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Abstract — In this work, the non-dominated sorting genetic 

algorithm–II (NSGA-II) is applied to determine the weights of a 

neural network trained for short-term forecasting of wind speed. 

More precisely, the neural network is trained to produce the lower 

and upper bounds of the prediction intervals of wind speed. The 

objectives driving the search for the optimal values of the neural 

network weights are the coverage of the prediction intervals (to be 

maximized) and the width (to be minimized). A real application is 

shown with reference to hourly wind speed, temperature, relative 

humidity and pressure data in the region of Regina, Saskatchewan, 

Canada. Correlation analysis shows that the wind speed has weak 

dependence on the above mentioned meteorological parameters; 

hence, only hourly historical wind speed is used as input to a neural 

network model trained to provide in output the one-hour-ahead 

prediction of wind speed. The originality of the work lies in 

proposing a multi-objective framework for estimating wind speed 

prediction intervals (PIs), optimal both in terms of accuracy 

(coverage probability) and efficacy (width). In the case study 

analyzed, a comparison with two single-objective methods has been 

done and the results show that the PIs produced by NSGA-II 

compare well with those and are satisfactory in both objectives of 

high coverage and small width. 

 

Keywords: wind energy, wind turbine, short-term wind speed 

forecasting, prediction intervals, neural networks, multi-objective 

genetic-algorithms. 

 

1. Introduction 

Power production via renewable energy sources is a hot 

topic of research and application. This is due to both the 

widespread availability of such sources (e.g. wind, sun, etc.) 

and the sustainability of the production process. Among 

renewable energy sources, wind currently plays a key role in 

many countries. As a kind of non-polluting renewable 

energy, wind power has tremendous potential in 

commercialization and bulk power generation. According to 

the Half-Year Report 2011 released by The World Wind 

Energy Association (WWEA) [1], the worldwide wind 

capacity reached 215000 MW at the end of June 2011 and the 

global wind capacity grew of 9.3 % in the previous six 

months, and 22.9% on an annual basis (mid-2011 compared 

to mid-2010). According to the 2011 European Statistics 

Report of the European Wind Energy Association (EWEA) 

[2], annual wind power installations in the EU have increased 

steadily over the past 17 years from 814 MW in 1996 to 9616 
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MW in 2011, an average annual growth rate of 15.6%. This 

continuous and rapid growth indicates that wind energy 

represents a popular solution for meeting the increasing need 

of electricity, respectful of the environment and sustainable. 

In a power network, generated power should cover the 

power demand at any given time. The power output of a wind 

turbine is mainly dependent on the local wind speed, and the 

physical and operating characteristics of the turbine. Wind 

speed changes according to weather conditions, in time scales 

ranging from minutes to hours, days and years [3]; then, the 

wind power output also varies. Wind power variations in 

short-term time scales have significant effects on power 

system operations such as regulation, load following, 

balancing, unit commitment and scheduling [3-7]. Thus, 

accurate prediction of wind speed and its uncertainty is 

critical for the safe, reliable and economic operation of the 

power system.  

Wind speed and power forecasting have been tackled in 

the literature by a variety of methods, including numerical 

weather prediction (NWP) and statistical models (these latter 

comprising also artificial intelligence methods like neural 

networks (NN) and fuzzy logic) [3-8]. Hybrid approaches 

combining physical and statistical models have also been 

proposed [9, 10]. While physical models are suited for long-

term forecasting (predictions for days, weeks and months 

ahead), statistical and hybrid approaches are the most 

promising for short-term forecasting (predictions for seconds, 

minutes and few hours ahead) [3-10]. Among these, NNs are 

attractive because of their capability of approximating non-

linear relationships among multiple variables [4-8].  

The existing studies on the use of NN for wind speed 

prediction aim at providing only point predictions. On the 

other hand, in practice the accuracy of the point predictions 

can be significantly affected by the uncertainties in the 

network structure and input data [11-13], and this is relevant 

for the design and operation conditions which follow.  

Prediction intervals (PIs) can be estimated to provide a 

measure of the uncertainty in the prediction. PIs are 

comprised of lower and upper bounds within which the actual 

target is expected to lie with a predetermined probability [11-

13]. There are two competing criteria for assessing the 

quality of the estimated PIs: coverage probability (CP) and 

prediction interval width (PIW) [12]. One seeks to 

simultaneously minimize PIW and maximize CP, which 

however are conflicting objectives.  

In this work, we tackle this problem by adopting a multi-
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objective genetic algorithm (MOGA) framework, i.e. non-

dominated sorting genetic algorithm–II (NSGA-II) [14], to 

determine the values of the weights of a NN trained to 

estimate the bounds defining the prediction intervals. The 

work extends the Lower and Upper Bound Estimation 

(LUBE) method of [12], which combines CP and PIW in one 

single quality measure for optimization. Demonstration of the 

approach is given in [15] on a synthetic case study of 

literature. In the present work, a real problem concerning the 

short-term (1h ahead) wind speed prediction is considered. 

Wind and other meteorological parameters for the region of 

Regina, Saskatchewan, Canada have been downloaded from 

[16]. The data are first analyzed to identify correlations 

among variables and to help defining the structure of the 

predictive model.  

In the case study analyzed a comparison is also made 

between the method proposed in this paper, the single 

objective simulated annealing (SOSA) method of [12], and a 

single objective genetic algorithm (SOGA).  

The paper is organized as follows. Section 2 briefly 

introduces the basic concepts of NN and PIs, and reviews 

some existing methods for the construction of NN PIs. In 

Section 3, basic principles of multi-objective optimization 

and the NSGA-II method are briefly recalled. Section 4 

illustrates the use of NSGA-II for training a NN to estimate 

PIs. Experimental and comparison results on the real case 

study of wind speed prediction and are given in Section 5. 

