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SUMMARY

The paper deals with the issue of accuracy for multiscale methods applied to solve stochastic problems. It more
precisely focuses on the control of a coupling, performed using the Arlequin framework, between a deterministic
continuum model and a stochastic continuum one. Using residual-type estimates and adjoint-based techniques, a
strategy for goal-oriented error estimation is presented for this coupling and contributions of various error sources
(modeling, space discretization, and Monte Carlo approximation) are assessed. Furthermore, an adaptive strategy
is proposed to enhance the quality of outputs of interest obtained by the coupled stochastic-deterministic model.
Performance of the proposed approach is illustrated on 1D and 2D numerical experiments.

KEY WORDS: Multiscale methods, Stochastic Mechanics, Arlequin method, Goal-oriented error
estimation,a posteriorierror estimation

1. INTRODUCTION

Numerical simulation has become an essential tool in designprocesses, providing for more flexibility
and reduced production costs. Recent advances in this field include the development and consideration
of multiscale and stochastic models. Multiscale models, onthe one hand, aim at introducing appropriate
models at each of the scales considered in a general problem and coupling them together. Stochastic
models, on the other hand, aim at explicitly taking into account data uncertainties and modeling
variabilities, which traditionally limit the predictability of deterministic numerical models. Such
stochastic multiscale models, and the control of their accuracy, form the subject of the present paper.

We assume that there exists, for the study of a structure, a hierarchy of models defined at different
scales. While coarse models might yield effective results for the average response of the structure under
distributed loading, these models may become ineffective when a localized defect arises (crack, hole,
local weakness), or when one is interested in local quantities. Finer-scale models are then required, but
usually involve higher computational costs, which renderstheir use unrealistic for industrial structures.
The general idea of multiscale modeling is then to get aroundthis dilemma by considering a coarse model
wherever possible, while refining it locally around the zoneof interest. Various multiscale strategies have
been developed: (i) enrichment methods [1, 2] in the Finite Element Method (FEM) framework, in which
appropriate fine-scale basis functions are used around local defects; (ii) splitting methods [3, 4, 5, 6]
in which the solution field is split additively into a coarse field and a finer-scale field, each being
solved at its own scale, with fictitious boundary conditionsat the lower scale; and (iii) superposition
methods [7, 8, 9], in which both coarse and fine-scale models coexist in the local subdomain of interest
and are solved concurrently by enforcing the matching of their solutions in an appropriate weak sense on
an overlapping region. Extensions of these multiscale strategies to stochastic models have been proposed
in the context of the heterogeneous multiscale method [10],the multiscale finite element method [11]
and of the Arlequin method [12, 13]. The latter is a superposition method that has been applied to the
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coupling of various models in the past decade (see [7, 14, 15,16, 9, 17, 18, 19, 20], among others), and
on which we will concentrate in this paper [21, 13].

The purpose of stochastic multiscale modeling is to providereliable results for engineering problems,
with explicit account of data uncertainties and modeling variabilities at reasonable computational cost.
However, to reach that goal, the numerical errors associated to their solution must be evaluated and
controlled. For more than thirty years, and particularly inthe context of the FEM,a posteriorierror
estimators have been proposed (see [22, 23, 24] for reviews). These techniques allow to complement FE
solutions with an estimation of their accuracy. After initial works on global error estimators, based on
global energy norms of the solution, goal-oriented error estimators have been developed [25, 26, 27] in
order to assess the accuracy of specific outputs of interest (for example: stress average in a given zone,
or displacement of a point). While most of the studies on error estimation are concerned with monoscale
models, some specific developments have been proposed for coupled multi-scale models. In particular,
in the Arlequin framework, several papers have dealt with the evaluation and control of the accuracy
of coupled atomistic and continuum models assessing both discretization and modeling errors, in the
deterministic case [18, 28, 29]. A preliminary work has alsobeen presented in the context of atomistic-
continuum stochastic models [12], but using a different type of coupling from that considered in the
present paper.

