattice with nine links representing

nine velocity vectors (including the zero velocity). In this model [1], space is

discretized into square lattice whose spatial step is δx. The time step δt was

chosen so that the unit of velocity c = δx/δt remained constant during the whole

study. Particles move along the links of the square lattice from one node of the

grid to one of its neighbors as illustrated by the nine vectors in figure 1 and

given by:

eα =





(0, 0)
t
, α = 0

(
cos
[
(α− 1)

π

2

]
, sin

[
(α− 1)

π

2

])t
, α = 1, . . . , 4

(
cos
[
(2α− 9)

π

4

]
, sin

[
(2α− 9)

π

4

])t
, α = 5, . . . , 8

(1)

The nine discrete velocities were given by:

ξα = eα
δx
δt
, α = 0, . . . , 8 (2)

The single-particle velocity distribution function along the α direction at a

particular discrete time t and at location r was denoted as fα(r, t). These
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Figure 1: Vectors along the links of the square lattice, as used in D2Q9 LBM.

distribution functions evolved according to a Boltzmann equation that is discrete

in both space and time:

fα(r+ ξα δt, t+ δt) = fα(r, t) + Ω (fα(r, t)) (3)

The evolution consisted of two fundamental steps: the advection step (motion to

the relevant neighbors) and the collision step (redistribution of the distribution

at each node). The most convenient choice for the collision operator Ω was

a single time relaxation form based on the BGK approximation [13], i.e. by

applying a linearization around an equilibrium distribution function feq
α defined

with respect to the conservation laws:

Ω(fα) = −
δt
λ

(fα − feq
α ) (4)

The dimensionless relaxation time λ characterizes the return to equilibrium and

must satisfy the stability condition of the explicit Euler scheme:

0 ≤
δt
λ

≤ 2 (5)

It is advised to get rid of the null value, since otherwise it would mean that the

equilibrium state has already been reached. One commonly denotes by τ = λ/δt

the dimensionless relaxation time. For an athermal medium, the conserved

macroscopic quantities are the density ρ and the momentum j = ρu where u is

the fluid velocity (the energy is not considered as a conserved quantity). These
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conserved quantities are related to the distributions by:





ρ =

8∑

α=0

fα =

8∑

α=0

feq
α

j =

8∑

α=0

ξα fα =

8∑

α=0

ξα feq
α

(6)

Finally, the equilibrium distribution functions may be computed at each time

step for each node from the conserved macroscopic quantities:

feq
α = wα ρ

(
1 +

ξα · u

c2s
+

1

2

(
ξα · u

c2s

)2

−
u2

2c2s

)
(7)

In this suitable formulation [2, 1], the speed of sound cs and the weighting

factors wα depend on the lattice geometry. For the D2Q9 model, the speed of

sound is defined as c2s = c2/3 and the weighting factors are given by:

wα =





4/9, α = 0

1/9, α = 1, . . . , 4

1/36, α = 5, . . . , 8

(8)

Figure 2 gives an overview of the stream and collide steps for a fluid cell during

one time step.

Sometimes, for a given direction α 6= 0, the corresponding neighbor cell

may be solid. In this case, the unknown incoming distribution function along

the direction α had to be constructed by setting artificial boundary conditions.

The no-slip (or homogeneous Dirichlet) boundary condition which required that

the normal and tangential components of the fluid velocity along the edge of

the obstacle be zero, was approximated using the standard bounce-back rule.

Concretely, the known outgoing distribution function pointing into the solid re-

enters the grid at the same node, but associated with the opposite direction α̃.

If the obstacle is moving, fluid particles moving across the solid cells have to be

accelerated. This can be done by adding an artificial forcing term, which de-

pends on the velocity of the obstacle, during streaming. This non-homogeneous

Dirichlet boundary condition is discussed in detail in [14, 15].

6



Figure 2: Advection-collision process for a fluid cell: (a) Select fluid cell to treat, (b) Stream

fα from the relevant neighbors, (c) Full set of streamed fα, (d) Collide streamed fα by

computing ρ, j and f
eq

α , (e) Store new fα in target grid and continue with next cell.

The classical Navier-Stokes equations can be recovered from the macroscopic

lattice Boltzmann equations by a Chapman-Enskog expansion procedure [3].

Moreover, other physical quantities as the pressure p = c2sρ directly depend

on the density [4, 5] and the kinematic viscosity ν can be obtained from the

relaxation time as follows:

ν = c2sδt

(
λ

δt
−

1

2

)
(9)

2.2. Smagorinsky subgrid model

In the case of turbulent flows, i.e. high Reynolds numbers, the kinematic

viscosity value decreases which implies decreasing λ/δt toward 1/2 (see equation

(9) above). Unfortunately, considering (5), a value of δt/λ close to 2 leads to

numerical instabilities. One solution proposed in [16] to perform large-eddy sim-

ulation (LES) of turbulent flows consists in using the Smagorinsky subgrid model

[17]. Note that such subgrid model have nothing to do with grid refinement. Its

primary use is to represent the influence of the unresolved small scales (below

the lattice spacing) by locally adding a positive turbulent (or eddy) viscosity

νt to the kinematic shear viscosity so that ν∗ = ν + νt. Concretely, the single-

relaxation-time approximation is abandoned and a new spatially-dependent di-
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mensionless relaxation time τ∗ is computed at each time step as follows (see [4]

for details):

τ∗ =
1

2

(
τ +

√
τ2 +

2CSmago δ
2
x

ρ0 c4s δ
2
t

|Πneq |

)
(10)

Here, CSmago is known as the Smagorinsky constant whose value is empiri-

cally obtained, ρ0 denotes the mean density and Πneq corresponds to the non-

equilibrium stress tensor where:

|Πneq | =

√∑

i,j

Πneq
ij Πneq

ij (11)

The subscript indices i and j had been used to identify the direction in Cartesian

space and Πneq
ij could be calculated for a given node only using neighboring nodes

from the following relation where the notation ξαi denoted the ith Cartesian

component of the vector ξα:

Πneq
ij =

8∑

α=0

ξαiξαj (fα − feq
α ) (12)

2.3. Generalized lattice Boltzmann equation

The GLBE introduced by d’Humières [6, 7] was used in this work. Due

to its flexibility in using disparate relaxation times, the GLBE provided nu-

merical stability at coarse grids. The idea consisted in associating the vector

of velocity distribution functions f = (f0, . . . , f8)
t
to the vector of moments

m = (m0, . . . ,m8)
t
. Each moment mα was defined as a linear combination of

velocity distribution functions. Consequently, there existed a linear transforma-

tion matrix M ∈ M9(R) such as m = M f which transformed a vector in the

vector space spanned by the discrete velocities into a vector in the vector space
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spanned by the moments:

M =




1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 c 0 −c 0 c −c −c c

0 −2 0 2 0 1 −1 −1 1

0 0 c 0 −c c c −c −c

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1




(13)

