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SUMMARY

The paper deals with the issue of accuracy for multiscaldaust applied to solve stochastic problems. It more
precisely focuses on the control of a coupling, performedgithe Arlequin framework, between a deterministic
continuum model and a stochastic continuum one. Usinguabkigpe estimates and adjoint-based techniques, a
strategy for goal-oriented error estimation is presentethiis coupling and contributions of various error sources
(modeling, space discretization, and Monte Carlo apprafion) are assessed. Furthermore, an adaptive strategy
is proposed to enhance the quality of outputs of interestiobtl by the coupled stochastic-deterministic model.
Performance of the proposed approach is illustrated on I?Brmumerical experiments.

KEY WORDS: Multiscale methods, Stochastic Mechanics, duia method, Goal-oriented error
estimationa posteriorierror estimation

1. INTRODUCTION

Numerical simulation has become an essential tool in dgsigoesses, providing for more flexibility
and reduced production costs. Recent advances in this fielldde the development and consideration
of multiscale and stochastic models. Multiscale modelgherone hand, aim at introducing appropriate
models at each of the scales considered in a general prolldmeaapling them together. Stochastic
models, on the other hand, aim at explicitly taking into asdodata uncertainties and modeling
variabilities, which traditionally limit the predictaliy of deterministic numerical models. Such
stochastic multiscale models, and the control of their esxmy) form the subject of the present paper.
We assume that there exists, for the study of a structuregrarchy of models defined at different
scales. While coarse models might yield effective resoltstfe average response of the structure under
distributed loading, these models may become ineffectiierwa localized defect arises (crack, hole,
local weakness), or when one is interested in local quastitriner-scale models are then required, but
usually involve higher computational costs, which rendeesr use unrealistic for industrial structures.
The general idea of multiscale modeling is then to get ardhisdlilemma by considering a coarse model
wherever possible, while refining it locally around the zohmterest. Various multiscale strategies have
been developed: (i) enrichment methods [1, 2] in the Finliéertent Method (FEM) framework, in which
appropriate fine-scale basis functions are used around dedects; (ii) splitting methods [3, 4, 5, 6]
in which the solution field is split additively into a coarselfi and a finer-scale field, each being
solved at its own scale, with fictitious boundary conditi@ighe lower scale; and (iii) superposition
methods [7, 8, 9], in which both coarse and fine-scale modaedgist in the local subdomain of interest
and are solved concurrently by enforcing the matching af gwutions in an appropriate weak sense on
an overlapping region. Extensions of these multiscal¢éeggias to stochastic models have been proposed
in the context of the heterogeneous multiscale method fh@]multiscale finite element method [11]
and of the Arlequin method [12, 13]. The latter is a supefpmsimethod that has been applied to the
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coupling of various models in the past decade (see [7, 14.8,9, 17, 18, 19, 20], among others), and
on which we will concentrate in this paper [21, 13].

The purpose of stochastic multiscale modeling is to prowétiable results for engineering problems,
with explicit account of data uncertainties and modelingalzlities at reasonable computational cost.
However, to reach that goal, the numerical errors assati@ie¢heir solution must be evaluated and
controlled. For more than thirty years, and particularlythe context of the FEMa posteriorierror
estimators have been proposed (see [22, 23, 24] for reviduske techniques allow to complement FE
solutions with an estimation of their accuracy. After iaitworks on global error estimators, based on
global energy norms of the solution, goal-oriented errtimetors have been developed [25, 26, 27] in
order to assess the accuracy of specific outputs of intdestXample: stress average in a given zone,
or displacement of a point). While most of the studies onregsbtimation are concerned with monoscale
models, some specific developments have been proposedupledomulti-scale models. In particular,
in the Arlequin framework, several papers have dealt withehaluation and control of the accuracy
of coupled atomistic and continuum models assessing batiretization and modeling errors, in the
deterministic case [18, 28, 29]. A preliminary work has disen presented in the context of atomistic-
continuum stochastic models [12], but using a differentietyb coupling from that considered in the
present paper.

The main objective of the paper is to develop a framework fumal-griented error estimation when
the Arlequin method is used to couple deterministic andhetetic models, as developed in [21, 13]. To
control the quality of approximate local quantities, we tesidual-type estimates and classical adjoint-
based techniques to get bounds on the local error. A secqadtve of the paper is to propose a method
to split the different error sourcese. modeling error, spatial discretization error, and stotbasror.
The splitting is based on the introduction of intermediafirence models and on the construction
of error estimates with respect to these new models, foligWyR4, 30, 31]. The idea of evaluating
and controlling modeling errors, independently of the diization errors, was already discussed
in [5, 32, 33, 28, 29] by comparing, in some adequate manhersolutions obtained for the same
problem evaluated at different scales. Extension to stitthproblems of such methodologies is, to the
best of our knowledge, the first of its kind. This separatidbrsaurces enables to adapt the Arlequin
model effectively by choosing, in a greedy manner, pararaetethe numerical model that lead to the
computation of the output of interest within a prescribecuaacy.

The paper is organized as follows. Sectirntroduces the reference (stochastic) model and its
approximation in the context of the multiscale Arlequin heet. In Sectior8, which deals with the first
objective of the paper, the framework for goal-orienteserstimation as applied to the stochastic-
deterministic Arlequin coupling is introduced. In Sectiohwe address the second objective of the
paper. We propose a technique to split the error into diffeegror sources based on the introduction
of intermediate models, and we set up the associated adaptideling process. Finally, numerical
examples are presented in Sectionin order to discuss key numerical issues and illustrate the
effectiveness of the error estimates for adaptive modglirgoses. Conclusions are drawn in Section

2. REFERENCE MODEL AND APPROXIMATE ARLEQUIN FORMULATION

In this section, we describe the different models used is g@per. The reference monomodel is
a continuum stochastic linear elliptic boundary value peob This model is approximated using

the Arlequin method to yield a surrogate problem, called dbepled model, in which a continuum

deterministic model and a stochastic one interact with egfcér.

2.1. Reference monomodel

We consider here a stochastic linear elliptic Poisson problepresenting a wide range of physical
applications (heat equation, membrane, Darcy equatidre.problem is defined over an open bounded
domain2 with boundaryof?, split intoI'p, andI'y such thav) =T'p UT'y (see Fig. 1). Considering
(0, #, P) a complete probability space with a set of outcomes# a c-algebra of events, and
P : .7 — [0,1] a probability measure, the problem reads:

find v such that:

V- (K(x,0)Vu(z,0)) + f(x) =0, almost everywhere (a.e.) fn, and almost surely (a.s.), (1)
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Figure 1. Reference stochastic monomodel with heterogenemdom coefficienk (z, 6).

with :
{ u(z,0) =0 a.e.ornl'p and a.s. @)

K(z,0)Vu-n=g(x) a.e.onyanda.s.