Finally, Section 6 concludes the paper with a critical analysis 

of the results obtained and some ideas for future studies. 

 

2. NNs and PIs 

Neural networks (NNs) are a class of nonlinear statistical 

models inspired by brain architecture, capable of learning 

complex nonlinear relationships among variables from 

observed data. This is done by a process of parameter tuning 

called “training”. 

It is common to represent the task of a NN model as one 

of nonlinear regression of the kind [17, 18]: 

 

   (    )   ( ),      ( )  (    
 ( ))                        (1) 

 

where  ,   are the input and output vectors of the regression, 

respectively, and      represents the vector of values of the 

parameters of the model function  , in general nonlinear. The 

term  ( ) is the error associated with  , and is assumed 

normally distributed with zero mean. For simplicity of 

illustration, in the following we assume   one-dimensional. 

An estimate  ̂ of    can be obtained by a training procedure 

aimed at minimizing the quadratic error function on a training 

set of input/output values    (     )            ,  
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where  ̂   (    ̂) represents the output provided by the 

NN in correspondence of the input    and    is the total 

number of training samples.  

Fig. 1 shows the structure of a typical three layer (input, 

hidden and output) multi-layer perceptron (MLP) neural 

network. Each layer contains some neurons (nodes). It 

receives input signals generated by the previous layer, 

produces output signals through a process and it distributes 

them to the subsequent layer through the neurons. The nodes 

are connected by weights and convert input data into values 

between 0 and 1 by using a sigmoid transfer (activation) 

function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Architecture of a MLP NN model. 

 

A multiple-input neuron with information processing 

through this neuron is illustrated in Fig. 2. The output signal 

  of node   of the hidden layer is given by [19-22]: 
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   (      ∑      
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where           and   indicates the number of hidden 

neurons,     is the synaptic weight,     (    )
 is the 

activation or transfer function and    is a bias factor taken as 

1. After each hidden neuron computes its activation, it sends 

its signal to each of the neurons    in the output layer. Each 

output neuron    computes its output signal    to form the 

response of the net for the input pattern [23]: 
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   )                           (4) 

 

where    is the number of output neurons, and    indicates 

the activation function used in the output layer. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Multiple input neuron [21]. 
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A PI is defined by upper and lower bounds that include a 

future unknown value with a predetermined probability, 

called confidence level (   ). The formal definition of a PI 

is the following: 

    

  ( ( )   ( )   ( ))                     (5) 

 

where  ( ) and  ( ) are respectively the lower and upper 

bounds of the PI of the output  ( ) corresponding to input  ;  

the confidence level (   ) refers to the expected 

probability that the true value of  ( ) lies within the PI (L(x), 

U(x)). 

The main reason for estimating the PI of the NN model 

output comes from the need of accounting for both the 

uncertainty in the model structure and the noise in the input 

data, which affect the point estimates. Two measures are used 

to evaluate the quality of the PIs: the coverage probability 

(CP) and the interval width (IW) [11-13]. The prediction 

interval coverage probability (PICP) represents the 

probability that the set of estimated PIs will contain the true 

output values, estimated as the proportion of true output 

values lying within the estimated PIs; the prediction interval 

width (PIW) simply measures the extension of the interval as 

the difference of the estimated upper bound and lower bound 

values. These are in general conflicting measures (wider 

intervals give larger coverage), and in practice it is important 

to have narrow PIs with high coverage probability [12]. 

Techniques for estimating PIs for NN model outputs are 

the Delta, Bayesian, Mean-variance estimation (MVE) and 

Bootstrap techniques [11]. The Delta method is based on a 

Taylor expansion of the regression function. This method is 

capable of generating high quality PIs but at the cost of high 

computational time in the development stage, because it 

requires the calculation of a Jacobian matrix and the unbiased 

estimation of the noise variance [11, 24]. 

The Bayesian approach uses a Bayesian statistics 

approach to express the uncertainty of the neural network 

parameters in terms of probability distributions, and 

integrates these to obtain the posterior probability distribution 

of the target conditional on the observed training set [24-26]. 

The underpinning axiomatic mathematical foundation makes 

this method robust and highly repeatable. In the end, NNs 

trained by a Bayesian-based learning technique have superior 

generalization power [11]. On the other hand, the 

computation time required is high, due to the calculation of a 

Hessian matrix in the development stage (a situation similar 

to the Delta technique).  

MVE estimates the mean and the variance of the 

probability distribution of the target as a function of the 

input, given an assumed target error distribution model [27]. 

The proposed model is based on the maximum-likelihood 

formulation of a feed-forward NN [27]. Compared to the 

aforementioned techniques, the computational burden of this 

method is negligible both in the development and PI 

estimation stages. However, the method underestimates the 

variance of the data, so that the quality and generalization 

power of the PIs obtained are low [11, 12].  

The Bootstrap method is frequently used because it is the 

simplest method among the ones mentioned here. It is a re-

sampling technique that allows assigning measures of 

accuracy to statistical estimates and does not require the 

calculation of complex matrices and derivatives [24, 28]. The 

aim of the re-sampling is to produce less biased estimates of 

the true regression of the targets and improve the 

generalization performance of the model [11]. Main 

disadvantages are: i) high computational time when the 

training sets and neural networks are large; ii) with small 

numbers of input patterns, the individual neural networks 

tend to be overly trained, leading to poor generalization 

performance  [11, 17].  