The main objective of the paper is to develop a framework for goal-oriented error estimation when
the Arlequin method is used to couple deterministic and stochastic models, as developed in [21, 13]. To
control the quality of approximate local quantities, we useresidual-type estimates and classical adjoint-
based techniques to get bounds on the local error. A second objective of the paper is to propose a method
to split the different error sources,i.e. modeling error, spatial discretization error, and stochastic error.
The splitting is based on the introduction of intermediate reference models and on the construction
of error estimates with respect to these new models, following [24, 30, 31]. The idea of evaluating
and controlling modeling errors, independently of the discretization errors, was already discussed
in [5, 32, 33, 28, 29] by comparing, in some adequate manner, the solutions obtained for the same
problem evaluated at different scales. Extension to stochastic problems of such methodologies is, to the
best of our knowledge, the first of its kind. This separation of sources enables to adapt the Arlequin
model effectively by choosing, in a greedy manner, parameters of the numerical model that lead to the
computation of the output of interest within a prescribed accuracy.

The paper is organized as follows. Section2 introduces the reference (stochastic) model and its
approximation in the context of the multiscale Arlequin method. In Section3, which deals with the first
objective of the paper, the framework for goal-oriented error estimation as applied to the stochastic-
deterministic Arlequin coupling is introduced. In Section4, we address the second objective of the
paper. We propose a technique to split the error into different error sources based on the introduction
of intermediate models, and we set up the associated adaptive modeling process. Finally, numerical
examples are presented in Section5, in order to discuss key numerical issues and illustrate the
effectiveness of the error estimates for adaptive modelingpurposes. Conclusions are drawn in Section6.

2. REFERENCE MODEL AND APPROXIMATE ARLEQUIN FORMULATION

In this section, we describe the different models used in this paper. The reference monomodel is
a continuum stochastic linear elliptic boundary value problem. This model is approximated using
the Arlequin method to yield a surrogate problem, called thecoupled model, in which a continuum
deterministic model and a stochastic one interact with eachother.

2.1. Reference monomodel

We consider here a stochastic linear elliptic Poisson problem representing a wide range of physical
applications (heat equation, membrane, Darcy equation). The problem is defined over an open bounded
domainΩ with boundary∂Ω, split intoΓD andΓN such that∂Ω = ΓD ∪ ΓN (see Fig. 1). Considering
(Θ,F , P ) a complete probability space withΘ a set of outcomes,F a σ-algebra of events, and
P : F → [0, 1] a probability measure, the problem reads:

find u such that:

∇ · (K(x, θ)∇u(x, θ)) + f(x) = 0, almost everywhere (a.e.) inΩ, and almost surely (a.s.) , (1)
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Figure 1. Reference stochastic monomodel with heterogeneous random coefficientK(x, θ).

with :
{

u(x, θ) = 0 a.e. onΓD and a.s.,
K(x, θ)∇u · n = g(x) a.e. onΓN and a.s..

(2)

The stochastic behavior is driven by parameterK(x, θ) considered here as a stochastic field,P
measurable onΘ⊗B(Ω) whereB(Ω) is the Borelσ-algebra generated by the open subsets ofΩ. We
assume thatK(x, θ) is bounded and uniformly coercive [34],i.e. :

0 < Kmin ≤ K(x, θ) ≤ Kmax <∞, a.e. inΩ and a.s.

We denoteW the functional space of admissible displacement fields as:

W = {v ∈ L2(Θ,H1(Ω)), v = 0 onΓD, a.s.} (3)

The weak formulation of the problem (1)-(2) reads:
Findu ∈ W such that:

A(u, v) = L(v), ∀v ∈ W , (4)

where the internal virtual work is given by the bilinear formA : W ×W → R and the external virtual
work is given by the linear formL : W → R. They are defined, respectively, by:

A(u, v) = E

[
∫

Ω

K(x, θ)∇u(x, θ) ·∇v(x, θ) dΩ

]

,

and

L(v) =

∫

Ω

f(x)E [v(x, θ)] dΩ+

∫

ΓN

g(x)E [v(x, θ)] dΓ,

where E[•] is the mathematical expectation. It can be proved that the problem described above admits
a unique solution (see for example [34]). We refer to this solution as the exact solution and denote it by
uex.