The stochastic behavior is driven by paramekéfz, ) considered here as a stochastic fieft,
measurable o® ® B(Q2) where B(Q2) is the Borelo-algebra generated by the open subsetQ.dive
assume thak (x, ¢) is bounded and uniformly coercive [34).:

0 < Kpin < K(2,0) < Kppaw < 00, a.€.inQ2 and a.s.
We denoteV the functional space of admissible displacement fields as:
W= {veL*0,H (Q),v=00nTp, a.s} (3)

The weak formulation of the problem (1)-(2) reads:
Findu € W such that:
A(u,v) = L(v), YveW, 4

where the internal virtual work is given by the bilinear forn W x W — R and the external virtual
work is given by the linear fornL : W — R. They are defined, respectively, by:

A(u,v) =E {/Q K(x,0)Vu(x,0) - Vu(z,0) dQ] ,

and

L) = [ J@)Elule.0)] a2+ [ o) Elula,6)] dr,
Q 'n
where He| is the mathematical expectation. It can be proved that thblem described above admits
a unique solution (see for example [34]). We refer to thisisoh as the exact solution and denote it by
Ueq -

Let us notice that problem (4) is a continuous stochastidblpro. Therefore, two classical
approximations processes have to be used: one for the Ispatiansion and one for the stochastic
dimension. These approximations could induce high contjpui@ cost, especially with regard to the
stochastic dimension. To get an accurate approximatiotadsscal moments of.., using a Monte
Carlo approach for instance, a huge number of realizat@ispay be required, especially where critical
zones have to be considered. Another method based on theopalyl chaos decomposition [36, 34]
can also be followed but the size of the matrix which has torveried can increase dramatically. In
practice, due to the problem size, surrogate problemsetefiom this reference model are used. In the
next paragraph, we present a family of surrogate problemthg context of the Arlequin approach.

2.2. Surrogate model using the Arlequin coupling

Here, we assume that we are interested in a local quantitytefast defined within a prescribed region
Qs C Q. Inorder to reproduce accurately the effect of randomnesisis quantity, we choose to keep the
stochastic description in the local zof2g only. The parametek’ is thus kept in this area as a stochastic
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Figure 2. Arlequin description of the problem with couplingtween the two models in zofig.

field denoted by, (z, ) while it is changed to a deterministic parameter denotefi bin the remainder
of the structure. The latter is derived from by means of stochastic homogenization [37, 38]. In the
Arlequin framework, this multi-model representation isdaegossible by considering a deterministic
model defined ovef),; = Q2 (called the substrate) on which we superpose a stochastielndefined
over (), (called the patch). For simplicity of notation, we consitlez case where the pat€h is fully
embedded i), as shown in Fig. 2. The two models are blended together in plioguzone2. C Q,
(see Fig. 2) and the mechanical energy is distributed betle® two models using weight functions
(aa(z), as(z)) (see [7, 9, 21, 13] for more details). The Arlequin problerrtheads:

Find (ug, us, A) in Vg x Wy x W, such that:

{ ad(ud,vd) + O()\, Ud) d(vd), Yvg € Vy,

As(ug,vs) — C(\vs) = Lg(vs), Yvs € Wy, 5)
C(p, ug — us) = 0, Y e We,

where V,; = {v € H}(Qu), v(z) =00nTp} and W, = £2(0,H'()). The internal and external
virtual works ag : Vg xVy— R, Ag : W x W, =R, ¢;:V;— R and L, : W, — R are defined,
respectively, as:

aq(u,v) = /Q aq(z)KgVu(z) - Vo(z) dSQ,

Ay(u,v) =E Uﬂ s (2) Ky (2, 0)Vu(z, 0) - Vo(z, 0) dQ] ,

and

Caf) = /Q a(w)f(@)ola) a2+ [ glayola)ar,

I'n

Li(v)=E { /Q as(a) @)o(a0) dQ] .

The mediator spac®V. is built as a space of functions with a spatially varying estpgon and

a perfectly spatially correlated randomneks: = {¢ + 0.Io,[¢) € H' (), 0. € £L2(0,R)} with 6. a
random variable and wheifig_ is the characteristic function 6., namelyl, =1in Q. andl,, =0
elsewhere. This mediator space has been chosen as it is gllesnone that ensures the stability of
the formulation. Other possible choices included the igg&ins on{2. of either one ofY; or W;. The
former choice leads to an unstable mixed problem, and ttex latds to a waste or resources as the fine-
scale solution locks onto the coarse-scale solution in dopling area. Moreover, the specific structure
of the chosen mediator space imposes implicitly that thederble) average of the field, should be
equal to the fieldu,, almost everywhere if., and that the variability of the space average quantity

o E [us] — us dS2 should cancel (see [13] for more details). The coupling afpeC' : W, x W, — R
is defined as:

C(u,v) =E [/ (kouv + kK1 Vu - Vo) dQ| ,
Qe
where the parametekg andx; are of the same units as a string rigidity divided by a lengthamaterial
rigidity, respectively (see [9] for details). The well-mamess of problem (5) can be found in [13].



The surrogate Arlequin problem provides two fieldg:defined onV,;, andus defined onW;. We
additionally introduce the continuous fielg,, € W from u4 andu, given by:

. { g in Qg \ O,

u 1= .
o agug + asug 1N Q.

Obviously, the solution of the Arlequin modef,, and the exact solution., are different, even in
the patch. An error is thus introduced by the consideratibthe Arlequin model, even before any
discretization process is introduced.

3. GENERAL FRAMEWORK FOR GOAL-ORIENTED ERROR ESTIMATION

The Arlequin solution presented above is an approximatiohe reference monomodel solution. Its
estimation through numerical techniques introduces twditexhal levels of approximation: a space
approximation linked to the introduction of a mesh and csponding finite element bases and one
related to the stochastic dimension through the use of thetdiGarlo technique. We assume that we
can construct frontug, u?) a fielduq,; € W. We then define the error as= uc, — ari.

Let us recall here that the Arlequin model is used to estiradtecal quantity of interest inside the
patchQ,. This quantity is a function of the monomodel solution, deda(u). We therefore seek to
quantify the errot) = q(ue,) — q(uaqr) Using goal-oriented techniques.

In the case of deterministic Arlequin models, preliminargrks dealing with goal-oriented error
estimation were conducted for 1D tests [18]. With the intrctébn of an adjoint problem and tools for
modeling error control as defined in [33], the error on a gigeantity of interest was assessed. These
works were extended to 2D and 3D applications in [39, 28, B®]adaptive modeling of polymeric
materials.

3.1. Quantity of interest and adjoint problem

We seek to quantify the error on a quantity of interggt) : W — R obtained with the Arlequin
method. A quantity of interest could be, for example, thecepaverage over a given subdomain of
the mathematical expectation@fr of a given component &V w.