The common feature of the above PI estimation methods 

is that they do not take into account the widths of the 

intervals [11]. With respect to this point, Khosravi et. al. [12] 

proposed a “Lower and Upper Bound Estimation Method 

(LUBE)” in which the cost function in Eq. (8) to be 

minimized combines two quantitative measures: PICP and 

PIW. The mathematical definition of the PICP and PIW 

measures used are [12]: 
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where    is the number of samples in the training or testing 

sets, and     , if      (  )  (  )  and otherwise     , 
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where       is the Normalized Mean PIW , and      and 

     represent the true minimum and maximum values of the 

targets (i.e., the bounds of the range in which the true values 

fall) in the training set, respectively. Normalization of the PI 

width by the range of targets makes it possible to objectively 

compare the PIs, regardless of the techniques used for their 

estimation or the magnitudes of the true targets.  

The cost function proposed in [12] is called coverage 

width-based criterion (CWC): 

 

          (   (    )    (      ))          (8)                 

 

where   and   are constants. The role of   is to magnify any 

small difference between   and PICP. The value of   gives 

the nominal confidence level, which is set to 90% in our 

experiments. Then,   and   are two parameters determining 

how much penalty is paid by the PIs with low coverage 

probability. The function   (    ) is equal to 1 during 

training, whereas in the testing of the NN it is given by the 

following step function: 

 

 (    )  {
                   
                   

            (9) 

 

In Fig. 3, a symbolic sketch of the proposed NN model 

with two outputs is illustrated. The first output neuron 



 

provides the upper bound and the second the lower bound. 

With these two output neurons, the NN generates a PI 

interval for each input pattern.  

Notice that, the LUBE method directly provides in 

output the PIs while the previously described methods do so 

in two steps (first, point estimate calculation and then, PIs 

estimation). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Architecture of a Multi-layer feed forward NN model for estimating 
the lower and upper bounds of PIs [12]. 

 

 

3. Multi-objective optimization by NSGA-II 

In all generality, a multi-objective optimization problem 

consists of a number of objectives and is associated with a 

number of equality and inequality constraints, and bounds on 

the decision variables. Mathematically the problem can be 

written as follows [29]: 

 

Minimise/Maximise    ( )                                  (10) 

 

subject to     ( )                                        (11) 

 

   ( )                                                           (12) 
  

   
( )

       
( )

                                                     (13) 

 

A solution,               is an   dimensional 

decision variable vector in the solution space   . The solution 

space is restricted by the constraints in (11) and (12) and 

bounds on the decision variables in (13). 

The   objective functions     ( ) must be evaluated in 

correspondence of each decision variable vector   in the 

search space. The final goal is to identify a set of optimal 

solutions       in which no solution can be regarded as 

better than any other with respect to all the objective 

functions. The comparison of solutions may be performed in 

terms of the concepts of Pareto optimality and dominance: in 

case of a minimization problem, solution    is regarded to 

dominate solution    (     ) if both following conditions 

are satisfied [29]: 

 

                (  )    (  )                         (14) 

 

                (  )    (  )                          (15)                 

 

If any of the above two conditions is violated, the 

solution    does not dominate the solution   , and    is said 

to be non-dominated by   . The solutions that are non-

dominated within the entire search space are denoted as 

Pareto-optimal and constitute the Pareto-optimal set; the 

corresponding values of the objective functions form the so 

called Pareto-optimal front in the objective functions space. 

The goal of a multi-objective optimization algorithm is to 

guide the search for solutions in the Pareto-optimal set, while 

maintaining diversity so as to cover well the Pareto-optimal 

front and thus allow flexibility in the final decision on the 

solutions to be actually implemented. The Pareto optimal set 

of solutions can provide the decision makers (DMs) the 

flexibility to select the appropriate solutions with different 

preferences on the objectives. The decision makers also gain 

insights into the characteristics of the optimization problem 

before a final decision is made. 

Genetic algorithm (GA) is a popular meta-heuristic 

approach well-suited for multi-objective problems [30]. It is a 

population based-search technique inspired by the principles 

of genetics and natural selection.  Multi-objective GAs 

(MOGAs) are frequently applied for solving the multi-

objective optimization problems, for their ability to find 

nearly global optima, the ease of use and the robustness [31-

33].   

Among the several variations of MOGA in the literature, 

we select non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) as the optimization tool, because the comparative 

studies [14, 30, 31] have shown that it is one of the most 

efficient MOGAs. 

 

4. Implementation of NSGA-II for training a NN for 

estimating PIs 

In this work, we adapt the LUBE method [12] to the 

multi-objective formulation of the PI estimation problem. 

More specifically, we use NSGA-II for finding the values of 

the parameters of the NN which minimize the two objective 

functions PICP (6) and NMPIW (7) simultaneously, in Pareto 

optimality sense (for ease of implementation, the 

maximization of PICP is converted to minimization by 

subtracting from one, i.e. the objective of the minimization is 

1-PICP).   

The practical implementation of NSGA-II on our 

specific problem involves two phases: initialization and 

evolution. These can be summarized as follows (see Fig. 4): 

 

Initialization phase: 

Step 1: Split the input data into training (Dtrain) and testing 

(Dtest) subsets. 

Step 2: Fix the maximum number of generations and the 

number of chromosomes (individuals)    in each population; 

each chromosome codes a solution by   real-valued genes, 

where   is the total number of parameters (weights) in the 

NN. Set the generation number    . Initialize the first 

population    of size   , by randomly generating    

chromosomes. 

Step 3: For each input vector   in the training set, compute 
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the lower and upper bound outputs of the    NNs, each one 

with   parameters. 

Step 4:  Evaluate the two objectives PICP and NMPIW for 

the    NNs (one pair of values 1-PICP and NMPIW for each 

of the    chromosomes in the population   ). 