Let us notice that problem (4) is a continuous stochastic problem. Therefore, two classical
approximations processes have to be used: one for the spatial dimension and one for the stochastic
dimension. These approximations could induce high computational cost, especially with regard to the
stochastic dimension. To get an accurate approximation of statistical moments ofuex using a Monte
Carlo approach for instance, a huge number of realizations [35] may be required, especially where critical
zones have to be considered. Another method based on the polynomial chaos decomposition [36, 34]
can also be followed but the size of the matrix which has to be inverted can increase dramatically. In
practice, due to the problem size, surrogate problems derived from this reference model are used. In the
next paragraph, we present a family of surrogate problems, in the context of the Arlequin approach.

2.2. Surrogate model using the Arlequin coupling

Here, we assume that we are interested in a local quantity of interest defined within a prescribed region
Ωs ⊂ Ω. In order to reproduce accurately the effect of randomness on this quantity, we choose to keep the
stochastic description in the local zoneΩs only. The parameterK is thus kept in this area as a stochastic
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Figure 2. Arlequin description of the problem with couplingbetween the two models in zoneΩc.

field denoted byKs(x, θ) while it is changed to a deterministic parameter denoted byKd in the remainder
of the structure. The latter is derived fromK by means of stochastic homogenization [37, 38]. In the
Arlequin framework, this multi-model representation is made possible by considering a deterministic
model defined overΩd ≡ Ω (called the substrate) on which we superpose a stochastic model defined
overΩs (called the patch). For simplicity of notation, we considerthe case where the patchΩs is fully
embedded inΩd as shown in Fig. 2. The two models are blended together in a coupling zoneΩc ⊂ Ωs

(see Fig. 2) and the mechanical energy is distributed between the two models using weight functions
(αd(x), αs(x)) (see [7, 9, 21, 13] for more details). The Arlequin problem then reads:

Find (ud, us, λ) in Vd ×Ws ×Wc such that:






ad(ud, vd) + C(λ, vd) = ℓd(vd), ∀vd ∈ Vd,
As(us, vs)− C(λ, vs) = Ls(vs), ∀vs ∈ Ws,

C(µ, ud − us) = 0, ∀µ ∈ Wc,
(5)

where Vd = {v ∈ H1(Ωd), v(x) = 0 onΓD} and Ws = L2(Θ,H1(Ωs)). The internal and external
virtual works ad : Vd × Vd → R, As : Ws ×Ws → R, ℓd : Vd → R and Ls : Ws → R are defined,
respectively, as:

ad(u, v) =

∫

Ωd

αd(x)Kd∇u(x) ·∇v(x) dΩ,

As(u, v) = E
[
∫

Ωs

αs(x)Ks(x, θ)∇u(x, θ) ·∇v(x, θ) dΩ

]

,

and

ℓd(v) =

∫

Ωd

αd(x)f(x)v(x) dΩ +

∫

ΓN

g(x)v(x) dΓ,

Ls(v) = E

[
∫

Ωs

αs(x)f(x)v(x, θ) dΩ

]

.

The mediator spaceWc is built as a space of functions with a spatially varying expectation and
a perfectly spatially correlated randomness:Wc = {ψ + θcIΩc

|ψ ∈ H1(Ωc), θc ∈ L2(Θ,R)} with θc a
random variable and whereIΩc

is the characteristic function ofΩc, namelyIΩc
= 1 in Ωc andIΩc

= 0
elsewhere. This mediator space has been chosen as it is the smallest one that ensures the stability of
the formulation. Other possible choices included the restrictions onΩc of either one ofVd or Ws. The
former choice leads to an unstable mixed problem, and the latter leads to a waste or resources as the fine-
scale solution locks onto the coarse-scale solution in the coupling area. Moreover, the specific structure
of the chosen mediator space imposes implicitly that the (ensemble) average of the fieldus should be
equal to the fieldud, almost everywhere inΩc, and that the variability of the space average quantity
∫