In this manner, the nine components of the vector m have a physical interpre-

tation: m0 = ρ is the density, m1 = e is related to the kinetic energy, m2 = χ

is related to the kinetic energy square, m3 = jx and m5 = jy are the x and

y components of the momentum, m4 = qx and m6 = qy are proportional to

the x and y components of the energy flux, and m7 = Πxx and m8 = Πxy

corresponded to the diagonal and off-diagonal components of the viscous stress

tensor. Explicitly, these moments were constructed by applying the Gram-

Schmidt orthogonalization procedure to polynomials of Cartesian components

of the discrete velocities [7, 18]. The matrix M thus constructed is naturally

an orthogonal matrix invertible. Besides, it is interesting to note that m0, m3

and m5 correspond to the conserved macroscopic quantities of (6). Thus, the

collision operator Ω is now described in moment space:

Ω(mα) = −
δt
λα

(mα −meq
α ) (14)

As a result, the non-conserved moments relaxed linearly towards an equilibrium

state according to simple relaxation equations with constant relaxation times

λα for α = {0, . . . , 8}. Obviously, the conserved moments were not affected by

collisions since mα = meq
α for α = {0, 3, 5}. Consequently, the actual values of

the relaxation parameters sα = δt/λα for conserved moments were irrelevant and

set to zero in what followed. The stability condition of the explicit Euler scheme
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must be satisfied for the non-conserved moments, i.e. for α = {1, 2, 4, 6, 7, 8}:

0 < sα ≤ 2 (15)

With the particular relaxation parameter vector s = (0, s1, s2, 0, s4, 0, s6, s7, s8)
t

and the corresponding diagonal relaxation matrix S = diag(s) ∈ M9(R), the

Boltzmann equation became:

f(r+ ξδt, t+ δt) = f(r, t)−M−1S [m(r, t)−meq(r, t)] (16)

In this new Boltzmann equation, the collision step was executed in the moment

space, while the advection step was performed in the distribution function space.

The column vector f(r + ξδt, t+ δt) is defined by:

f(r+ ξδt, t) = (f0(r+ ξ0δt, t), . . . , f8(r+ ξ8δt, t))
t (17)

The equilibrium values of the non-conserved moments in the above equations

were nonlinear polynomial functions of the conserved quantities whose expres-

sion values were obtained by computing the moments of the continuous Maxwell-

Boltzmann velocity distribution function. This choice of parameters respected

symmetry arguments, yielded Galilean invariance and optimized isotropy and

stability of the model. See [7] for the complete derivation of these properties.

Besides, the authors also recommend fixing s4 = s6 when the no-slip boundary

condition is applied and s7 = s8 to enforce isotropy. Finally, the shear viscosity

ν and the bulk viscosity ς of the model are given by:

ν =
1

3

(
1

s7
−

1

2

)
c2δt (18)

and:

ς =
2

9

(
1

s1
−

1

2

)
c2δt (19)

Thus, a distinct advantage of the MRT model was the possibility to indepen-

dently control the kinematic shear and bulk viscosities with the help of relax-

ation parameters. Consequently, only s2, s4 and s6 had no physical significance

but remained adjustable to improve stability. The values of these unknown pa-

rameters could be determined by applying the standard von Neumann stability

analysis to the linearized Boltzmann equation [7].
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3. Nonlinear state-space representation

Our goal is to make the mathematical representation of the LBM compat-

ible with a recursive estimation procedure. Concretely, we wished to convert

the MRT model to a state-space representation which is perfectly adapted to

the EnKF method. By definition, state variables summarize the effects of past

decisions and describe the system at a given time. They constitute the com-

ponents of a state vector whose time sequence characterizes system dynamics

and contributes to forecast future behavior. Consequently, the LBM state-space

representation is spontaneously obtained by assigning to the moments of each

cell the role of state variable. Moreover, in the MRT approach, some relaxation

parameters have no physical meaning and may assume the role of additional

degrees of freedom.

3.1. Moment space description

Starting from the definition of the GLBE approach, and after a slightly

rewriting work, the MRT evolution equation (16) can be modified to get:

mα(r, t+ δt) =

8∑

i,j=0

MαiM
−1
ij

[
(1− sj)mj(r− ξiδt, t) + sjm

eq
j (r − ξiδt, t)

]

(20)

which can be rewritten in the following concise vector form:

m(r, t+ δt) = Mdiag
(
M−1 [(I9 − S)V (r− ξδt, t) + SV eq(r− ξδt, t)]

)

(21)

where I9 is the identity matrix of order 9 and V (r − ξδt, t) and V eq(r − ξδt, t)

are two square matrices of order 9, which are given by:

V (r− ξδt, t) = [m(r− ξ0δt, t) . . . m(r− ξ8δt, t)] (22)

and:

V eq(r− ξδt, t) = [meq(r − ξ0δt, t) . . . meq(r− ξ8δt, t)] (23)
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As we will see later on, it may be judicious to consider that the relaxation

parameters differ spatially. This possibility is simply anticipated by considering

S(r) instead of S in (21).

Finally, by remembering that for each location r of the grid at time t, the

equilibrium moments meq
α (r, t) are nonlinear polynomial functions of the con-

served moments m0(r, t), m3(r, t) and m5(r, t) [7], we have succeeded in entirely

expressing the lattice Boltzmann evolution equation in the vector space spanned

by the moments. However, such a formulation requires the knowledge of all the

moments from all the neighbors which increases the computational cost.

Besides, as we have previously exposed, each component of the moment

vector has a physical interpretation. In particular, the components m0, m3 and

m5 stand for density and x and y components of the momentum respectively

can be directly used to compute the x and y components of the fluid velocity

as follows:

u =


 ux

uy


 =


 jx/ρ

jy/ρ


 =


 m3/m0

m5/m0


 (24)

In this manner, the fluid velocity can be also locally expressed with respect to

the moment vector.

3.2. Towards one multi-dimensional formulation

From the previous relation (21), we observed that the temporal evolution

of the moment vector on a lattice site r did not only depend on the moment

vector on this particular site, but also (and highly) on the moment vectors of

its neighborhood. This multi-dimensional representation of the moment vari-

ables could be expressed as vector form, which was more adapted to state-space

analysis. Thus all the moment vectors of the domain were concatenated in a

single column vector m ∈ R
9Nn , which represented the state of the system, and

where Nn = Nx × Ny was the total number of nodes. This step is graphically

illustrated in figure 3 and from now on, each underlying vector corresponds to

the concatenation of the Nn corresponding vectors of the domain.
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Figure 3: Concatenation step of all the moment vectors of the domain.

From then on, an exhaustive description of the whole domain, i.e. the

perfect knowledge of each solid cell position (and the corresponding boundary

conditions), enabled us to write:

m(t+ δt) = g (m(t), s) (25)

where g is the state-space forward propagator. In the particular case where

the relaxation parameters are spatially heterogeneous, the vector of relaxation

parameters over the entire domain s must be considered instead of s in (25).