Step 5:  Rank the chromosomes (vectors of   values) in the 

population    by running the fast non-dominated sorting 

algorithm [14] with respect to the pairs of objective values, 

and identify the ranked non-dominated fronts            

where    is the best front,    is the second best front and    

is the least good front. 

Step 6: Apply to    a binary tournament selection based on 

the crowding distance [14], for generating an intermediate 

population    of size   . 

Step 7: Apply the crossover and mutation operators to   , to 

create the offspring population    of size   . 

Step 8: Apply Step 3 onto    and obtain the lower and upper 

bound outputs. 

Step 9: Evaluate the two objectives in correspondence of the 

solutions in   , as in Step 4. 

 

Evolution phase: 

Step 10: If the maximum number of generations is reached, 

stop and return   . Select the first Pareto front   as the 

optimal solution set. Otherwise, go to Step 11. 

Step 11: Combine    and    to obtain a union population 

        . 

Step 12: Apply Steps 3-5 onto    and obtain a sorted union 

population.  

Step 13: Select the    best solutions from the sorted union to 

create the next parent population     . 

Step 14: Apply Steps 6-9 onto      to obtain     . Set  

     ; and go to Step 10.  

Finally, the best front in terms of ranking of non-

dominance and diversity of the individual solutions is chosen. 

Once the best front is chosen, then the testing step is 

performed on the trained NN with optimal weight values.  

GA uses two operators to generate new solutions from 

existing ones: crossover (recombination) and mutation (see 

step 7).  

Crossover is the key operator for the effectiveness of 

GA, and it is used to create two new chromosomes called 

offsprings from one selected pair of chromosomes called 

parents. We have used extended intermediate recombination 

method as a crossover operator [34]. Intermediate 

recombination can produce any point within a hypercube 

slightly larger than that defined by the parents [34] and it can 

only be applied to real-coded GAs [35]. Offsprings are 

produced as follows: 

 Randomly select the crossover point (position) 

           . 

 Randomly select the parents    (  
      

 ) and 

   (  
      

 ) depending on the crossover probability. 

 Set       and      . Then, in order to create 

two offsprings    (  
    

      
      

      
 ) and    

(  
    

      
      

      
 ), change the genes from   to   

according to the following procedure: 

 

(  
      

      
 )  (  
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 )  

(  
      

      
 )             (16) 

  

(  
      

      
 )  (  

      
      

 )      (  
      

      
 )  

(  
      

      
 )             (17) 

      

where   and    are  two values randomly (uniformly) chosen 

within the interval [-0.25, 1.25] [35].  

Mutation involves the modification of the value of each 

gene of a solution with a predefined probability    (the 

mutation rate) [36]. For performing mutation, we have used a 

heuristic method, similar to non-uniform mutation [37], 

where the mutation probability (rate)    decreases at each 

generation. In our mutation method, the selected gene is 

replaced with a new real coded value generated by the 

following algorithm: 

 

  
    

  (        )                                  (18) 

 

where   and   indicate the chromosome and the gene within 

the chromosome to be mutated, respectively,    is the 

number of chromosomes, and      indicates a random 

number value drawn from the standard uniform distribution 

on the open interval (0,1). 

The total computational complexity of the proposed 

algorithm can be explained by two time demanding sub-

operations: nondominated sorting and fitness evaluation. The 

time complexity of nondominated sorting part is  (    ) 

where   shows the number of objectives and    shows the 

population size [14]. In fitness evaluation phase, the NSGA-

II has been used to train a NN which has    input samples.  

Since for each individual of the population a fitness values is 

obtained, this process is repeated       times. Hence, time 

complexity of this phase is  (     ). In conclusion, the 

computation complexity of one generation is  (    

     ). 

 

5. Experiments and results 

In this Section, results of the application of the proposed 

method to short-term wind speed forecasting are detailed. 

The considered wind speed data have been measured in 

Regina, Saskatchewan, a region of central Canada. Wind 

farms in Canada are currently responsible of an energy 

production of 5403 MW, a capacity big enough to power over 

1 million homes and equivalent to about 2% of the total 

electricity demand in Canada [38]. The actual situation in 

Saskatchewan is characterized by the presence of 4 large 

wind farms located throughout the region, with a total 

capacity of approximately 198 MW. Aside from large wind 

farms, Saskatchewan residents have installed numerous 

smaller wind turbines (approximately 200), most of which 

characterized by a power production of less than 10 KW [39]. 

 

5.1. Pre-treatment of input data 

The hourly wind speeds measured in Regina, 



 

Saskatchewan, in two different periods of the year, from 1st 

of February 2012 to 31st of March 2012 and from 1st of July 

2012 to 29th of August 2012 have been downloaded from the 

website [16]. In addition to the hourly wind speed data, the 

hourly measurements concerning three meteorological 

variables (temperature, relative humidity and air pressure) are 

also available for the same area in the same time periods.  

In order to have insights on the strength of the 

relationship between the input variables (the meteorological 

explanatory variables) and the output variable (wind speed), 

some statistical analyses of the data have been conducted. 

First, the correlation structure of the data matrix has been 

explored through various correlation indexes and statistical 

tests [40]. The results obtained by computing Pearson’s 

correlation coefficient are reported in Table 1, and they show 

that wind speed has in fact weak (lower than 40%) 

dependences on the meteorological parameters considered, 

both during summer and during winter. We also performed 

two different non-parametric tests of no correlation, based on 

Kendall's   and Spearman's  statistics [41]: both statistical 

tests give strong evidence of absence of correlation between 

wind speed and all meteorological variables, both during 

summer and winter (p-values all below 10-10). Finally, also 

the correlations among meteorological variables have been 

explored by all these means, and they all resulted to be 

negligible. 

 
Table 1 

Correlation matrix for the explanatory and output variables (winter/summer). 