Ωc

E [us]− us dΩ should cancel (see [13] for more details). The coupling operatorC : Wc ×Wc → R

is defined as:

C(u, v) = E

[
∫

Ωc

(κ0uv + κ1∇u ·∇v) dΩ

]

,

where the parametersκ0 andκ1 are of the same units as a string rigidity divided by a length and a material
rigidity, respectively (see [9] for details). The well-posedness of problem (5) can be found in [13].
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The surrogate Arlequin problem provides two fields:ud defined onVd, andus defined onWs. We
additionally introduce the continuous fielducarl ∈ W from ud andus given by:

ucarl =

{

ud in Ωd \ Ωs,

αd ud + αs us in Ωs.

Obviously, the solution of the Arlequin modelucarl and the exact solutionuex are different, even in
the patch. An error is thus introduced by the consideration of the Arlequin model, even before any
discretization process is introduced.

3. GENERAL FRAMEWORK FOR GOAL-ORIENTED ERROR ESTIMATION

The Arlequin solution presented above is an approximation of the reference monomodel solution. Its
estimation through numerical techniques introduces two additional levels of approximation: a space
approximation linked to the introduction of a mesh and corresponding finite element bases and one
related to the stochastic dimension through the use of the Monte Carlo technique. We assume that we
can construct from(uad, u

a
s) a fielduarl ∈ W. We then define the error ase = uex − uarl.

Let us recall here that the Arlequin model is used to estimatea local quantity of interest inside the
patchΩs. This quantity is a function of the monomodel solution, denoted q(u). We therefore seek to
quantify the errorη = q(uex)− q(uarl) using goal-oriented techniques.

In the case of deterministic Arlequin models, preliminary works dealing with goal-oriented error
estimation were conducted for 1D tests [18]. With the introduction of an adjoint problem and tools for
modeling error control as defined in [33], the error on a givenquantity of interest was assessed. These
works were extended to 2D and 3D applications in [39, 28, 29] for adaptive modeling of polymeric
materials.

3.1. Quantity of interest and adjoint problem

We seek to quantify the error on a quantity of interestq(u) : W → R obtained with the Arlequin
method. A quantity of interest could be, for example, the space average over a given subdomain of
the mathematical expectation ofu or of a given component of∇u.

The idea is to express the output of interest in the global form (see [25, 40, 33]):

q(u) = E
[
∫

Ω

fqu dΩ+

∫

ΓN

gqu dΓ +

∫

Ω

pq ·∇u dΩ

]

,

where quantitiesfq, gq andpq are called extractors.
We then define the so-called adjoint problem, which reads in the case of a linear quantity of interest:
Findp ∈ W such that:

A(v, p) = q(v), ∀v ∈ W . (6)

In the remainder, we denote the exact solution of this problem pex. As shown below, the errorη can then
be estimated as a function ofuarl andpex.

3.2. Error estimates

Defining the residual functionR : W ×W → R associated to (4) by:

R(u, v) = L(v)−A(u, v), (7)

the use of the adjoint problem provides a tool to estimate theerrorη [27] and one can easily show that:

η = R(uarl, pex). (8)

Indeed, using the definitions ofη andpex, we have:

η = q(uex)− q(uarl)
= q(uex − uarl) sinceq is linear
= A(uex − uarl, pex) thanks to Eq. (6) withv = uex − uarl
= L(pex)−A(uarl, pex) sinceA is bilinear anduex verifies (4)
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which proves (8).
In the case of a nonlinear quantity of interest,q(uex)− q(uarl) would usually be linearized around

uarl by writing [41]:

q(uex) = q(e+ uarl) = q(uarl) + q′(uarl, e) + o(e),
⇒ q(uex)− q(uarl) ≈ q′(uarl, e)

(9)

where o is the little o of the Landau notation andq′(u, v) = limθ→0
q(u+θv)−q(u)