The idea is to express the output of interest in the globahfisee [25, 40, 33]):

q(u):E{/ fqudQ—i—/ gqudI‘—i—/pq-VudQ},
Q I'n Q

where quantitieg,, g, andp, are called extractors.
We then define the so-called adjoint problem, which readsercase of a linear quantity of interest:
Findp € W such that:
A(v,p) = q(v), Yo € W. (6)

In the remainder, we denote the exact solution of this prahle.. As shown below, the erray can then
be estimated as a function of,., andp....

3.2. Error estimates
Defining the residual functioz : YW x W — R associated to (4) by:
Z(u,v) = L(v) — A(u,v), 7)
the use of the adjoint problem provides a tool to estimatetha , [27] and one can easily show that:
1N = % (Uart, Pex)- (8)

Indeed, using the definitions gfandp...., we have:

no o= Q(uew) - q(uarl)
= q(Uex — Uart) sincegq is linear
= A(uem - uarlapew) thanks to Eq (6) withy = Uer — Ugrl

= L(pex) — Altgr, pex)  sinceA is bilinear andu,, verifies (4)



which proves (8).
In the case of a nonlinear quantity of interegty.,) — ¢(uq-;) would usually be linearized around
Uqr DY Writing [41]:

Q(uez) Q(P + uarl) = q(uarl) + q/(uarla 6) + 0(6)5 (9)
= q(Uex) = q(tart) ~ ' (Uari,€)

where o is the little o of the Landau notation afi¢, v) = limg_, w is the tangent operator
of ¢ atu. The extractorg,, g, andp, are then defined by:

q (ugri,e) = E [/ fq(uarl)edﬂ—k/ gq(uarl)edf—k/pq(uml)-VedQ ,
Q Ty Q

3.3. Approximation of the adjoint solution

In practice, as the adjoint problem is defined on the sameespsithe reference one, its solutign
is as intractable as the solution of the reference probletheh has to be approximated by a surrogate
problem. Using again the Arlequin framework, the approxeveadjoint problem reads:

Find (p4, ps, px) INn Vg x Wy x W, such that:

ag(wa,pa) + Clwa, \) = qa(wa), Vwa € Va,
As(w57ps) - O(’LUS, /\) = QS(ws)a Vws € Ws, (10)
C(pd — Ds; ,LL) = 0, Ve We,

whereV;, W, andW. can be different from/;, W, and W, respectively (see [28, 29] in the case of
a deterministic coupling between continuum and discretdet®). In the case studied here, under the
continuum form, we havea’d =V, and W, may be defined over a domatty, which is larger thar2,
and included i (Q, c Q, C Q). Moreover, in their discretized form, the spadgs W, and)V, are
chosen richer thaw,, W, andW,, respectively. The number of elements that define the fitdiment
spaces may thus be larger and the description of the stécdastension may be finer also (using more
Monte Carlo trials for instance).

Using the FEM and Monte Carlo techniques for instance, ameapate solution can be computed
for the coupled adjoint problem (10). We denote this sotutje;, p%, p$) and additionally introducg,;
similarly tou,-;, assuming,.; € WW. The error ory is then approximated by:

n= e@(uarlaparl)a (11)

Note here that, since we approxima#u.,,;, pe.:) bY Z(wari, pari), the approximation of,,,; has to be
more accurate than the approximationef by u,.;. This will be extensively discussed in the examples
of Section 5.

3.4. Approximation of the residual function

To estimate the erron, we need to evaluaté (uq,i, Pari) = A(tart, Pari) — L(pari). IN practice, the
fieldsu,,; andp,,; are approximated by the discrete fields, andp?, , given by:

@ inQg\ Qg
uty = { vi Infa (12)
u? In Q.

Through simple Monte Carlo sampling, and using realizatiofp?,, generated by the solution of the
adjoint Arlequin system (10),(p%,,) can be easily computed. Nevertheless, the Monte Carlo @stim
of A(ug,,, ps,,) involves realizations of produdt vV , - Vpe ;. Moreover, realizations ok™ are not
necessarily the same for the two systems. Realizationsiksf (@&, «¢,,) on the one hand, and<, p?,,)
on the other hand, are obtained, as described in the presémtions by solving the Arlequin systems (5)
and (10), respectively. In general, we thus cannot competty A(u?,,, p?.,).

We present in the following an approach to generate, fronizeggbons obtained by solving (5),
new realizations of:% that correspond to the realizations &f being used for the adjoint Arlequin
system (10), while following the same first- and second-ostigtistics of the solution? of the primal



Arlequin system (5). The field?,, is then reconstructed using Eq. (12) and we can thus compete t
term A(ug,, P,)-

To simplify the presentation, we first assume that b&tfx, ) and u?(x, ) are Gaussian random
fields. An extension to more general first-order marginatidhigtions will be presented at the end of this
section. Also, we consider the random vecty$/ and P that correspond to the random fieldSz, )
andu®(z, §) after space discretization. The objective is to generatersalizations/ of U so that we
can use& andU to compute the residual. These new realizations are suth tha

E[U] = E[U] :=U,
E[(U - U)(U —U)"] = E[(U — U)(U — U)T] := Covy, (13)
E[(U - U)(E - E)"] = E[(U — U)(E - E)T] := Covysz,

where we have introduced notatidtisand= for the expectation aff and= respectively, and covariance
matricesCovy and Covyz=. For latter considerations, we also introduce the aut@Gamce of=:
Covz = E[(Z — Z)(Z — Z)7] that is known because the stochastic modédla$ given. All expectations
and covariance matrices are estimated using standarstisitiestimators and the original realizations
of the solution of the primal Arlequin problem (5).

We introduce a unitary centered Gaussian random véziwith uncorrelated components|(E,| =

0;;) and independent frord, and the vector:

0 = U + Covy=Covz*(Z— E) + 1/ Covys — Covy=Covz ' Covl= O,

where the square root sign for a matéxindicates that\/@\/@T = (C. Simple algebra (remembering
the independence & and= andE[©] = 0) indicates that this random vector indeed verifies the ddsir
first- and second-order statistics (13) sought.

As neitherK (z, 0) nor u?(z, ) are Gaussian random fields, an isoprobabilistic approaculdtbe
followed to transform the original fields into Gaussian feeldfter construction of Gaussian vecidy
the inverse approach can be used to transform new reahsatid/ into the original first-order marginal
distribution.

With the procedure described in this section, it is possiblgenerate new realizations of,, that
correspond to botd andp?,. Hence, it allows us to estimaté(ug,,,p%,.,) through Monte Carlo
sampling, and then using equation (11).

4. SPLITTING BETWEEN ERROR SOURCES AND MODEL ADAPTATION

The error introduced by the use of the surrogate problem tsam som several sources. In fact, if we
decompose the construction of the approximate solutiam diifferent steps, we can distinguish (see
Fig. 3):

e the use of a surrogate problem described by the Arlequinoaeth
e the spatial discretization of continuum models,
e the approximation of the statistical moments (using the td@arlo technique for example).