 

Secondly, a Principal Component Analysis (PCA) of the 

meteorological variables was performed using the correlation 

matrix shown in Table 1 (without the output variable, wind 

speed). Indeed, when principal components loadings, i.e. the 

weights in the combinations defining the components, are 

interpretable and physically meaningful, a possibility is to 

use as explanatory variables in the model the projections of 

the original input variables on the principal component space 

[42]. In this way, the new input variables for the model are 

less correlated among each other, and possibly more 

correlated to the target. However, results of PCA (see Table 

2) show not so neat and interpretable loadings. Moreover, the 

new variables obtained by projection of the explanatory input 

variables on the first two principal components (which 

together explain more than 90% of the total variability in the 

dataset, see the last row of Table 2), do not show an increase 

in the correlation with the target:  (        )          

in winter and        in summer;  (        )          

in winter and        in summer. 

All previous considerations support the conclusion that 

the influence of meteorological variables on the observed 

wind speed and their mutual dependence, are not a sufficient 

motivation for including them in the model as explanatory 

variables. This is not surprising: many models for describing 

wind condition or wind speed proposed in the literature rely 

only on past wind speed data [43], or other information 

concerning wind (e.g. wind direction) [44]. Hence, only 

historical wind speed values are selected as input variables 

for the ANN model aimed at providing in output the one-

hour-ahead prediction of wind speed. 

 
Table 2 

Results of the PCA on meteorological variables (winter/summer). 

 

The last choice concerning the model inputs for the NN 

model is the number of the past wind speed values to 

consider. First, the analysis of the empirical Autocorrelation 

Function (ACF; Fig. 5, top, left for winter and right for 

summer) shows a non-negligible correlation of the wind 

speed time series, also for high values of the lag. Typically in 

time series analysis such a consideration leads to the fitting of 

an autoregressive model, which explains the current value of 

the target via a linear combination of past values of the target 

itself [45]. Even if NNs are nonlinear models, this fact can be 

taken as an indication of the relevance of the past values of 

the wind (           ) to explain the current wind speed 

(  ). The empirical Partial Autocorrelation Function (PACF; 

Fig. 5, bottom, left for winter and right for summer) is instead 

commonly used in time series analysis for model 

identification, i.e. for the choice of k [45]: specifically, PACF 

at lag j is the autocorrelation between    and      that is not 

accounted for by lags 1 through j-1, and in autoregressive 

models of order k the PACF is zero at lag k + 1 or greater. 

We thus look for the point on the plot where the PACF 

essentially becomes zero, and detect the lags at which PACF 

is not significantly different from zero by a 95% Confidence 

Interval (CI), whose limits are at  
      

√ 
⁄ , where n is the 

dimension of the dataset. The CI limits correspond to the 

dotted lines in Fig. 5 (bottom): we can see that      and 

     are highly correlated to   , and hence should be used 

in the prediction, both for the winter and the summer season; 

indeed, for the winter time series, also      is significantly 

related to   , and should thus be used in the prediction 

model. In synthesis, historical wind speed values     ,      

and      are selected as input variables for predicting    in 

output for the winter season, while during summer only      

and      are selected as inputs. 

 Temp. Wind speed 
Relative 

hum. 

Air 

pres. 

Temp. 1    

Wind speed 

 

0.362/0.140 

 

1   

Relative 

hum. 
-0,506/ -0,758 -0.269/-0.203 1  

Air pres. -0,591/ -0,098 -0.282/-0.333 0.129/-0,037 1 

 1st Principal 

component  

loadings 

2nd Principal 

component 

loadings 

3rd Principal 

component 

loadings 

Temp. 0.677/0.708 --/-- 0.735/-0.704 

Relative hum. -0.49/-0.703 -0.762/-0.128 0.423/-0.699 
Air pres. -0.549/-- 0.647/0.991 0.53/-0.124 

Proportion of 

explained variance 0.615/0.587 0.291/0.336 0.094/0.076 
Cumulative 

proportion of 

explained variance 0.615/0.587 0.906 /0.924 1/1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A framework for the NSGA-II method used for training of NNs for PI estimation. 

  

Yes 

Step 13: Select the 𝑁𝑐 best solutions from the sorted union to create population 𝑃𝑛   

Return 𝑃𝑛 

Step 14: Apply Steps 6-9 onto 𝑃𝑛   to obtain 𝑄𝑛  . Set 𝑛  𝑛    

Stop 

Step 12: Apply Steps 3-5 onto 𝑅𝑛 and obtain a sorted union 

population. 

Step 11: Obtain a union population 𝑅𝑛  𝑃𝑛  𝑄𝑛 

Step 10: Termination 

condition met? 
 

Step 9: Apply Step 4 onto 𝑄𝑛 and evaluate the two objectives PICP and NMPIW  

 

Step 3: For each 𝑥 in the training set, compute the LB and UB of the 𝑁𝑐 NNs each with 𝐺 parameters 

Step 5: Rank the population 𝑃𝑛 by performing fast non-dominated sorting and identify the non-dominated fronts 

Step 1: Split the input data into training and testing subsets 

 

Step 2: Set n=1. Initialize the population 𝑃𝑛 of size 𝑁𝑐. Set initial parameters for NN and NSGA-II 

 

Start 

Step 4: Evaluate the two objectives PICP and NMPIW for the 𝑁𝑐 NNs 

Step 6: Apply to 𝑃𝑛 a binary tournament selection for generating an intermediate population 𝑆𝑛 

Step 7: Apply the crossover and mutation operators to 𝑆𝑛 to create the offspring population 𝑄𝑛 of size 𝑁𝑐 

Step 8: Apply Step 3 onto 𝑄𝑛 and obtain the lower and upper bound outputs 



 

 

(a) 

(b) 

 

 

 Fig. 5.  (a) ACF plot for the wind speed time series: winter (left) and summer (right). 