θ
is the tangent operator

of q atu. The extractorsfq, gq andpq are then defined by:

q′(uarl, e) = E

[
∫

Ω

fq(uarl)e dΩ+

∫

ΓN

gq(uarl)e dΓ +

∫

Ω

pq(uarl) ·∇e dΩ

]

,

3.3. Approximation of the adjoint solution

In practice, as the adjoint problem is defined on the same space as the reference one, its solutionpex
is as intractable as the solution of the reference problem. It then has to be approximated by a surrogate
problem. Using again the Arlequin framework, the approximate adjoint problem reads:

Find (pd, ps, pλ) in Ṽd × W̃s × W̃c such that:






ad(wd, pd) + C(wd, λ) = qd(wd), ∀wd ∈ Ṽd,

As(ws, ps)− C(ws, λ) = qs(ws), ∀ws ∈ W̃s,

C(pd − ps, µ) = 0, ∀µ ∈ W̃c,

(10)

whereṼd, W̃s andW̃c can be different fromVd, Ws andWc respectively (see [28, 29] in the case of
a deterministic coupling between continuum and discrete models). In the case studied here, under the
continuum form, we havẽVd ≡ Vd andW̃s may be defined over a domaiñΩs which is larger thanΩs

and included inΩ (Ωs ⊂ Ω̃s ⊂ Ω). Moreover, in their discretized form, the spacesṼd, W̃s andW̃c are
chosen richer thanVd, Ws andWc, respectively. The number of elements that define the finite element
spaces may thus be larger and the description of the stochastic dimension may be finer also (using more
Monte Carlo trials for instance).

Using the FEM and Monte Carlo techniques for instance, an approximate solution can be computed
for the coupled adjoint problem (10). We denote this solution (pad, p

a
s , p

a
λ) and additionally introduceparl

similarly touarl, assumingparl ∈ W. The error onq is then approximated by:

η ≈ R(uarl, parl), (11)

Note here that, since we approximateR(uarl, pex) by R(uarl, parl), the approximation ofparl has to be
more accurate than the approximation ofuex by uarl. This will be extensively discussed in the examples
of Section 5.

3.4. Approximation of the residual function

To estimate the errorη, we need to evaluateR(uarl, parl) = A(uarl, parl)− L(parl). In practice, the
fieldsuarl andparl are approximated by the discrete fieldsuaarl andpaarl given by:

uaarl =

{

uad in Ωd \ Ωs,

uas in Ωs.
(12)

Through simple Monte Carlo sampling, and using realizations ofpaarl generated by the solution of the
adjoint Arlequin system (10),L(paarl) can be easily computed. Nevertheless, the Monte Carlo estimation
of A(uaarl, p

a
arl) involves realizations of productK∇uaarl ·∇paarl. Moreover, realizations ofK are not

necessarily the same for the two systems. Realizations of pairs (K,uaarl) on the one hand, and(K, paarl)
on the other hand, are obtained, as described in the previoussections by solving the Arlequin systems (5)
and (10), respectively. In general, we thus cannot compute directlyA(uaarl, p

a
arl).

We present in the following an approach to generate, from realizations obtained by solving (5),
new realizations ofuas that correspond to the realizations ofK being used for the adjoint Arlequin
system (10), while following the same first- and second-order statistics of the solutionuas of the primal
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Arlequin system (5). The fielduaarl is then reconstructed using Eq. (12) and we can thus compute the
termA(uaarl, p

a
arl).