By following the same line and defining the nonlinear vector function h, we

could generalize (24) and obtained the output equation (26), where u ∈ R
2Nn

stands for the fluid velocity over the entire domain.

u(t+ δt) = h (m(t+ δt)) (26)

3.3. Change of notation

In order to relieve the state-space representation and to use a typical control

engineering formalism, we applied a change of notation. The vector of moments

over the entire domain which represented the state of the system was from then

on noted x and denoted the state vector. The vector of relaxation parameters
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over the entire domain simply became the vector of parameters θ and the vector

of fluid velocity over the entire domain changes into y the output vector. Finally

the discrete time was represented as subscript indices and we replaced t+ δt by

t+1. Consequently, we could write the following nonlinear discrete time system:




xt+1 = g (xt, θ)

yt+1 = h (xt+1)

(27)

Let us underline the distinction between the vector of fluid velocity over the

entire domain u ∈ R
2Nn and the observation vector y. Indeed, the expert does

not automatically have measurements at each lattice site, but only at sensor

locations. Concretely, if each sensor measures the x and the y component of the

fluid velocity and if Nc denotes the total number of available sensors, we have

y ∈ R
2Nc .

In the case where an input command Ut must be taken into account, e.g. in

the case of forced flux, the system (27) becomes:





xt+1 = g (xt, θ,Ut)

yt+1 = h (xt+1)

(28)

4. Dual ensemble Kalman filter for data assimilation

4.1. State of the art

In practice, physical data assimilation applied to environmental surveillance

encounters many difficulties. By excluding variational techniques, we turned

our attention to sequential filtering techniques based on a prediction-correction

scheme. Most difficulties in filtering algorithms design are often caused by

the nature of the evolution model. The spatio-temporal evolution of high-

dimensional nonlinear systems, in presence of real-time estimation constraints,

fast-sampling constraints (which ensure numerical stability) and uncertainties,

make the optimization of existing filtering methods indispensable. The dual

EnKF which simultaneously optimizes model parameters and state variables is

a recursive method suitable for this kind of problem.
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Many approaches, which combined both parameter identification and state

estimation of a dynamic system, proceed with joint estimation, i.e. where the

unknown state and parameter vectors were concatenated to form the new aug-

mented state vector [19, 20]. It was preferable to separate the state and param-

eter estimations for high-dimensional problems in order to reduce the length

of the vector and the size of matrices. This approach consisted in combining

two filters consecutively activated in the same iteration to estimate first, the

parameters from the last updated state and, second, the new state from the

parameters previously analyzed. The procedure did not require any order of

priority between the state and parameter estimations. This kind of filtering can

be used to estimate most uncertain sources, even for time-varying parameters.

This approach was initially applied to a standard Kalman Filter (KF) in the

context of hydrology [21, 22].

If the process to be estimated and (or) the measurement relationship to the

process were nonlinear, a modified version of the Kalman filter was required.

Thus, some examples of dual estimation were studied with the extended Kalman

filter (EKF) [23], especially for neural model estimation [24, 25], where the state-

propagation Jacobian matrix was evaluated at each time step around the current

estimate and used in the Kalman filter equations. In case of high nonlinearity,

both prior and posterior probability distributions were not Gaussian anymore.

As a result, the first and second moments are not sufficient to characterize

the entire state distribution. This approximation often led to instability or

divergence [26, 8, 27, 28].

The unscented Kalman filter (UKF), proposed by Julier and Uhlmann, per-

mits to enhance the robustness to highly nonlinear systems without significantly

increasing the computational complexity [29]. In addition, this technique does

not require the derivation of any Jacobians. The UKF uses a deterministic

sampling technique to pick a minimal set of sample points, called sigma points,

whose number depends on the length of the state vector. These sigma points

are then propagated through the nonlinear system and capture the posterior

mean and covariance accurately to the second order for any nonlinearity, while
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minimizing the third order (Taylor series expansion).

The computational complexity of both EKF and UKF algorithms is cubic,

i.e. O(n3) where n is the dimension of the state vector, due to the covariance

matrix update. Unfortunately, this computation quickly becomes intractable in

practice for large state dimension.

An alternative to overcome this drawback was to use a suboptimal estimator.

The EnKF, proposed by Evensen, is a suboptimal particle filter of stochastic

nature based on the Monte Carlo simulation technique [8, 9, 10, 30, 31, 32].

The fitness for the estimation of a high dimensional vector of a nonlinear model

with a reduced dimension vector observation led to use this method. Further-

more, the method gave good results for the joint estimation of state variables

and parameters. It is actually recognized in [33] that this method approximates

the probability density function (pdf) by a set of discrete particles, typically

50 to 100 is sufficient, hence making feasible implementation of the EnKF in

situations where the forward step of the data assimilation is computationally

expensive. With EnKF, the a posteriori pdf of the exact particle filter method

was approximated to a simple Gaussian estimation with only the first two mo-

ments. For linear model, overall integration was consistent with integration of

the exact equation error covariance within the limits of a set of infinite size.

Obviously the method was sub-optimal for nonlinear system, due to a lower

estimate of the a posteriori probability density, which could lead to divergence

in some rare cases, although the number of achievements was endless. However,

the literature suggests some localization methods to reduce the impact of mea-

sures located very far from the prediction point. Newer versions of estimation

Monte Carlo algorithm are as fast as EnKF and have an asymptotic behavior as

robust as the particle filter based on the estimation of a true posterior probabil-

ity density by a Gaussian mixture [34]. Although its use depends on the choice

of two important parameters, the adaptive parameter bandwidth α and mixing

parameter setting h, this adaptive filter Gaussian mixture could quite suitable

for a more robust estimate for data assimilation.

The EnKF principle consists in evaluating the empirical covariance matrix
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of an ensemble of possible state vectors randomly generated from the current

state, instead of computing its exact value by propagation through the model.

By assuming a Gaussian distribution of state and measurements, it was possible

to apply a linear correction procedure. As a result, the computational complex-

ity was linear, i.e. O(m3) where m was the product between the dimension of

the state vector, the number of measurements and the number of samples per

iteration. The computational cost was largely lower than the one obtained by

the previous filters. For example, let us consider the estimation of pollutant

concentration field in a square area of 1km × 1km. For a spatial step of 1m, 10

measurements and 50 Monte Carlo samples per iteration, the EnKF algorithmic

cost is O(5.0 × 108) versus O(1018) for the EKF and UKF. Thus, the EnKF is

capable to estimate a state vector with several thousands of variables, while

operating near the Cramer-Rao lower bound [35, 36, 37]. The EnKF approach

is also naturally parallelizable since each ensemble member can be updated in-

dependently. Despite some resemblances to particle filters, the EnKF belongs to

the Gaussian filter family due to its limitation to second-order statistics. Nev-

ertheless, this kind of filtering provides proper estimation of the state with a

relatively low number of samples compared to particle filtering. Moreover, the

EnKF gives better results compared to variational methods when the dimen-

sion of the state vector is large. Indeed, it requires neither a derivation of the

adjoint equations nor a retrograde integration of the evolution model. Finally,

let us underline that a dual state-parameter estimation approach based on the

ensemble Kalman filter in the case of constant parameters with a spatially dense

observatory network was presented in [12].