Each step is driven by specific parameters. The Arlequin iisdiescribed by the size of the patch and
that of the coupling zone. The spatial discretization ispeatrized by the element size on each domain
(Qq, Qs andQ.). Finally, if we use the Monte Carlo technique to deal with tandom dimension, the
third step is driven by the number of Monte Carlo samples useatbescribe the material property. We
propose here a methodology to assess the error induced byegrand separateinto corresponding
error indicators.

4.1. Introduction of intermediate models and specializedréndicators

To split different error sources, we have to consider inetiate problems. In the following, the term
"continuous" refers to the opposite of "discretized" (gsFEM) or "approximate” (using FEM and
Monte Carlo technique). We call:
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Figure 3. Approximation steps for the resolution of a 1D ktmstic problem.

e Reference problem, the monomodel stochastic continualdem (whose the solution is denoted
by u., and associated residual functie# was introduced in (7)). To estimate the residual
X (uari, Part), We follow the approach described in subsection 3.4 usingearfiesh and a large
number of Monte Carlo draws.

e First intermediate problem, the Arlequin problem, defingd (b) and Fig. 2, coupling a
deterministic continuous and a stochastic continuous Ilsodé denote the solutiorig,, us, A) €
Vi Wi x Wh, the associated monomodel solutigh),, and the associated residual functign.
The associated residual functieff((., .,.); (.,.)) is then defined for alfv,, vs) as:

X ((ug, us, \); (va,vs)) = L(va,vs) — a((wg, us, A), (vVa, vs)),

where (vg,vs) = €q(vq) + Ls(vs) and a((uq, us, A), (va, vs, 1)) = aq(ug, va) + As(us, vs) +
C(\,vq — vs). As previously, we follow the approach described above tuate the residual.
As this problem refers to a continuous Arlequin model, theslmesed has to be sufficiently fine,
and the number of Monte Carlo draws sufficiently large.

e Second intermediate problem, the Arlequin problem cogpéndeterministic discretized and a
stochastic spatially discretized models. We denote thetisol (u”, u”, \") € VI x Wh x Wi,
the associated monomodel solutiaf),, and the associated residual functi@t. This problem
is defined from the previous one using a discretization tiegtenalong the space dimension, by
means of the FEM, for instance. The associated residuatieme” ((., ., .); (.,.)) is also defined
for all (v%,v") as:

A (o \) 5 (v 02)) = 0 (o) — a® (o AY) (ul00)).

where/" anda” correspond to discretized forms 6&nda. Contrary to the previous model, this
residual refers to a discretized model. Therefore, to atalthis residual, we use the same mesh
as the one used for the computable problem, a coarse onerthigess, the stochastic space is not
approximated yet and we thus have to use a large number ofeMario draws.

e Computable problem, the Arlequin problem coupling a deteistic and a stochastic models after
discretization in space and solving by the Monte Carlo tephain the random dimension. The
associated solutiofug, u?, A*) with monomodel solution,,; is the only one we compute in
practice. We will see how this solution can be used to esérddterent error sources.



We can notice that:

1= quez) = (tar) = [q(ues) — q(ugyy)] + [a(ug,y) — a(ul)] + [a(wl) = a(uar)]
The different errors op are then defined as follows:

e the stochastic error (mainly due to the approximation ofstiagistical moments):

Ne = (](UZrl) — q(uart),

e the discretization error (mainly due to the discretizaadong the spatial dimension):

= q(us,) — q(ull,),

e the modeling error induced by the use of the Arlequin methese (of a patch, and use of a
deterministic material parameter instead of the stochasie in(Q2,):

Nm = q(uew) - q(uzrl)'

As the only data available are the solution of the primal fob(u§, v?, A*), the solution of the
adjoint problem(p%, p2, p%), and the model (residual function) associated to eachnméérate problem,
we can derive estimates of the previous errors using (8):

e for the stochastic error
Ny ~ G ((Hhug,ﬂhug,ﬂh/\“) ; (thg, th‘sl)) ,
o for the discretization error

o = la(ug.) — q(uar)] — [Q(qul) - Q(uarl)]
2 (Mug, ITug, TT°A?) 5 (I1°pg, 11°p5))
—20" (g, T, TIA®) 5 (I, 1195 )

e for the modeling error

Nm = [Q(uer) - Q(uarl)] - [Q(qul) - Q(uarl)]
~  R(Uarl, Part) — X (M ug, Tug, TTN) 5 (TG, I°D5))

where (II(®Myd T2 TIMAe) and (TI©Mpg, T1Mpe) are projections of(ud,us, A*) and
(p%, p%) respectively in(Véc’h), wieh), Wc(c’h)) .

For the spatial projection, linear interpolation is chosdrereas the stochastic part is treated following
the approach described in subsection 3.4. As the patch @asihe size in all the intermediate problems,
the projection of the primal fields is obvious. As the patcledi$or the adjoint problem is bigger
(©2s C Qy), the stochastic adjoint is restricted to the patch usedh®fprimal model. For instance, the
fieldsII"p2 andII"p? are obtained fronip?, p?) using:

1"pg = pj
"pe = pela.

Let remind thatz(-, -) is computed using a very fine mesh wheré#q-, -) is estimated using the same
mesh as for the primal model.

The quantities)y, n, andn,, are only error indicators as the adjoint problem is appratéd using
the Arlequin solution. Let us notice that the different icattiors can be estimated using only solutions
uqr; @Ndpg,- (direct post processing), avoiding additional cost. Thimiopposition with other possible
approaches in which intermediate adjoint problems woulohb&lved and solved.
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Figure 4. Greedy algorithm for the adaptation process.

4.2. Algorithm for model adaptation

The basic adaptation process, based on a greedy algorgthimscribed in Fig. 4. The approach consists
in the following steps:

a. A set of initial parameters is used to perform primal arebeisited adjoint problems which are
both of Arlequin type.

b. The total error) associated with the quantity of interest is estimated.

c. If this error is higher than a given precision, we follove tiechnique described previously to split
the error sources.

d. The dominating error source is identified (in modulus) #redcorresponding parameter is refined.

e. We continue the process until the total error is below doggiired precision (in modulus), or when
the parameter, which has to be refined, is already as fine abfms

This choice of adaptation strategy is not unique; indeexgh stould be changed and we could identify
two (or more) dominating errors and refine the corresponpargmeters.

5. NUMERICAL RESULTS

In this section, we present some numerical results. Subsscd.1 and 5.2 discuss several numerical
issues, while subsections 5.3 and 5.4 present full apmits{in 1D and 2D) that illustrate the theoretical
results of the paper. Subsection 5.1 explores the conveegaithe error estimate proposed with respect
to several key parameters, and compares that error estivitatthe real error. Subsection 5.2 elaborates
on the importance of adequately solving the adjoint problararder for the error estimate to be precise.
Finally, in Sections 5.3, 5.4 and 5.5, full 1D and 2D casedraaged to assess the methodology proposed
in this paper, including the issue of splitting error sosrtedrive adaptation. All the numerical examples
of this section have been computed using the software @xatlé Arlequif[42].