To simplify the presentation, we first assume that bothK(x, θ) anduas(x, θ) are Gaussian random
fields. An extension to more general first-order marginal distributions will be presented at the end of this
section. Also, we consider the random vectorsΞ, U andP that correspond to the random fieldsK(x, θ)
anduas(x, θ) after space discretization. The objective is to generate new realizationsÛ of U so that we
can useΞ andÛ to compute the residual. These new realizations are such that:











E[Û ] = E[U ] := U,

E[(Û − U)(Û − U)T ] = E[(U − U)(U − U)T ] := CovU ,

E[(Û − U)(Ξ − Ξ)T ] = E[(U − U)(Ξ− Ξ)T ] := CovUΞ,

(13)

where we have introduced notationsU andΞ for the expectation ofU andΞ respectively, and covariance
matricesCovU and CovUΞ. For latter considerations, we also introduce the auto-covariance ofΞ:
CovΞ = E[(Ξ− Ξ)(Ξ − Ξ)T ] that is known because the stochastic model ofK is given. All expectations
and covariance matrices are estimated using standard statistical estimators and the original realizations
of the solution of the primal Arlequin problem (5).

We introduce a unitary centered Gaussian random vectorΘ with uncorrelated components (E[θiθj ] =
δij) and independent fromΞ, and the vector:

Û = U +CovUΞCov
−1
Ξ (Ξ− Ξ) +

√

CovU − CovUΞCov
−1
Ξ CovTUΞ Θ,

where the square root sign for a matrixC indicates that
√
C
√
C

T
= C. Simple algebra (remembering

the independence ofΘ andΞ andE[Θ] = 0) indicates that this random vector indeed verifies the desired
first- and second-order statistics (13) sought.

As neitherK(x, θ) nor uas(x, θ) are Gaussian random fields, an isoprobabilistic approach should be
followed to transform the original fields into Gaussian fields. After construction of Gaussian vectorÛ ,
the inverse approach can be used to transform new realizations ofU into the original first-order marginal
distribution.

With the procedure described in this section, it is possibleto generate new realizations ofuaarl that
correspond to bothK and paarl. Hence, it allows us to estimateA(uaarl, p

a
arl) through Monte Carlo

sampling, and thenη using equation (11).

4. SPLITTING BETWEEN ERROR SOURCES AND MODEL ADAPTATION

The error introduced by the use of the surrogate problem can stem from several sources. In fact, if we
decompose the construction of the approximate solution into different steps, we can distinguish (see
Fig. 3):

• the use of a surrogate problem described by the Arlequin method,
• the spatial discretization of continuum models,
• the approximation of the statistical moments (using the Monte Carlo technique for example).

Each step is driven by specific parameters. The Arlequin model is described by the size of the patch and
that of the coupling zone. The spatial discretization is parametrized by the element size on each domain
(Ωd, Ωs andΩc). Finally, if we use the Monte Carlo technique to deal with the random dimension, the
third step is driven by the number of Monte Carlo samples usedto describe the material property. We
propose here a methodology to assess the error induced by each step and separateη into corresponding
error indicators.

4.1. Introduction of intermediate models and specialized error indicators

To split different error sources, we have to consider intermediate problems. In the following, the term
"continuous" refers to the opposite of "discretized" (using FEM) or "approximate" (using FEM and
Monte Carlo technique). We call:

7



Figure 3. Approximation steps for the resolution of a 1D stochastic problem.

• Reference problem, the monomodel stochastic continuous problem (whose the solution is denoted
by uex and associated residual functionR was introduced in (7)). To estimate the residual
R(uarl, parl), we follow the approach described in subsection 3.4 using a fine mesh and a large
number of Monte Carlo draws.

• First intermediate problem, the Arlequin problem, defined by (5) and Fig. 2, coupling a
deterministic continuous and a stochastic continuous models. We denote the solutions(ud, us, λ) ∈
Vh
d ×Wh

s ×Wh
c , the associated monomodel solutionucarl, and the associated residual functionRc.

The associated residual functionRc((., ., .); (., .)) is then defined for all(vd, vs) as:

R
c ((ud, us, λ); (vd, vs)) = ℓ(vd, vs)− a((ud, us, λ), (vd, vs)),

where ℓ(vd, vs) = ℓd(vd) + Ls(vs) and a((ud, us, λ), (vd, vs, µ)) = ad(ud, vd) +As(us, vs) +
C(λ, vd − vs). As previously, we follow the approach described above to evaluate the residual.
As this problem refers to a continuous Arlequin model, the mesh used has to be sufficiently fine,
and the number of Monte Carlo draws sufficiently large.