4.2. General framework and notations

The EnKF is a sequential Monte Carlo method which empirically expresses

the statistical properties of the estimator. For that purpose, the forecast er-

ror covariance matrix at time t + 1 is not computed anymore by propagating

in time the analysis error covariance matrix at time t, but by propagating a

finite ensemble of possible state vectors, which are randomly generated. The

17



error statistics, which is represented graphically by a cloud of dots, is propa-

gated by the model without applying any linearization step. In what follows we

considered a nonlinear discrete time system of the form:

xt+1 = g (xt, θ,Ut) +wt (29)

In this system, the state-space forward propagator g is a nonlinear vector func-

tion which does not only depend on the state vector xt, but also on a hypothetic

input command Ut (forcing term) and sometimes on a vector of model param-

eters θ. The process noise wt is assumed to be additive Gaussian, with zero

mean and with covariance matrix Q:

wt ∼ N (0, Q) (30)

The nonlinear function h in the measurement equation (31) relates the state to

the vector of output observations yt+1 available at time t+ 1.

yt+1 = h (xt+1) + vt+1 (31)

All sources of errors in the observation are reflected by the vector vt+1, which

is assumed to be Gaussian, with zero mean and with covariance matrix R:

vt+1 ∼ N (0, R) (32)

The process and measurement noises are assumed to be uncorrelated. The

evolution mechanism of the EnKF is therefore based on a prediction-correction

scheme.

During the prediction step, the forecast state ensemble is generated by reit-

eratingN times (the number of ensemble members) the full nonlinear dynamical

model (29). By this way, each particle explores the state space independently:

x
f,i
t+1 = g

(
x
a,i
t , θ,Ut

)
+wi

t, i = 1, . . . , N (33)

In this relation, the vector xf,i
t+1 represents the ith forecast state ensemble mem-

ber at time t+ 1 and wi
t obviously indicates the associated process noise. Sim-

ilarly, the vector xa,i
t corresponds to the ith analysis state ensemble member at
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previous time t. The forecast output ensemble can be established as follow:

y
f,i
t+1 = h

(
x
f,i
t+1

)
, i = 1, . . . , N (34)

Here, the vector yf,i
t+1 indicates the ith forecast output ensemble member at time

t + 1. The forecast error covariance matrix P
f
t+1 at time t + 1 can be empiri-

cally estimated. Nevertheless, contrary to the Kalman filter, this calculation is

optional. Indeed, this matrix does not involve in the evolution mechanism of

the ensemble Kalman filter. However, the empirical estimation methodology is

proposed in what follows for its role in another part of the algorithm. In a first

time, the idea consists in estimating the true state of the system by calculating

the ensemble mean x
f
t+1 at time t+ 1:

x
f
t+1 =

1

N

N∑

i=1

x
f,i
t+1 (35)

The unbiased empirical estimate P̂ f
t+1 of the forecast error covariance matrix at

time t+ 1 was then obtained in a second time by the following equation:

P̂ f
t+1 =

1

N − 1

N∑

i=1

(
x
f,i
t+1 − x

f
t+1

)(
x
f,i
t+1 − x

f
t+1

)t
(36)

In order to avoid the phenomenon of particle coalescence, Burgers and its co-

authors showed in 1998 the necessity, when ensemble members were updated,

to perturb observations and to empirically estimate the measurement error co-

variance matrix which appeared in the Kalman gain calculation [9, 10]. In this

manner, the statistical sample of the estimates was constantly updated, which

ensured sufficient particle diffusion and avoided divergence of the algorithm.

The idea consisted in perturbing the current observation by adding a zero mean

random variable with covariance matrix R, so that:

yi
t+1 = yt+1 + vi

t+1, i = 1, . . . , N (37)

The vector yi
t+1 represents the ith perturbed observation ensemble member

at time t + 1 and vi
t+1 indicates the associated perturbation. The unbiased
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empirical estimate R̂t+1 of the observation error covariance matrix at time t+1

is then obtained with the help of hypothesis (32) by:

R̂t+1 =
1

N − 1

N∑

i=1

(
vi
t+1

) (
vi
t+1

)t
(38)

In the limit of an infinite ensemble, this matrix converges towards the prescribed

error covariance matrix R.

The correction step consisted in updating each forecast state ensemble mem-

ber by using the current observation. For that, the following linear correction

equation is applied:

x
a,i
t+1 = x

f,i
t+1 +Kt+1

(
yi
t+1 − y

f,i
t+1

)
, i = 1, . . . , N (39)

The vector xa,i
t+1 represents the ith analysis state ensemble member at time t+1.

The Kalman gain Kt+1 is expressed starting from ensemble covariance matrices

as follows:

Kt+1 = P̂ f
xy,t+1

(
P̂ f
yy,t+1 + R̂t+1

)
−1

(40)

In this expression, P̂ f
xy,t+1 indicates the unbiased empirical estimate of the fore-

cast cross error covariance matrix of state and output at time t+ 1. Similarly,

P̂ f
yy,t+1 represents the unbiased empirical estimate of the forecast output error

covariance matrix at time t + 1. These estimates are obtained by following a

similar protocol to the one used to compute P̂ f
t+1. In this manner, by introduc-

ing y
f
t+1 the empirical mean of the forecast output ensemble at time t + 1, we

obtain:

P̂ f
xy,t+1 =

1

N − 1

N∑

i=1

(
x
f,i
t+1 − x

f
t+1

)(
y
f,i
t+1 − y

f
t+1

)t
(41)

P̂ f
yy,t+1 =

1

N − 1

N∑

i=1

(
y
f,i
t+1 − y

f
t+1

)(
y
f,i
t+1 − y

f
t+1

)t
(42)

If the number of measurements is larger than the number of ensemble members,

the matrix to be inversed in (40) may become singular. In this case, Evensen

recommends to use a pseudo inversion based on singular value decomposition
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[10]. Besides, the standard formulation of the Kalman gain can be recovered by

linearizing the operator h which indirectly appears in relation (40). However,

the advantages of this representation are that no linearization is required and

there is no need to propagate the forecast error covariance matrix. This tech-

nique considerably reduces the computational cost and save storage capacity

[36]. Moreover, since each ensemble member evolves in time independently, the

ensemble Kalman filter is particularly well suited for parallel processing.

4.3. Dual state-parameter estimation with EnKF

At this point, we have supposed to entirely know the vector of parameters

which appears in the nonlinear dynamic system (29). In practice, most of these

parameters may be unknown or imprecise. The filtering method had to preserve

good convergence properties when process state and model parameters were

simultaneously estimated from available measurements. There are two ways to

satisfy this requirement.

The first method proceeds by joint estimation and consists in augmenting the

unknown state vector by the unknown vector of parameters. The model error

covariance matrix Q then synthesizes the uncertainty associated with state and

parameters. It is generally recommended to reduce the confidence level of the

forecast parameters to maximize the impact of measurements during the update

process. However, to prevent manipulating a high-dimensional augmented state

vector when the number of parameters is excessive, we prefer avoiding this

configuration and using the second method which is more appropriate.

This approach consists in combining two filters in order to dually estimate,

alternatively and separately at each iteration, the model parameters from the

previous updated state, then the new state from the parameters freshly an-

alyzed. The vector of parameters is estimated similarly to the state vector,

but a forced random walk is specified for the parameters, where the proposal

distribution ηt is Gaussian with zero mean and covariance matrix equal to Z:

ηt ∼ N (0, Z) (43)
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In this manner, the parameter prediction step becomes:

θ
f,i
t+1 = θ

a,i
t + ηi

t
(44)

The vector θf,i
t+1 represents the ith forecast parameter ensemble member at time

t + 1 and ηi
t indicates the associated additive noise. Similarly, the vector θ

a,i
t

corresponds to the ith analysis parameter ensemble member at time t. The

forecast parameter ensemble are then updated from the available measurements.