5.1. 1D model: study of the influence of various parameters

We study here the influence of various parameters of the Amestrategy on a simple 1D problem
(Fig. 5). The problem consists in a bar of unit length undaction loading with prescribed Dirichlet
conditions, as well as a unit bulk load. The material propertandom and modeled as a uniform field
with bounds0.3013 and2.3601 (arithmetic averagé.3307, harmonic mean /E[1/K (z,0)] =1, and
standard deviatioax = 0.2), and exponential correlation with correlation length,. = 0.01.

It is approximated by an Arlequin model defined in Fig. 6 wherg, a;) are chosen linear in the
coupling zon&)... The model is driven by several parametdrsand L. for the definition of the patch,
hq andh for the size of the spatial discretization (for domainsand(2 respectively) and/ C for the
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Figure 5. 1D reference problem of a cantilever beam.

number of samples used for the Monte Carlo description. ‘platiad discretization of2. is driven by
the same sizé, as forQ),.

f=1
g QT T K (x0) 0 w=1
=0A~h Q — s\Z, U5 —
“EEON -— Kq(z)
T T h T T : 1
’ , , Qc . QZ , , x
0 T T T T T 1
Le Ly

Figure 6. 1D surrogate model with the Arlequin method.
We study here two quantities of interest:

e one related to the mean of the gradient in a zone near the enididhe bar:

= e[ [ 2]

The associated extractor, using integration by parts,fine by (see Fig. 7):

go(v) = ﬁE [/Q{a(a: —0.5) — 8z — 0.45)}v(2) dﬂ] ,

e one related to the variance of the gradient mean near thdeméithe bar (which is nonlinear with
respect tau):

1 05 du
qv(u) = Var [0.05 /0.45 g(x)dx} .

Following the idea developed in (9), for the nonlinear qitgnt, (v), we can write (see Fig. 8):

00) = ulttar) = o= E (A {Aart) — E A ()]}

where Ae = e(z = 0.5) — e(x = 0.45) and Augy; = ugri(x = 0.5) — ugr(x = 0.45). The extractor is
therefore defined by:

0o (v) = W;E [/ (6(z — 0.5) — 8z — 0.45)) { Attars — E [Attard]} o(x) d2| .
. Q
1 1
u=0 T oo u=0
] ¢
] K(z,0) £ o
0 O z—045  'z-05

Figure 7. 1D adjoint monomodel associatedqu).
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Figure 8. 1D adjoint monomodel associatedt¢u) whereF’, = 0.352 (Augr; — E[Aug]).

We now investigate the evolution of the relative error iraddc:

e@(uarlapa)

= Q(Uarl)

wherep,, is the approximate solution of the adjoint problem (usirggflEM and Monte Carlo techniques
for instance). This error indicator (drawn in dashed lind aincles), will be compared for each of the
two quantities of interest to the true relative error (drawsolid line):

Q(Uref) - q(uarl)
q(uarl)

Thref = .
wheregq(u,.r) is evaluated using a reference monomodel whose parameeetistad and computed
using the FEM and the Monte Carlo technique. The large nuwiiddonte Carlo draws used and the fine
spatial discretization allow to neglect the error (the dead deviation of the true relative errors, takittg
different sequences b0 000 Monte-Carlo draws is less than—2 for ¢v and less than x 103 for ¢,).

In the following subsections, we study the evolution of threerelated tayy (v) (results in Section 5.1.1,
associated adjoint problem described in Fig. 7), ard) (results in Section 5.1.2, associated adjoint
problem described in Fig. 8), with respect to two parametées number)/ C of Monte Carlo draws
used for the primal model (left result in figures) and the {s&t of the stochastic patdh (right result

in figures). Asg(u,,;) depends on the sequence of Monte Carlo draws, we show résults different
sequences of draws. The set of parameters used for themegareodel, the primal model and the adjoint
model are defined in Tab. | and Tab. II. In these tables, wheareomodel is used, we give also the spatial
discretization mesh size

| models | type | L, | L. | MC | ha | hs | h ]
reference| mono - - 100 000 - - 0.002
primal | arlequin| 0.3 | 0.01 | [20,100000] | 0.002 | 0.002 -
adjoint mono - - 100 000 - - 0.002

Table I. Definition of model parameters used for the studyefand g, with respect toMC. 20 different
sequences of Monte Carlo draws are used for the primal model.

| models | type | L, [ L. | MC | ha | he | h ]
reference| mono - - 100 000 - - 0.002
primal | arlequin| [0.2,0.5] | 0.01 | 100 000 | 0.002 | 0.002 -
adjoint mono - - 100 000 - - 0.002

Table Il. Definition of model parameters used for the studygptndg, with respect td.s. 20 different sequences
of Monte Carlo draws are used for the primal model.

5.1.1. Example A: study of the evolution of the relative rassociated withyy (u)

In Fig. 9, as the adjoint model is solved with the same refingras for the reference model, the
estimated error is superposed to the true relative erroexpgcted, the error decreases in both cases.
On Fig. 9 (right), when the half-size of the stochastic paeblves from0.2 to 0.5, the error decreases
from almost2% down to less thaf.5%. On Fig. 9 (left), with more thah00 Monte Carlo draws, for
a half-size 0f0.3, the error is lower thafn%. Nevertheless, we remark that, when the number of Monte

12



Carlo draws increases, the error does not tend to zero. dhies from the fact that the primal model
is approximated using Monte Carlo draws but also using tHegin method. That means that both
Monte Carlo draws and half-size of the stochastic pafch= 0.3) contribute to the total error. Indeed,
the asymptotic value of the error in the left picture coroagps to an error close 4% for L, = 0.3 in
Fig. 9 (right).

0.02

0.015r

0.01r

relative errors[-]
o
relative errors [—

0.005r

10t 10° 10 10 10° 82 025 03 035 04 045 05
number of Monte—Carlo draws [-] half-size of the stochastic patch [-]

Figure 9. Evolution of relative errors for the evaluationgef with primal models defined by Tab. | and Tab. II:
nr andn,..y (superposed) in gray markers for several sequences of drétvsnean in solid line and standard

deviations (error bars), with analytical ratelgh/ M/ C' in dashed line with respect to the number of Monte Carlo
draws [left] and with respect to the half-size of the stoticgsatch [right].

5.1.2. Example B: study of the evolution of the relative leagsociated withy, (u)

In Fig. 10, we remark that the true error and the estimateat elecrease. Nevertheless, the error
estimate is very optimistic (lower in modulus) for the ew@n with respect td.; and quite pessimistic
(higher in modulus) for the evolution with respecti6C. Contrary to the cases involving, here, the
main difference is that the adjoint problem cannot be soledectly as its load is defined from the
primal displacement solution. Moreover, the differencenaen the true error and the estimated one is
also due to the linearization of the quantity of interesB) Again, a key point here is that the true error,
in the picture on the left, seems to tend to a significant remo-zalue. For the same reasons as those
seen previously, it is due to the fact that both Monte Carbwdrand half-size of the stochastic patch
contribute to the total error. We then propose in the nexiaeto study the evolution of the error when
we take an Arlequin model with the same half-size of the sistib patch as the reference.