                    (b) PACF plot for the wind speed time series: winter (left) and summer (right). 
 

 

 
(a) 

 

(b) 

 

Fig. 6. The wind speed data set used in this study: (a) winter period (b) summer period. 

 

 

5.2. NN Training and testing results 

The first data set (winter period) includes 1437 samples 

(see Fig. 6), among which the first 80% (the first 1150 

samples) is used for training and the rest for testing. The 

second data set (summer period) includes 1438 samples (see 

Fig. 6), among which the first 80% (the first 1150 samples) is 

used for training and the rest for testing. 

The architecture of the NN consists of one input, one 

hidden and one output layers. The number of input neurons is 

set to 2 for summer data and to 3 for winter data; the number 



 

of hidden neurons is set to 10 after a trial-and-error process; 

the number of output neurons is 2, one for the lower and one 

for the upper bound values of the PIs. As activation 

functions, the hyperbolic tangent function is used in the 

hidden layer and the logarithmic sigmoid function is used at 

the output layer (these choices have been found to give the 

best results by trial and error, although the results have not 

shown a strong sensitivity to them).  

For the first case study (winter period), the inputs to the 

input neurons are the wind speed values of the previous three 

time steps (    ,      and     ). For the second one 

(summer period), the previous two time steps (     and 

    ) have been used as inputs. All data have been 

normalized within the range [0.1, 0.9].  

Table 3 contains the parameters of the NSGA-II for 

training the NN. “MaxGen” indicates the maximum number 

of generations which is used as a termination condition and 

   indicates the total number of individuals per population. 

       is the initial mutation probability and it decreases at 

each iteration (generation) by the formula:  

        ( 
   

      
)
.     indicates the crossover probability 

and is fixed during the run. 

 
Table 3 

Parameters used in the experiments. 

Parameter Numerical value 

D (input pattern set) 
1438 (winter data) 

1437 (summer data) 

Dtraining (training set) 
1150 (winter data) 

1150 (summer data) 

Dtesting (testing set) 
288 (winter data) 

287 (summer data) 

MaxGen 300 

Nc 50 

Pm_int 

Pc 

0.06 

0.8 

μ 0.9 

η 50 

Tinit 5 

Tmin 10-50 

CWCint 1080 

Geometric cooling  

schedule of SA 
Tk+1 = Tk * 0.95 

 

To account for the inherent randomness of NSGA-II, 

twenty different runs have been performed and an overall 

best non-dominated Pareto front has been obtained from the 

twenty individual fronts. To construct such front, the first 

(best) front of each of twenty runs is collected and the 

resulting set of solutions is subjected to the fast non-

dominated sorting algorithm [14] with respect to the two 

objective functions values. Then, the ranked non-dominated 

fronts            are identified, where   is the best front,    

is the second best front and    is the worst front. Solutions in 

the first (best) front   are then retained as overall best front 

solutions. Fig. 7 illustrates the overall best front solutions 

obtained with this procedure from the 20 NSGA-II runs both 

for winter and summer periods. 

Given the overall best Pareto set of optimal solutions 

(i.e. optimal NN weights), one has to pick one (i.e. one 

trained NN) for use. Two different selection procedures are 

here employed for choosing a solution, with reference to the 

Pareto-optimal front of Fig. 7. First, a solution which results 

in the smallest CWC (see [12] and Eq. 8) is chosen. As a 

second procedure, the “min-max” method has been used [46]. 

Table 4 reports the PICP and NMPIW values of the Pareto 

front solutions both for the training and testing, according to 

those two different selection methods. The solutions are also 

marked on the Pareto front of Fig. 7. 

It is observed that the min-max method selects a solution 

located towards the center of the Pareto-front (see Fig. 7), 

whereas the smallest CWC selection method gives a solution 

which has higher coverage probability with larger interval 

size (see Table 4). This second selection procedure is thus 

preferable for engineering reasons. 

The optimal values of the NN parameters (weights) 

obtained in training are used for testing on the last 287 and 

288 measurements of the wind speed winter and summer data 

sets, respectively.  Figs. 8 and 9 show the prediction intervals 

for the testing sets of summer and winter, respectively, 

estimated by the trained NN corresponding to the Pareto 

solution resulting in the smallest CWC value. The results 

give a coverage probability of 84% and an average interval 

width of 0.277 for the winter period, and a coverage 

probability of 91.7% and an average interval width of 0.326 

for the summer period (see Table 4). 

 

5.3. MOGA comparison with SOSA and SOGA 

The single objective genetic algorithm (SOGA) and the 

single objective simulated annealing (SOSA) procedures, 

described in [12], have been implemented for comparison. 

Table 3 also contains the parameters of the experiments run 

for SOSA and SOGA, together with the parameter for our 

NSGA-II implementation of the MOGA. The “Tinit”, “Tmin”, 

“Geometric cooling schedule” and “CWCint” are the 

parameters of the SA optimization technique. “Tinit” and 

“Tmin” represent the starting and finishing temperatures, 

respectively. The finishing temperature can be used as a 

termination condition. The geometric cooling schedule sets 

the decrease of the temperature at each search iteration [12], 

[47, 48]. Here, we have used a cooling factor of 0.95. CWCint 

represents the initial value of the CWC: as the temperature 

drops during the search, the CWC value decreases gradually 

but not monotonically [12]. 

In the MOGA and SOGA, the population size is set to 50 

and the number of generations to 300, for a total number of 

evaluations equal to 15000. For fair comparison, SOSA is 

configured to have equal number of evaluations: therefore, 

the maximum number of iterations is set to 15000 as 

termination condition.  