For that, the forecast state ensemble at time t+1 is firstly carried out from the

forecast parameter ensemble at time t+1 and from the analysis state ensemble

at time t. Thus:

x
f,i
t+1 = g

(
x
a,i
t , θf,i

t+1,Ut

)
, i = 1, . . . , N (45)

The forecast output ensemble is secondly obtained by:

y
f,i
t+1 = h

(
x
f,i
t+1

)
, i = 1, . . . , N (46)

By remembering that we have to perturb observations (cf. equation (37)) and

to empirically estimate the measurement error covariance matrix (cf. equation

(38)), the forecast parameter ensemble was updated with the following Kalman

analysis step:

θ
a,i
t+1 = θ

f,i
t+1 +K1t+1

(
yi
t+1 − y

f,i
t+1

)
, i = 1, . . . , N (47)

The Kalman gain, which is used to correct the parameter trajectory, was com-

puted using the following equation:

K1t+1 = P̂ f
θy,t+1

(
P̂ f
yy,t+1 + R̂t+1

)
−1

(48)

In this relation, P̂ f
θy,t+1 indicates the unbiased empirical estimate of the forecast

cross error covariance matrix of parameters and output at time t+ 1.

Once the forecast parameter ensemble has been updated, the second filter

took over to estimate the state of the system at time t + 1 by supposing that

the model parameters were known. In other words, we granted our confidence
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to the parameter ensemble recently updated by the first filter. The prediction-

correction mechanism was then similar to the classical EnKF one. First, the

forecast state ensemble at time t + 1 was carried out from the analysis state

ensemble at time t and from the analysis parameter ensemble at time t+ 1:

x
f,i
t+1 = g

(
x
a,i
t , θa,i

t+1,Ut

)
+wi

t, i = 1, . . . , N (49)

Second, the forecast output ensemble is then calculated by:

y
f,i
t+1 = h

(
x
f,i
t+1

)
, i = 1, . . . , N (50)

Then, the observations are once more perturbed and we empirically estimate

the measurement error covariance matrix. From then on, the forecast state

ensemble was updated with the following Kalman analysis step:

x
a,i
t+1 = x

f,i
t+1 +K2t+1

(
yi
t+1 − y

f,i
t+1

)
, i = 1, . . . , N (51)

The Kalman gain, which is used to correct the state trajectory, is computed as

previously (cf. equation (40)). Let us underline that the prediction-correction

procedure for approximating the state of the system can precede the one which

operates on the model parameters without any consequence on the estimation

quality. If the command input is unknown, we can estimate it by applying the

same procedure than the one used for parameter estimation, i.e. by associating

to the input command a proper uncertainty.

4.4. Sensor network deployment strategy for dual state-parameter estimation

The estimation of both parameters and state variables on a large grid often

leads to the classical observation problem. Indeed, a reduction of the sensor

number significantly deteriorates estimation-quality [38]. This loss of precision

results from the lack of available information to estimate the state. In the

case of a linear spatio-temporal dispersion model, the rank of the observation

matrix decreases if the number of sensors is low [39]. Moreover, by using a

single mobile sensor, the rank of the observation matrix also decreases when

the distance between the sensor and the origin of the flux grows up. Some
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works on the network tolerance to loss of sensors, in the context of dynamic

system surveillance, have allowed to analyze the observability in function of the

set of sensors which are intact [40]. In the nonlinear case, the largest of the

eigenvalues of the observability gramian, i.e. the largest of the eigenvalues of

the positive semi-defined matrix which is solution of the Lyapunov equation, is

related to the estimation quality of the considered filter [41]. This quality can

also be measured by evaluating the estimation error variance as criterion [38].

Nevertheless, these criteria do not take into account the spatial properties of the

estimation quality. Indeed, although it is possible to detect the sensors whose

loss would significantly degrade the precision of estimation, no cartography of

uncertainties is established. In other words, there is no clue to indicate the

optimal sensor location. We propose to adapt the observatory in function of

the cell-by-cell output estimation error calculations. Thus we hope to complete

the lack of spatial information of a sparse-observation network by adding a

mobile sensor. This mobile sensor was then in charge of filling in the missing

information by collecting measures with a well-defined moving strategy. At each

observation time, the cell-by-cell output estimation error, i.e. the diagonal of

the analysis output error covariance matrix P̂ a
yy,t+1, was evaluated. This matrix

was obtained by firstly computing the analysis output ensemble at time t + 1

from the analysis state ensemble at time t+ 1:

y
a,i
t+1 = h

(
x
a,i
t+1

)
, i = 1, . . . , N (52)

From then on, by introducing ya
t+1 the empirical mean of the analysis output

ensemble at time t + 1, we were able to evaluate the analysis output error

covariance matrix at time t+ 1 as follow:

P̂ a
yy,t+1 =

1

N − 1

N∑

i=1

(
y
a,i
t+1 − ya

t+1

)(
y
a,i
t+1 − ya

t+1

)t
(53)

Note that strictly, we distinguished at each lattice site two estimation error

variances which respectively corresponded to the x and y component of the

fluid flow speed. The idea consisted in defining a uncertainty function which

depended on these variances. The mobile sensor then moved to the position
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where the value of this function was high. In other words, the mobile sensor

was sent to the position where uncertainty was the highest to collect the relevant

information. Once the target site had been designated, the sensor was assigned

to move continuously in space. Nevertheless, this approach required the use

of obstacle avoidance algorithms in presence of buildings and other obstacles.

Moreover, in the case of urban area measurements obtained from instrumented

vehicle, only on road movements were enabled. As a result, several iterations

were required to reach the target position and an optimal routing algorithm had

to be defined. New data can also be collected while the sensor is moving if the

technology is available. However, we prefered avoiding this type of movement

by means of simplicity. Indeed, our goal being to firstly validate the filtering

method applied to the lattice Boltzmann model, we choose a strategy which

does not impose any constraint on movement. Consequently, the mobile sensor

is instantaneously positioned at the lattice cell where uncertainty is the highest,

after a period of time during which some measurements had been carried out.

This supposed that the mobile sensor moved by successive jumps from cells to

cells when the consecutive highest variances were spatially spread. Obviously,

this procedure was not realistic. The aim consisted in quasi-instantaneously

completing the lack of available information and studying the influence in terms

of estimation quality.

4.5. Semi-physical dynamic modeling

Introduced in the case of artificial neural networks, the semi-physical mod-

eling consists in combining the flexibility of a behavior model implemented by

learning mechanisms with the legibility of a knowledge-based model [42, 43]. In-

deed, very frequently, and especially in manufacturing, it is inconceivable to find

a knowledge-based (or white-box) model which is satisfactory for the purpose

of interest (i.e. with low computational cost while maintaining high accuracy).