S
I
o
0,

relative errors [-]
o
“ v*;
3
L2
¢
H
relative erro|
o
o
=D

A 0.04}
—-1r ‘t.-‘
tt# 0.02
10* 10% 10° 10* 10° 82025 03 035 04 045 05
number of Monte—Carlo draws [-] half-size of the stochastic patch [-]

Figure 10. Evolution of relative errors for the evaluatidne with primal models defined by Tab. | and Tab. II:

7 in gray circles for several sequences of draws, with medid(soe) and standard deviations (error bars) and

of n,.r in grey crosses for several sequences of draws with meahgddime) and standard deviations (error

bars), with respect to the number of Monte Carlo draws [kfid with respect to the half-size of the stochastic
patch [right].

5.1.3. Study of parametér C' when the reference model is an Arlequin model

We can remark that the parametefC studied before drives the approximation of the stochastic
space. If we follow the splitting description of the totabpess, we can observe that the stochastic
approximation process occurs between two spatially digerd Arlequin models. That explains the fact
that when we study the evolution of the error with respectfto, we also evaluate the error induced by
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the use of the Arlequin method. To avoid that, we propose teestudy the evolution of the error with
respect to a reference model which is an Arlequin model vithgame coupling and the same spatial
mesh step as described in Tab. III.

| models | type | L, | L. | MC | ha | hs [ h]
reference| arlequin| 0.3 | 0.1 100 000 0.002 | 0.002 | -
primal | arlequin| 0.3 | 0.1 | [20,100 000] | 0.002 | 0.002 | -
adjoint | arlequin| 0.3 | 0.1 100 000 0.002 | 0.002 | -

Table IlI. Definition of models used for the study @ or ¢, with respect toM/C with Arlequin model as the
reference20 different sequences of Monte Carlo draws are used for timegbrinodel.

Fig. 11 shows the evolution of the true relative em@ry (solid line) and the error estimaig (dashed
line and circles) with respect to the number of Monte Carlawndr used in the primal problem, for the
evaluations ofyy (left) andg, (right). We remark in this case that we efficiently captueéiror related
to the parameted/ C alone. This time, the true errors actually decrease downvedwe close to zero.
In fact, the last point proposed here corresponds to thegAntereference model used in the example.
These curves correspond to a translation of the curves i®Rigd Fig. 10 (left) of a value corresponding
to the error when a patch of half-siZe = 0.3 is used.

S
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o
;&
»
&
¢
i
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Figure 11. Evolution of relative errors for the evaluatidrye [left] and g, [right] with models defined by Tab. I11:
nr (grey circles) andy,..r (grey crosses) for several sequences with mean in solichlidestandard deviations

(error bars), analytical rate af/+/MC in dashed line.

5.1.4. General conclusions on the influence of the parameter

For the quantities of interest studied here, the size of thehastic patch or the number of Monte
Carlo draws used for the primal problem have a strong infleemcthe error. When the adjoint model
is solved with sufficient accuracy, the estimated errorgulj matches the true error in the case of the
linear quantity of interesfy, . For the estimation aof,,, the difference between the errors is due to the fact
that g(ues) — q(uqr) is estimated by (uq.1, €) that corresponds to the first order term only (see (9)).
Finally, Section 5.1.3 showed that the error for high’ and largel.; comes from the use of an Arlequin
surrogate model for the solution of the adjoint problem.

In Section 5.2, we propose to study the influence of the emméett of the adjoint model, compared to
the primal model one, when an approximate adjoint modelesl i3 estimate the quantity of interest.

5.2. 1D model: adjoint problem approximation

As seen previously, in practice, the adjoint problem widlcabe approximated by the Arlequin method.
Not to increase too much the computation time, parametetBeofdjoint problem have to be set up
correctly. In this part, we study the effectivity of the arestimates when adjoint model parameters vary.
The parameters under study are:

e the half-size of the stochastic patch.() used for the adjoint model (when the corresponding
parameter, varies in the primal model),

e the number of Monte Carlo draw3/C,) used for the adjoint model (when the corresponding
parametei/ C,, varies in the primal model).
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The aim is to get a feeling of how to enrich the adjoint modehpared to the primal model to get an
accurate estimation of the true error.

5.2.1. Influence of the parametgg, for the estimation ofv (u)

| models | type | L, | L.| MC | hg | hs | h |

reference| mono - - | 100 000 - - 0.002
primal | arlequin| [0.2,0.5] | 0.1 | 100 000 | 0.002 | 0.002 -
adjoint | arlequin| [0.2,0.5] | 0.1 | 100 000 | 0.002 | 0.002 -

Table IV. Definition of models used for the calibration of #joint problem (parametér;) associated tgy (u).
20 different sequences of Monte Carlo draws are used for ttaradpodel.

Tab. V shows the evolution of. andn,.; with respect to the half-size of the stochastic patch used
for the primal model L,,). In this case, the increase of the size of the stochast@hgat the adjoint
model does not seem to have a strong influence on the accur#éfoy error estimate. We can remark
a worsening of this accuracy when the size of the stochaathfor the primal model increases. We
can also notice that with a half-size of patchodf for the adjoint model, the difference between the true
error and the estimated error is low but still significantalmeans that even with the largest patch, the
adjoint problem is not solved as accurately as in the prevémgtion. This is mainly due to the fact that
the coupling zone constrains the stochastic solution innrazevo part of the problem.

For the adaptive examples described in Section 5.3, we ehimoset the patch size of the adjoint
model with only one valuel(;, = 0.45) independently of the patch size of the primal modegl,{.

Lua 0.2 0.3 0.4 05 | ef[1077]
L., =02 | 18.0(24) | 18.1(1.0) | 18.3(0.9) | 18.1(0.9) | 18.5(1)
0.3 - 10.1(1.8) | 10.7(0.7) | 10.5(0.8) | 13.7(1)
0.4 - - 5.3(0.9) | 5.0(0.6) | 8.6(1)
0.5 - - - 23(05) | 3.4(1)

Table V. Evolution ofy,-[10~3] with respect to the half-size of the stochastic patch of tiragd model (sy,), for
the evaluation ofyy (u) with models defined by Tab. IV. Standard deviations are algngbetween parenthesis.

5.2.2. Influence of the paramet&fC for the estimation ofv (u)

| models | type | Ly | L.| MC | ha | hs | h |

reference| mono - - 100 000 - - 0.002
primal | arlequin| 0.3 | 0.1 | [20,100000] | 0.002 | 0.002 -
adjoint | arlequin| 0.45 | 0.1 | [20,100000] | 0.002 | 0.002 -

Table VI. Definition of models used for the calibration of #djoint problem (parametér/ C) associated tgy .
20 different sequences of Monte Carlo draws are used for ttaradpodel.