 

 

(a) 

 

(b) 

Fig. 7.  The overall best Pareto front obtained by training of the NN for 1h-ahead wind speed prediction: (a) winter period (b) summer period. 

Table 4 

Solutions chosen from the overall Pareto optimal front of Fig. 7. 

 Winter Period Summer Period 

 Training Testing Training Testing 

Methods PICP (%) NMPIW PICP (%) NMPIW PICP (%) NMPIW PICP (%) NMPIW 

Smallest CWC 93.6 0.276 0.84 0.277 94.8 0.323 91.7 0.326 

Min_Max 73 0.145 65.5 0.144 76.4 0.177 74 0.175 

 

As mentioned before, to account for the intrinsic 

randomness present in the SOSA, SOGA and MOGA 

optimization procedures, all have been run twenty times. In 

SOSA and SOGA, the CWC has been used as a cost function. 

For each of the first (best) front found by twenty MOGA 

runs, a CWC value has been a posteriori calculated by 

combining the individual PICP and NMPIW values. Then, 

for each Pareto front, the solution with smallest (best) CWC 

value is selected among all solutions in the front. This allows 

obtaining twenty best CWC values, one selected from each 

Pareto front. After training, we perform the testing of the 

trained NNs with fixed optimal parameter values (weights 

and biases). For each solution obtained from training, 

corresponding CWC values have been also calculated for 

testing data set by following the same procedure explained 

above. Tables 5 and 6 report the CWC values obtained on the 

testing set of winter and summer, respectively, in each of the 

20 runs. 



 

            Table 5 

                             Results of twenty SOSA and SOGA runs and twenty best MOGA for NN testing (winter data set). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to perform a quantitative comparison for the 

results obtained with SOSA, SOGA and MOGA, we use a 

Kruskal-Wallis rank sum test [41]. The Kruskal-Wallis rank 

sum test is a non-parametric version of the ANOVA [49], and 

it has the purpose of testing the null hypothesis that the 

location parameters of the distribution of the variable of 

interest (CWC in our case) are the same in each group (given 

by the different procedures). The alternative is that they differ 

in at least one of the groups. For the purpose of comparison, 

we take into account the results of all the 20 runs of the three 

different procedures, on the testing sets of both winter and 

summer (see Tables 7 and 8). Considering the winter dataset 

(Table 7), the Kruskal-Wallis test gives no evidence of a 

difference in the performance (CWC values) among MOGA, 

SOSA and SOGA (p-value = 35.44%). However, a difference 

among the procedures can be detected in terms of the final 

values of NMPIW (p-value = 1.04*10
-7

). Hence, a Mann-

Whitney non-parametric statistical test [50] has been used to 

perform pairwise comparisons among the procedures, leading  

to a demonstrated superiority of SOGA (p-value = 6.86*10
-7

) 

and MOGA (p-value = 5.22*10
-7

) over SOSA.  Considering 

the summer dataset (Table 8), instead, a difference among the 

procedures can be detected in terms of the final values of 

CWC (p-value = 0.0005754). Analogously, to what has been 

done for the winter data set, a Mann-Whitney non-parametric 

statistical test has been used to perform pairwise comparisons 

among the three procedures, again resulting in the superiority 

of SOGA (p-value = 0.001216) and MOGA (p-value = 

0.0006094) over SOSA. As for the comparison of SOGA and 

MOGA, their results always proved to be comparable both in 

terms of CWC and of NMPIW, for both winter and summer 

data sets. 

Finally, we have analyzed the convergence of CWC 

along the iterations of the NN training procedure. The 

behavior of CWC as a function of the iterations is shown in 

Figs. 10 and 11 for SOSA and SOGA methods, respectively. 

Since the CWC takes extreme values in the first iterations of 

SOSA, the logarithm of CWC has been plotted in Fig.10. In 

the case of SOSA, the CWC decreases gradually but non-

monotonically due to the structure of the simulated annealing 

algorithm. In order to show clearly the convergence and non-

monotonicity of the SOSA method, a zoom on the behavior 

of CWC has been also plotted: the upper plots in Fig. 10 

show the values of CWC for the first 500 iterations. On the 

contrary, from inspection of Fig.11 it is clear that CWC 

decreases gradually and monotonically in the case of SOGA. 

Figs. 12 and 13 show the convergence behavior of PICP 

and NMPIW through the iterations of the MOGA method for 

SOSA MOGA SOGA 

CWC PICP NMPIW CWC PICP NMPIW CWC PICP NMPIW 

0,560 0,906 0,560 0,341 0,920 0,341 0,878 0,889 0,316 

0,600 0,902 0,600 0,714 0,899 0,348 0,889 0,889 0,320 

0,620 0,923 0,620 0,778 0,892 0,312 1,170 0,882 0,333 

0,696 0,913 0,696 0,845 0,892 0,339 1,404 0,878 0,351 

0,701 0,927 0,701 0,931 0,889 0,335 1,411 0,875 0,309 

0,803 0,979 0,803 1,076 0,882 0,306 1,447 0,875 0,317 

0,809 0,979 0,809 1,098 0,885 0,353 1,725 0,871 0,329 

0,834 0,976 0,834 1,139 0,882 0,324 1,925 0,868 0,318 

0,852 0,930 0,852 1,182 0,882 0,336 2,496 0,861 0,306 

1,190 0,899 0,579 1,525 0,875 0,334 2,557 0,861 0,313 

2,332 0,875 0,511 1,682 0,871 0,321 2,579 0,861 0,316 

5,286 0,847 0,344 2,260 0,864 0,322 2,883 0,857 0,303 

8,389 0,857 0,881 2,494 0,861 0,306 3,137 0,857 0,329 

8,665 0,833 0,290 2,570 0,861 0,315 4,031 0,850 0,308 

37,073 0,819 0,629 2,974 0,857 0,312 4,616 0,847 0,300 

53,131 0,812 0,640 4,358 0,847 0,283 6,402 0,840 0,300 

144,893 0,780 0,367 5,924 0,840 0,277 6,617 0,840 0,310 

525,279 0,760 0,469 6,013 0,840 0,281 7,632 0,836 0,302 

7.6968e+04 0,662 0,523 6,270 0,840 0,293 9,119 0,833 0,305 

4.1655e+07 0,533 0,449 7,597 0,836 0,301 10,294 0,829 0,291 



 