• Second intermediate problem, the Arlequin problem coupling a deterministic discretized and a
stochastic spatially discretized models. We denote the solution (uhd , u

h
s , λ

h) ∈ Vh
d ×Wh

s ×Wh
c ,

the associated monomodel solutionuharl, and the associated residual functionRh. This problem
is defined from the previous one using a discretization technique along the space dimension, by
means of the FEM, for instance. The associated residual function Rh((., ., .); (., .)) is also defined
for all (vhd , v

h
s ) as:

R
h
((

uhd , u
h
s , λ

h
)

;
(

vhd , v
h
s

))

= ℓh
(

vhd , v
h
s

)

− ah
((

uhd , u
h
s , λ

h
)

,
(

vhd , v
h
s

))

,

whereℓh andah correspond to discretized forms ofℓ anda. Contrary to the previous model, this
residual refers to a discretized model. Therefore, to evaluate this residual, we use the same mesh
as the one used for the computable problem, a coarse one. Nevertheless, the stochastic space is not
approximated yet and we thus have to use a large number of Monte Carlo draws.

• Computable problem, the Arlequin problem coupling a deterministic and a stochastic models after
discretization in space and solving by the Monte Carlo technique in the random dimension. The
associated solution(uad, u

a
s , λ

a) with monomodel solutionuarl is the only one we compute in
practice. We will see how this solution can be used to estimate different error sources.
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We can notice that:

η = q(uex)− q(uarl) = [q(uex)− q(ucarl)] +
[

q(ucarl)− q(uharl)
]

+
[

q(uharl)− q(uarl)
]

The different errors onq are then defined as follows:

• the stochastic error (mainly due to the approximation of thestatistical moments):

ηθ = q(uharl)− q(uarl),

• the discretization error (mainly due to the discretizationalong the spatial dimension):

ηh = q(ucarl)− q(uharl),

• the modeling error induced by the use of the Arlequin method (use of a patch, and use of a
deterministic material parameter instead of the stochastic one inΩd):

ηm = q(uex)− q(ucarl).

As the only data available are the solution of the primal problem (uad, u
a
s , λ

a), the solution of the
adjoint problem(pad, p

a
s , p

a
λ), and the model (residual function) associated to each intermediate problem,

we can derive estimates of the previous errors using (8):

• for the stochastic error

ηθ ≃ R
h
((

Πhuad,Π
huas ,Π

hλa
)

;
(

Πhpad,Π
hpas

))

,

• for the discretization error

ηh = [q(ucarl)− q(uarl)]−
[

q(uharl)− q(uarl)
]

≃ R
c ((Πcuad,Π

cuas ,Π
cλa) ; (Πcpad,Π

cpas))

−R
h
((

Πhuad,Π
huas ,Π

hλa
)

;
(

Πhpad,Π
hpas

))

,

• for the modeling error

ηm = [q(uex)− q(uarl)]− [q(ucarl)− q(uarl)]

≃ R(uarl, parl)− R
c ((Πcuad,Π

cuas ,Π
cλa) ; (Πcpad,Π

cpas)) ,

where
(

Π(c,h)uad,Π
(c,h)uas ,Π

(c,h)λa
)

and
(

Π(c,h)pad,Π
(c,h)pas

)

are projections of(uad, u
a
s , λ

a) and

(pad, p
a
s) respectively in

(

V(c,h)
d ,W(c,h)

s ,W(c,h)
c

)

.

For the spatial projection, linear interpolation is chosenwhereas the stochastic part is treated following
the approach described in subsection 3.4. As the patch has the same size in all the intermediate problems,
the projection of the primal fields is obvious. As the patch used for the adjoint problem is bigger
(Ωs ⊂ Ω̃s), the stochastic adjoint is restricted to the patch used of the primal model. For instance, the
fieldsΠhpad andΠhpas are obtained from(pad, p

a
s) using:

{

Πhpad = pad
Πhpas = pas |Ωs

Let remind thatRc(·, ·) is computed using a very fine mesh whereasRh(·, ·) is estimated using the same
mesh as for the primal model.