Tab. VII shows the evolution of, andn,.; with respect to the number of Monte Carlo draws used
for the primal model. We remark again that the estimationnily slightly modified when we take a
large number of Monte Carlo draws for the adjoint model. Ib.Téll, for M C, = MC, = 100 000,
the relative estimated errdn.8 x 10~* can also be read in Tab. V fdr, = 0.3 for the primal model
and betweerl., = 0.4 and L, = 0.5 for the adjoint model. For the adaptive examples described i
Section 5.3, the number of Monte Carlo draws for the adjoiotiel (M C,,) is set to100 000.

5.2.3. General conclusions on the approximation of theiatjpodel

As soon as the Arlequin model is used for the adjoint probléme, estimation of the error
loses efficiency, specially concerning the number of MonéeldCdraws used for the adjoint model.
Nevertheless, when the stochastic patch is long enough aerd the number of Monte Carlo draws is
sufficiently large, the difference between the referencereand the estimated error is quite small. In
these cases, the estimated error tends to underestimataetesror.
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MC, 20 200 2000 20 000 100 000 [ nres[1077]
MC, =20 | —42.5(39.5) | —36.2(36.6) | —34.6(34.9) | —34.2(35.0) | —34.5(34.7) | 4.1(1)
200 - 1.9(12.4) 2.7(8.7) 3.0(8.7) 3.0(8.7) 18.6(1)
2 000 - - 5.4(3.5) 17(1.2) 1.7(0.8) 11.8(1)
20 000 - - - 7.1(1.0) 7.4(0.7) 11.0(1)
100 000 - - - - 10.8(0.9) 13.77(1)

Table VII. Evolution ofr,[10~3] with respect to the number of Monte Carlo draws used for tivaairmodel
(MCp), for the evaluation ofj; with models defined by Tab. VI. Standard deviations are aigengbetween
parenthesis.

In regards to the number of Monte Carlo draws used for theridjaodel, it seems that the estimated
error is sufficiently accurate when this number is very lafgar instance, if we take00 000 Monte
Carlo draws, the estimated error is very accurate as thé sate of the adjoint probleny, = 0.45)
still affects the approximation of the adjoint solutiondaherefore the quality of the estimation.

Finally, for model adaptation, we choose to approximatedtipint problem using the Arlequin
method but with a large patch sizé (= 0.45), and a large number of Monte Carlo trial3/(C =
100 000). The other parameters are set kQ:= 0.01 and hs; = 0.002. This choice is non unique and
can be discussed and changed if needed (in the case whereevmmeafine the mesh size for example).

5.3. Model adaptation for the 1D problem

We study in this section the problem described in Sectionlb.fparticular, we present results from the
adaptation process obtained when we investigate the twatitjea of interesty andg,. The parameters
are L (half-size of the stochastic patch)fC' (humber of Monte Carlo draws used), the spatial mesh
size hy of the deterministic model, while the spatial mesh dizeof the stochastic model is fixed at
0.002.

In Fig. 12 and Tab. VIII, we show the results for the error assed withgy . We observe that the main
error sources are due to the use of a low number of Monte Cealog] then to the use of the Arlequin
method. By increasing the corresponding parametiersrom 0.2 to 0.45 and M C from 5 to 2 000),
the relative estimate erray. decreases fror.7% to 6.6%. The corresponding true error decreases from
14% to0 0.7%. More precisely, the algorithm stops after iteratdand the dominant error is due to the
use of the Arlequin model. The last iteration is added mdnualillustrate the possibility to decrease
the total error by increasing the number of Monte Carlo dréiws second main source of the error),
and therefore decreasing the stochastic error. Tab. \Btl ahows the evolution of the true errors with
respect to the patch size, the discretization and the Moatk @uncation. As we can see, the various
error estimatesy...n»,n9) give a good indication on the true errors, speciallyifpandn;,. The bias on
the estimation of the total error impacts only the estinratibthe modeling error.

model 1 2 3 4
Ly 0.2 0.2 0.45 0.45
MC 5 200 200 2 000
hq 0.05 0.05 0.05 0.05
hg 0.002 0.002 0.002 0.002
Nm, 0.0682 0.0907 0.0658 0.0639
n,’;fjf 0.0158 0.0189 0.0061 0.0059
s —0.0216 | —0.0197 | —0.0127 | —0.0131
n,rff 0.0432 —0.0150 | —0.0103 | —0.0126
il —0.1342 | 0.0180 0.0288 —0.0005
ngef —0.1995 | 0.0210 0.0265 —0.0009
(7] 0.0876 0.089 0.0842 0.0660
|77r€f| 0.1405 0.0248 0.0223 0.0077

Table VIII. Evolution of parameters and relative errorsi¢tiand estimate) for the evaluationgsf.
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Figure 12. Evolution of the relative estimates of the totaben, (white), modeling errorm,, (light gray),
discretization error,, (dark gray), and stochastic errgy (black) during adaptive process for the estimation
of qv.

In Fig. 13 and Tab. IX, we study the error associateg,tdn this case, the study shows that the main
error sources are due to: (i) the use of a low number of MonttoGaalizations; (ii) the size of the
stochastic patch; (iii) finally (for the last iteration) teize of the mesh of the deterministic model. By
increasing the corresponding parameters alternatelyethive estimate errof,. decreases from more
thang86% to less thart).5%.
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Figure 13. Evolution of the relative estimates of the totaben, (white), modeling error,, (light gray),
discretization errom,, (dark gray), and stochastic errgs (black) during adaptive process for the estimation
of qu.

This simple example shows the efficiency of the splittingpesources methodology. Indeed, the
stochastic error and the discretization error corresporibd true errors as soon as the second iteration.
The approximation of the adjoint problem using an Arlequiod®l mainly affects the modeling error
estimate. Finally, the use of this technique permits to elese efficiently the error estimate by adapting
the corresponding parameter for each step of the process.
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model 1 2 3 4 5 6
L 0.2 0.2 0.3 0.3 0.35 0.35
MC 200 10 000 10 000 50 000 50 000 50 000
hq 0.05 0.05 0.05 0.05 0.05 0.01
hg 0.002 0.002 0.002 0.002 0.002 0.002
Mm —0.174 | —0.0893 | —0.0661 | —0.0121 | 0.0007 | —0.0036
Mo —0.7077 | —0.0724 | —0.0819 | —0.0022 | —0.0040 | —0.0001
N 0.0189 0.0360 0.0009 0.0006 | —0.0128 | —0.0008
|7y 0.862 0.126 0.147 0.0137 0.0161 0.0045

Table IX. Evolution of parameters and relative error for ¢haluation ofy, .