The traditional alternative is to design a behavior (or black-box) model ob-

tained from data alone, through an elaborate parameter estimation process. In

such a case, the estimated parameters have no physical meaning and cannot
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be interpreted. In other words, the model designer does not take into account

the hypothetical prior knowledge available as algebraic or differential equations.

Consequently, in response to this under-utilization of knowledge, the idea of

taking advantage of the existing knowledge while keeping the flexibility of pa-

rameterized models trained from data was then introduced under the name of

semi-physical (or gray-box) modeling.

A general methodology for designing semi-physical models was proposed in

[42]. The first step consisted in implementing as discrete-time neural network

with fixed weights the functions which known reliably. To this end, the authors

emphasized the importance of the discretization scheme used to transform dif-

ferential equations arising from physics into discrete time equations that were

suitable for numerical processing. Indeed, the stability of the recurrent network

model largely depends on the discretization scheme. Obviously, it is premature

to consider this model as a gray-box model. At this stage of development, there

are several ways of passing to a semi-physical form depending on the confidence

level which is related to the previous knowledge-based model. In the case where

the value of a parameter is unknown or imprecise, a network training procedure

based on experimental data may be set up. The simplest semi-physical model

with a single adjustable parameter is then obtained. A second level of criticism

towards the model may be considered by adding one hidden layer with non-

linear activation function. This more elaborate semi-physical model with new

adjustable synaptic weights generally reduces the modeling mean-square error

(MSE) on the test sequence. Finally, the dependence between two or more

variables may be supposed. This third level of criticism increases the number

of hidden layers and usually decreases the modeling MSE if the assumption

turns out to be true. In summary, the design process of semi-physical modeling

consists in introducing new degrees of freedom (relaxation step) under some

considerations.

Under its original form, the lattice Boltzmann scheme is derived from the dis-

cretized Boltzmann transport equation. Consequently, it is a knowledge-based

model for the kinetic theory of gases. With the aim of defining a semi-physical
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LBM (and carrying out an online estimation), we have to introduce adjustable

parameters (degrees of freedom) which act for the intrinsic memory of the model

like the synaptic weights of a neural network. For that, a level of criticism to-

wards the model may be considered. In particular, let us consider the case of

turbulent flows, which may lead to numerical instabilities due to a small kine-

matic viscosity. As we discussed in section 2, the most popular solution consists

in adopting the Smagorinsky subgrid model which locally increase the value of

the kinematic viscosity. Now, let us bear in mind that in the MRT approach,

the value of the kinematic viscosity is dependent on the relaxation parameters

s7 and s8. Hence, by inspiring from the Smagorinsky approach, we suppose

that s7 and s8 spatially differ. From these new degrees of freedom emerges an

elaborate semi-physical model. We hope to decrease the mean-square error and

compensate imprecisions such as discretization errors or approximations.

5. Application to the lid-driven cavity flow

5.1. Motivations

We consider the standard lid-driven cavity problem, which involves isother-

mal and incompressible flow in a two-dimensional square domain. In this specific

configuration, all the boundaries of the square are composed of solid cells. The

top wall moves with constant velocity tangent to the side (non-homogeneous

Dirichlet boundary condition), while the other three are stationary (homoge-

neous Dirichlet boundary condition). Although this configuration seems to be

restrictive, we choose it for several reasons. The lid-driven cavity problem is

a typical case of a physical situation which allows us to modelize transverse

velocity profiles within an urban street canyon. The term street canyon refers

to a relatively narrow street between buildings which line up continuously along

both sides, i.e. the most frequent configuration observed in urban areas. When

the wind direction above roof-top height is perpendicular to the road direction,

a vortex circulation appears and dispersion cannot occur since air and con-

sequently air pollutants such as vehicle exhaust pollutants, are trapped within

27



the street canyon, raising the concentration of this contaminants. Moreover, the

lid-driven cavity problem has long been used to test or validate new methods.

5.2. Simulation description

Some precisions concerning the simulation parameters have to be given.

Firstly, table 1 reports the different values of the parameters involved in the

lattice Boltzmann model for simulating lid-driven cavity flow. These param-

eters are defined such that the considered fluid corresponds to the ambient

air. It constitutes, except contrary mention, the default parameters for all the

tests. The Reynolds number associated with this flow is in the range of 105.

Numerical data

Characteristic length L = 1 m

Top wall velocity ux = 1 m.s−1

Kinematic viscosity ν = 1.7× 10−5 m2.s−1

Mean density ρ0 = 1.204 kg.m−3

Mach number Ma = 0.1

Number of nodes
Nx = 32

Ny = 32

Relaxation parameters

s1 = 1.1

s2 = 1.1

s4 = 1.1

s6 = 1.1

Table 1: Simulation parameters in the case of lid-driven cavity flow

Consequently, this situation involves turbulent flow, for which the Smagorin-

sky subgrid model was used for stability reasons [16, 17, 4]. The value of the

Smagorinsky constant was arbitrarily chosen such that CSmago = 0.2 for all the

tests. In the lattice Boltzmann model, the time step δt was determined with re-

spect to the physical parameters in order to satisfy the stability condition of the

explicit Euler scheme. But, this value is often largely smaller than the sampling
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cadence of most common sensors. Thus, we introduced for the observations an-

other time step δt′ such that δt ≪ δt′ . This means that the filter works in pure

prediction between two observation times. We imposed δt′ = 10 δt and except

contrary mention, 2000 observations are regularly distributed in the time inter-

val, leading to a total simulation time of about 35 s. These observations were

simulated by using a classical protocol. The first step consisted in defining x0

the reference initial state of the system. Here, x0 is the vector of equilibrium

moments over the entire domain, which was computed by considering the am-

bient air density and a null fluid velocity. The explicit Euler scheme was then

applied with the time step δt and the nonlinear vector function h provided the

reference output to estimate. In order to generate the observation sequence, the

last step consisted in adding a measurement noise with zero mean and covari-

ance matrix R at each observation time, i.e. every 10 time step. Obviously, the

vectors of this sequence were not totally exploited during the estimation, since

only information at sensor location were required in the filtering process.

5.3. Results

5.3.1. Impact of sensor network deployment strategy

First, we wished to experiment the impact of sensor network deployment

strategy on the estimation quality. For that, we consider a particular situation

in which the parameters of the GLBE were all known in order to minimize the

number of degrees of freedom. On the other hand, we suppose that only a lack

of information concerned the input command. In other words, the velocity of

the top wall was solely unknown. The x and y components of this velocity were

then treated as parameters and had to be estimated. We then defined a simple

semi-physical model with two adjustable parameters. We imposed 50 Monte

Carlo samples per iteration. Let us bear in mind that a forced random walk

is specified for the parameters, where the proposal distribution is Gaussian

with zero mean and covariance matrix Z = 1.0 × 10−8 I2. We considered

an initial state vector which differs from the reference initial state vector by

adding a random Gaussian noise with zero mean and covariance matrix Q0 =
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1.0× 10−4 I9Nn
. Here, Nn = Nx ×Ny is the total number of nodes. Similarly,

the initial input command is randomly generated by adding a random Gaussian

noise with zero mean and covariance matrix Z0 = 1.0× 10−3 I2 to the reference

solution. Concerning measurements, the observation error covariance matrix

was set to R = 1.0 × 10−7 I2Nn
. From then on, we proposed to estimate the

signal-to-noise ratio in order to evaluate measurement quality. However, the

spatio-temporal behavior of this kind of dynamic fluid flow system required the

definition of a signal-to-noise ratio for each node. Thus, we are able to establish

a sort of cartography of measurement quality. In the present case, the maximum

value of the signal-to-noise ratio is obtained where the norm of the velocity is

the highest. On the other hand, if the norm of the velocity was weak, this ratio

decreased and sometimes even became negative i.e. the signal was completely

buried in noise. The mean value of these signal-to-noise ratios over the entire

domain borders 20 dB. Finally, the model error covariance matrix was set to

Q = 1.0 × 10−7 I9Nn
so that the same confidence level was assigned to both

model prediction and observations.