the winter and summer datasets, respectively. To obtain these 

graphs, we have considered the two objectives separately (as 

if they were two single objectives, even if our research does 

not really focus on the single-objective solutions), and we 

have selected the extreme solutions on the front obtained at 

each iteration. In other words, the solution giving maximum 

PICP and the one giving minimum NMPIW were selected 

separately. The motivation behind these last convergence 

plots is to show the MOGA algorithm's ability to converge, 

after a certain number of iterations, to the true optimum, 

which means respectively 100% PICP and 0 NMPIW. This 

happens for both the single objectives. 

 

 
                Table 6 

                Results of twenty SOSA and SOGA runs and twenty best MOGA for NN testing (summer data set). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

SOSA MOGA SOGA 

CWC PICP NMPIW CWC PICP NMPIW CWC PICP NMPIW 

0,328 0,913 0,328 0,325 0,917 0,325 0,317 0,906 0,317 

0,329 0,910 0,329 0,326 0,917 0,326 0,319 0,903 0,319 

0,349 0,920 0,349 0,327 0,906 0,327 0,320 0,903 0,320 

0,460 0,931 0,460 0,333 0,913 0,333 0,321 0,910 0,321 

0,496 0,934 0,496 0,335 0,910 0,335 0,325 0,910 0,325 

0,505 0,906 0,505 0,337 0,917 0,337 0,328 0,910 0,328 

0,635 0,934 0,635 0,337 0,917 0,337 0,328 0,903 0,328 

0,641 0,934 0,641 0,337 0,924 0,337 0,329 0,910 0,329 

0,641 0,948 0,641 0,340 0,917 0,340 0,330 0,913 0,330 

0,646 0,899 0,318 0,341 0,920 0,341 0,330 0,913 0,330 

0,646 0,899 0,318 0,341 0,903 0,341 0,332 0,917 0,332 

0,646 0,899 0,318 0,341 0,920 0,341 0,332 0,910 0,332 

0,659 0,899 0,324 0,343 0,906 0,343 0,332 0,906 0,332 

0,722 0,920 0,722 0,354 0,906 0,354 0,333 0,920 0,333 

0,727 0,934 0,727 0,364 0,924 0,364 0,336 0,910 0,336 

0,936 0,889 0,341 0,621 0,899 0,305 0,680 0,899 0,334 

10,884 0,840 0,523 0,625 0,899 0,307 0,716 0,896 0,321 

37,314 0,816 0,551 0,697 0,899 0,342 0,724 0,896 0,324 

48,003 0,809 0,503 0,704 0,896 0,315 0,912 0,889 0,332 

3777,362 0,733 0,877 1,537 0,872 0,298 1,322 0,878 0,336 



 

 
 

Fig. 8.  Estimated PIs for 1h ahead wind speed prediction on the testing set (dashed lines), and wind speed data included in the testing set (solid line) for 

winter. 

 

 
 

Fig. 9.  Estimated PIs for 1h ahead wind speed prediction on the testing set (dashed lines), and wind speed data included in the testing set (solid line) for 

summer. 

 

  



 

 
 

(a) 

 

(b) 

Fig. 10.  Evaluation of CWC during the SOSA training algorithm: (a) winter (b) summer. 

  



 

 

(a) 

 

(b) 

Fig. 11.  Evaluation of CWC during the SOGA training algorithm: (a) winter (b) summer. 



 

 

(a) 

 

(b) 

Fig. 12.  Evaluation of PICP and NMPIW during the MOGA training algorithm for winter period: (a) PICP (b) NMPIW. 

  



 

 

(a) 

 

(b) 

Fig. 13.  Evaluation of PICP and NMPIW during the MOGA training algorithm for summer period: (a) PICP (b) NMPIW. 

 

 

6. Conclusion                                                                          

Wind speed prediction is a fundamental issue for wind 

power generation. The associated uncertainty needs to be 

properly quantified for reliable decision making in design and 

operation. 

In this study, a method for the estimation of PIs by NN 

has been applied for short-term wind speed prediction. Two 

different time periods of historical wind speed data from 

Regina, Saskatchewan, have been used to demonstrate the 

NSGA-II capability of identifying NN weight values optimal 

in Pareto sense, within an original multi-objective 

optimization formulation of the problem of NN training. To 

the knowledge of the authors, this is the first study proposing 

such multi-objective formulation for the estimation of NN-

based PIs for wind speed prediction. The results obtained 

confirm the validity of the proposed approach. 

The application of the non-parametric Kruskal-Wallis 

rank sum test to the final results obtained with SOSA, SOGA 

and MOGA show that the quality of the prediction intervals 

found with MOGA is superior to the one of the PIs found 

using the SOSA proposed in [12], and that it is at least 

comparable to the one of the PIs found using SOGA. 

As for future research, the use of an ensemble of 

different NNs will be considered to further increase the 

accuracy of the predictions and the extension of the approach 

for prediction of wind power output will be pursued. 
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