0
x axis [-]

Figure 14. 2D case and associated mesh used for the estinoatioe residualz.

5.4. Model adaptation of a 2D problem

We now consider a 2D sampl@ inscribed in the boX-3,3] x [-1,1] (see Fig. 14). The sample
is submitted to a prescribed Dirichlet condition, with nolkolbad. The boundary conditions are
u(z = =3,y) =0,u(x = 3,y) = 1, andVu - n = 0 for the remaining edges, almost surely. The model
is described by a random material propekiyz, ¢), modeled as a uniform field with bounds542 and
2.1938 (with geometric mean/E[1/K (z,0)] = 1, and standard deviationx = 0.2), and exponential
correlation with correlation length.,,. = 0.05 in each direction. To estimate the residual numerically,
the reference monomodel problem is spatially discretized3dr92 elements and we useg C' = 5 000
Monte Carlo draws to represent the stochastic fiéld

The quantity of interest considered here is the componeuit the gradient in a given zon@,,,;.
Considering the model given in Fig. 18;,,; is located near the middle of the sample (where the loading
is applied). This quantity of interest is defined by:

@2p(u) =E {/Qm

The reference problem is approximated by the Arlequin nekthaath a centered patch. The
corresponding adjoint problem is described in Fig. 15. Ib&xled byp, = K (z,0)Vu(x,0) = i, with
i the unit vector of the x-axis. It is spatially discretized®y48 elements for the deterministic model
and6 144 for the stochastic model in a patch of half-size= 1.8. Moreover, we usé 000 Monte Carlo
draws for the adjoint model.

Vu - ig dﬂ} . (14)

u=0 u=0 u=0

Figure 15. 2D associated adjoint problem.

Using the adaptive strategy introduced in Section 4.2, westigate the absolute valuegf:

<%(Uarhpa)
= — . 15
42D (uarl) ( )
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Fig. 16 and Tab. X show that the main error sources are dueetaigh of a weak number of Monte
Carlo draws and due to the use of the Arlequin method. By asing the corresponding parameters, the
relative estimate erroy, decreases frora1% to 5%.
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Figure 16. Evolution of relative estimates of the total erfp (white), modeling errorn,, (light gray),
discretization error, (dark gray), and stochastic errgy (black) during adaptive process for the estimation

of qoD-
L 0.75 0.9 0.9 1.65
MC 5 5 500 500
Ny 528 528 528 528
N 3040 3424 3424 5632

Mm 0.1098 0.1018 0.0908 0.0539
N, | —0.0038 | —0.0038 | —0.0031 | —0.0013
7o 0.1067 0.1135 | —0.0057 | —0.0024
7| 0.2128 0.2116 0.0820 0.0502

Table X. Evolution of parameters and relative errors foralaluation ofg 5. N; and N represent the number
of elements of the deterministic discretized model and @ftiochastic patch respectively. Note thatincreases
only becausd s increases, the patch mesh is not finer.

As for the 1D adaptation example, the splitting of error sesrtechnique permits to identify the
dominating error source. The associated parameter cabé&weiined. For this 2D example, the Arlequin
model with a relatively small number of Monte Carlo drawsd an medium-sized patch, gives an
estimation of the quantity of interest with less th&g#a of error.

5.5. Practical study case

In dental restoration, dentists use bio-compatible resireplace the ill part of a tooth (damaged by
caries for example). The adhesion of this resin with thett@®a key issue of the treatment.

When caries reach the dentin, the adhesion is currentlgaetiiby micromechanical seal of the resin
with the demineralized dentin. The resin has to sufficientfiltrate the dentin to obtain an effective
adhesion. We study in this part the infiltration speed of argsthe demineralized dentin. The studied
problem is described in Fig. 17. The resin infiltrates firsttibule (represented by "holes" in the figure)
and then a network of collagen fibers that is the main compafendemineralized dentin. The porosity
of this medium is modeled by a stochastic field.

We assume that the flow follows the Darcy assumptions in a @eemt regime. The pressure
verifies the equation (1) where the random material prop&ity, ¢) is modeled as a uniform field
with bounds1.43 x 107°,1.43 x 104 um?(Pa - s)~* (with geometric mean/E[1/K (z,0)] = 3.19 x
10~°um?(Pa - )~ 1), and exponential correlation with correlation lendth, = 1.m in each direction.
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Figure 17. Study of resin infiltration in demineralized denTwo dentinal tubules of diamet&pm are modeled.

Only one of the tubule is filled of resin whereas the other lellbloes not. This condition is modeled by
a prescribed pressure bbar on the bottom tubule (which corresponds to the presgpkea manually

by the dentist), whereas the other edges are submitted tovempoessure of) bar. The problem is
described using the Arlequin approach in which a squarénpaémtered on the sample, is used to model
the tubules and the stochastic field, whereas the subswaterbt contain tubules and heterogeneities.
With these considerations, the smallest patch is a squat8of. side length. We seek to adapt the
different parameters of the method by considering as qtyaoftinterest the average flow velocity along
they axis in a specific zone defined B,,; = {M (x,y)|(x,y) € [-1/3,1/3] x [2—1/3,2+ 1/3]}:

q5(p) :E{_—l/ K(x,0)Vp(z,0) - iy dQ (16)
|Zint| Zint
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Figure 18. Mean value of-component of the flow velocityfm - s~ 1] in an Arlequin patch (size 18um)

obtained from100 Monte Carlo realizations and with a triangular mesh (whdserhaximum diameter of the

inscribed circle is0.05um (corresponding to a total estimated error-e8.2% for the evaluation of;¢). The
boundary of the substrate is visible in solid lines.

The results (see Fig 18) show that the flow is highly localibetiveen the two tubules. Following
the approach described on this paper, the quanfitgan be evaluated with an estimated accuracy of
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less tharD.2% for the absolute value of the total errdr.({6% for the modeling error-0.18% for the
stochastic error an@l001% for the discretization error) reached at the first increment

6. CONCLUSIONS

The main contribution of the paper has been to propose a catignal framework for addressing the
control of errors coming from three different sources:

a. the modeling error, due to the use of the Arlequin methagliog a deterministic model with a
stochastic one to approximate a full stochastic problem,

b. the discretization error, due to the discretization & #patial dimension, using the FEM for
instance,

c. the stochastic error, due to the use of the Monte Carlonigqok to approximate statistical
moments.

A goal-oriented error estimation technique was introduceguantify the capability of the Arlequin
framework to evaluate some specific quantities of intergdaptivity was also considered. For that
purpose, the corresponding error strategy was enrichetitdify separately the different error sources.
Using only the solution of the primal problem, the solutidrilee adjoint problem, and the definition of
the residual associated to specific intermediate problerashowed that it is possible to identify the
major error source and refine the corresponding parametedtxe the total error.

Future research will deal with the development of an optiatptive process where the error could
be spatially analyzed, on one hand, and the coupling betiveeeatochastic models, on the other hand.
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