As a reference, figure 4 illustrates the norm of the fluid velocity and the

streamline contours (with direction arrows) over the entire domain at the final

instant. These values was directly computed from the reference output and had

to be estimated after 2000 observations. Concerning dynamic flow, we observe

the apparition of a major vortex in the center of the cavity, which circulates in

clockwise direction. We notice two minor vortices at the inferior corners of the

cavity, which circulate in counter clockwise direction. It is at the level of these

vortices that vehicles exhaust pollutants can be trapped.

From then on, we count 4 experiments which only differ by the observatory

network.

Experiment 1

The observatory network consists of nine sensors which are randomly posi-

tioned using a uniform Gaussian distribution. In other words, no information is

exploited to optimize sensor location. These sensors are then in charge of col-

lecting information at each observation time and remain fixed during the whole
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Figure 4: Reference norm of the fluid velocity and streamline contours at the final instant.

estimation procedure. Figure 5 illustrates the estimation of the input command

vector. We remind that this vector is composed by the x and y components of

the velocity of the top wall. The y components of the estimated input command
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Figure 5: Estimation of the input command vector components (Experiment 1).
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vector converge to its reference value after about 800 observations, while the x

components requires two times more iterations due to the lack of information

inherent to random sensor placement. The estimation quality is studied by com-

puting the mean-square error between the estimated and the reference outputs

at each observation time. The MSE rapidly but quite irregularly decreases and

then stabilizes around 900 observations. We observe a MSE of about 2.0×10−4,

which is more than acceptable considering the fact that no a priori information

has been exploited to improve sensor placement.

Experiment 2

This time the observatory network consists of one single mobile sensor which

moves to the position where the output estimation error is highest, with the

hope to complete the lack of information. Figure 6 illustrates the estimation of

the input command vector. Both components of the estimated input command
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Figure 6: Estimation of the input command vector components (Experiment 2).

vector converge to their reference value after about 700 observations. Hence,

despite the fact that only one sensor is available, the estimation of the input

command vector components is faster than in the previous case. Moreover,

the estimation quality of these components is also clearly better. The strategy
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which consists in sending the mobile sensor to the sites where the variance of

the output error is the highest, tends to be particularly efficient to estimate the

input command. The estimation quality is studied as previously by computing

the MSE between the estimated and the reference outputs at each observation

time. The MSE decreases more rapidly and in a more regular manner than in

the previous experiment. Indeed, the error stabilizes around 700 observations.

We observe a mean-square error of about 1.0 × 10−4, i.e. slightly better than

those obtained with nine times more sensors. The reduction of the number of

sensors is largely compensated by introducing one mobile sensor which moves

strategically within the area.

To conclude this experiment, we want to detect the locations where the

sensor has mainly moved to. The idea being to use this information in order to

ideally position fixed sensors and to avoid the utilization of (expensive) mobile

sensors. Figure 7 gives an overview of the different locations where the sensor

has moved to during the estimation procedure. The path frequencies at each

node are illustrated by vertical bar graphs. To facilitate spatial visualization,

we represent with the same color all the sites which are located on the same

vertical line. The mobile sensor moves priorily towards the two inferior corners

of the cavity. On the other hand, the center of the cavity is totally ignored. We

notice that the sensor also moves towards the right upper corner, but with a less

important path frequency. Thus, the positions where uncertainty is the highest

are located at the level of the corners of the domain, and especially where the

norm of the velocity is the smallest.

Experiment 3

This experiment is set up to consolidate the sensor network deployment

strategy previously exposed. Once again, we considered a single mobile sensor,

but this time the target sites are randomly positioned using a uniform Gaus-

sian distribution. Figure 8 gives an overview of the different locations where

the sensor has moved to during the estimation procedure. Without surprise,

those locations was spread out over the entire domain and path frequencies do

not exceed the unit value, since the distribution is uniform. Figure 9 illustrates
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Figure 7: Mobile sensor locations and path frequencies (Experiment 2).
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Figure 8: Mobile sensor locations and path frequencies (Experiment 3).

the estimation of the input command vector. We immediately observe that

both estimated components take more time to converge than in the case where
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Figure 9: Estimation of the input command vector components (Experiment 3).

the sensor moves strategically, and show random fluctuations around the ex-

pected value. This is a direct consequence of the fact that the sensor network

motion strategy is purely random. Moreover, the mean-square error between

the estimated and the reference outputs slowly and irregularly decreases, and

then lately stabilizes. We observe a MSE of about 1.0 × 10−3, i.e. ten times

larger than those obtained when the sensor moved strategically. Nevertheless,

these results remain suitable since the mobile sensor has sometimes moved to

the zones of interest. This means that collecting information on some sites is

simply useless since it did not improve the estimation quality in return. This

remark is a key point in sensor network motion strategy. The expert has to

define an optimal strategy in order to avoid any unprofitable motion.

Experiment 4

We exploit the information previously collected concerning the locations of

interesting zones. For that, we detected the locations which have been mostly

visited by the mobile sensor during the experiment 2. The idea then consisted

in deploying four fixed sensors on these particular positions. Figure 10 exhibits

the estimation of the input command vector. Both components of the estimated
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Figure 10: Estimation of the input command vector components (Experiment 4).

input command vector converge to their reference value after about 700 observa-

tions (against 800 for the experiment 1). Thus, although the number of sensors

is almost half reduced, the estimation of the input command vector components

is faster and significantly better than in the experiment 1. The estimation qual-

ity is studied as previously by computing the mean-square error between the

estimated and the reference outputs at each observation time. The MSE quite

regularly decreases and then stabilizes around 800 observations (against 900 for

the experiment 1). We observe a MSE of about 1.2× 10−4 (against 2.0× 10−4

for the experiment 1). Consequently, the strategy which consisted in deploy-

ing some fixed sensors on the zones of interest provided better performances

in terms of convergence speed and estimation quality, even if there was half as

many sensors.

5.3.2. Impact of semi-physical modeling

So far, we have supposed to precisely know all the parameters except the

input command vector components. However, this was a hypothetical consid-

eration which nearly never occured in practice. Indeed, even if most of these

parameters have physical relevance, they generally remain imprecise or not mea-
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surable. Moreover, those which had no real physical meaning were generally em-

pirically determined. In particular, it was the case of the Smagorinsky constant

which enables to perform large-eddy simulation of turbulent flows. As a result,

the notion of semi-physical modeling which integrated an estimation procedure

based on experimental data, revealed to be quite useful. We proposed to add

new degrees of freedom to the lattice Boltzmann model to create a more elabo-

rate adaptive (with respect to local effects) semi-physical model. This approach

is detailed in experiment 5.

Experiment 5

In this experiment, we consider that the relaxation parameters s7 and s8

are spatially heterogeneous. In other words, we supposed that the value of

these parameters can spatially differ. The aim of this approach was to bypass

the Smagorinsky subgrid model which is crucial for turbulent flow simulations.

Indeed, in order to avoid the apparition of numerical instabilities, this method

consistzd in locally increasing the value of the kinematic viscosity. Now, let us

bear in mind that in the MRT approach, the value of the kinematic viscosity

is dependent on the relaxation parameters s7 and s8. Consequently, these two

relaxation parameters were set to be locally free and an estimation procedure

was established, without applying the Smagorinsky subgrid method. From these

new 2Nn degrees of freedom emerges an elaborate semi-physical model which

was much more adaptive than the previous one. Let us also remember the

equality constraint s7 = s8 in order to enforce isotropy. Hence, we counted as

many additional degrees of freedom as there are cells in the domain. Once again,

we proposed to estimate these parameters by using the dual state-parameter

estimation procedure. For that, a forced random walk was specified, where

the proposal distribution is Gaussian with zero mean and covariance matrix

Z = 1.0 × 10−5 INn
. We deployed four fixed sensors on the same particular

zones of interest of experiment 4. In the case where new zones of interest due

to extra parameters appeared, we additionally configured a mobile sensor which

moved to the position where uncertainty is the highest to collect the relevant

information. Finally, we consider a longer simulation time than previously, since
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sometimes the parameter convergence tend to be very slow. For that, we always

imposed the condition δt′ = 10δt, but this time 10000 observations was regularly

distributed in the time interval. Considering the large amount of parameters

involved, we expected a longer convergence time than previously. Figure 11 gives

an overview of the numerical values of s7 obtained at each lattice site at the

final instant by using the standard Smagorinsky subgrid method. We observe

Figure 11: Numerical values of the relaxation parameters s7 obtained at each lattice site by

the Smagorinsky subgrid method at the final instant (Experiment 5).

that the numerical values of s7 preserve a sort of spatial homogeneity and more

or less graphically represent the behavior of the dynamic fluid flow system. We

distinguish two lattice sites where the numerical values of s7 significantly differ

from the other ones. These sites are located at the superior corners of the cavity.

Figure 12 represents the estimated values of s7 at each lattice site obtained by

the dual EnKF at the final instant.

At first sight this estimation would appear to be incorrect since the esti-

mated values of s7 totally differ from those obtained by the Smagorinsky sub-

grid method. Besides, some parameters even came close to be null, which seems

to be physically absurd. We suspected that the large number of parameters to

optimize involves a sort of restriction. Nevertheless, the results exhibited some
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Figure 12: Estimated values of the relaxation parameters s7 obtained at each lattice site by

the dual EnKF at the final instant (Experiment 5).

interesting properties. First, concerning flow dynamics, we clearly distinguish

the major vortex in the center of the cavity and even the apparition of the two

minor vortices at the bottom corners of the cavity, which circulate in counter

clockwise direction. Then, the estimated value of the fluid flow velocity is glob-

ally correct, whereas the contour plot of the flow field shows some unwelcome

activity near the boundaries and the secondary vortices. These results are illus-

trated in figure 13. Finally, the MSE between the estimated and the reference

outputs slightly decreases at each observation and stabilizes to a value of about

2.0 × 10−3. All these results clearly denote the absence of numerical instabil-

ities that would have theoretically occurred. Indeed, the Reynolds number is

above the value at which turbulent flow is produced and no subgrid method

has been specified. The key point behind all this is that the physical equations,

which appear in the Smagorinsky subgrid method, have been taken out from

the model. Consequently, the kinematic viscosity has to be locally modified

without any physical consideration. That is the reason why the adjustable re-

laxation parameters, which have been introduced as degrees of freedom in the

semi-physical lattice Boltzmann model and adjusted during the filtering proce-
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Figure 13: Estimated norm of the fluid velocity and streamline contours at the final instant

(Experiment 5).

dure, have no physical meaning. However, as we have noticed, the performances

in terms of estimation quality of this filtering procedure based on experimen-

tal data were completely suitable. The high amount of activity at, or in the

vicinity of, boundaries and corners is due to the lack of information (limited

number of sensors) and to the difficulty to estimate low velocities, especially in

presence of dominant measurement noise. Thus, we perceive the effects of the

semi-physical modeling, which consists in increasing the estimation quality, or

at least, avoiding the apparition of numerical instabilities, by leaving free some

parameters which have no physical meaning. A major approximation introduced

in EnKF is related to the use of a limited number of ensemble realizations. The

ensemble size limits the space where the solution is searched for and in addition

introduces spurious correlations that lead to excessive decrease of the ensemble

variance and possibly divergence. The spurious correlations can be handled by

localization methods that attempt to reduce the impact of measurements that

are located far from the grid-point to be up-dated. Localization methods either

filter away distant measurements or attempt to reduce the amplitude of the
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long-range spurious correlations. The use of a local analysis scheme effectively

increases the ensemble solution space while reducing the impact of spurious cor-

relations. The use of local analysis scheme allows for a relatively small ensemble

size to be used with a high-dimensionnal dynamical model.

6. Conclusion

In this paper, we presented some significant advantages of introducing the

concept of semi-physical modeling in the lattice Boltzmann approach. Indeed,

by associating this principle with the dual state-parameter estimation procedure,

we showed that the new model is able to adapt to different kinds of driving

behavior, as long as there are measurement data available. We succeeded in

estimating a sequence of parameters with or without physical meaning and

in performing stable LES (Large Eddy Simulation) of turbulent flows without

using the Smagorinsky subgrid method. However, this estimation tended to be

extremely slow and the convergence time had to be taken into account, before

operational use, for monitoring the system. We also observed a loss of the

physical meaning of some relaxation parameters. In order to avoid this loss, we

envisage as future work to restrict the spatial heterogeneity hypothesis to some

particular zones of interest, i.e. to reduce the number of degrees of freedom.

We also experimentally observed that the performances of the filtering pro-

cedure in terms of convergence speed and estimation quality were largely de-

pendent on sensor location, no matter what their number was. We noted that

collecting information at some sites of the area does not have any impact, or

few, on the estimation quality. On the other hand, we showed that some partic-

ular sites constitute the zones of interest, where it was crucial to send a mobile

sensor during some laps of time or to deploy a fixed sensor, to ensure that the

filter works correctly. We proposed a strategy to detect these zones of interest,

which consisted in sending during the estimation a mobile sensor to the sites

where the variance of the output error was maximum. We then considered that

the sites which have been mostly visited constitute the zones of interest, and

41



we succeeded in obtaining excellent performances in terms of convergence speed

and estimation quality with a reduced number of sensors.
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