The quantitiesηθ, ηh andηm are only error indicators as the adjoint problem is approximated using
the Arlequin solution. Let us notice that the different indicators can be estimated using only solutions
uarl andparl (direct post processing), avoiding additional cost. This is in opposition with other possible
approaches in which intermediate adjoint problems would beinvolved and solved.
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Figure 4. Greedy algorithm for the adaptation process.

4.2. Algorithm for model adaptation

The basic adaptation process, based on a greedy algorithm, is described in Fig. 4. The approach consists
in the following steps:

a. A set of initial parameters is used to perform primal and associated adjoint problems which are
both of Arlequin type.

b. The total errorη associated with the quantity of interest is estimated.
c. If this error is higher than a given precision, we follow the technique described previously to split

the error sources.
d. The dominating error source is identified (in modulus) andthe corresponding parameter is refined.
e. We continue the process until the total error is below the required precision (in modulus), or when

the parameter, which has to be refined, is already as fine as possible.

This choice of adaptation strategy is not unique; indeed, step4 could be changed and we could identify
two (or more) dominating errors and refine the correspondingparameters.

5. NUMERICAL RESULTS

In this section, we present some numerical results. Subsections 5.1 and 5.2 discuss several numerical
issues, while subsections 5.3 and 5.4 present full applications (in 1D and 2D) that illustrate the theoretical
results of the paper. Subsection 5.1 explores the convergence of the error estimate proposed with respect
to several key parameters, and compares that error estimatewith the real error. Subsection 5.2 elaborates
on the importance of adequately solving the adjoint problem, in order for the error estimate to be precise.
Finally, in Sections 5.3, 5.4 and 5.5, full 1D and 2D cases aretreated to assess the methodology proposed
in this paper, including the issue of splitting error sources to drive adaptation. All the numerical examples
of this section have been computed using the software CArl (Code Arlequin) [42].

5.1. 1D model: study of the influence of various parameters

We study here the influence of various parameters of the Arlequin strategy on a simple 1D problem
(Fig. 5). The problem consists in a bar of unit length under traction loading with prescribed Dirichlet
conditions, as well as a unit bulk load. The material property is random and modeled as a uniform field
with bounds0.3013 and2.3601 (arithmetic average1.3307, harmonic mean1/E [1/K(x, θ)] = 1, and
standard deviationσK = 0.2), and exponential correlation with correlation lengthLcor = 0.01.

It is approximated by an Arlequin model defined in Fig. 6 where(αd, αs) are chosen linear in the
coupling zoneΩc. The model is driven by several parameters:Ls andLc for the definition of the patch,
hd andhs for the size of the spatial discretization (for domainsΩd andΩs respectively) andMC for the
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Figure 5. 1D reference problem of a cantilever beam.

number of samples used for the Monte Carlo description. The spatial discretization ofΩc is driven by
the same sizehs as forΩs.

Figure 6. 1D surrogate model with the Arlequin method.

We study here two quantities of interest:

• one related to the mean of the gradient in a zone near the middle of the bar:

q∇(u) =
1

0.05
E

[
∫ 0.5

0.45

du

dx
(x)dx

]

.

The associated extractor, using integration by parts, is defined by (see Fig. 7):

q∇(v) =
1

0.05
E

[
∫

Ω

{δ(x− 0.5)− δ(x− 0.45)}v(x) dΩ
]

,

• one related to the variance of the gradient mean near the middle of the bar (which is nonlinear with
respect tou):

qv(u) = Var

[

1

0.05

∫ 0.5

0.45

du

dx
(x)dx

]

.

Following the idea developed in (9), for the nonlinear quantity qv(u), we can write (see Fig. 8):

qv(u)− qv(uarl) ≈
2

0.052
E [∆e {∆(uarl)− E [∆(uarl)]}]

where∆e = e(x = 0.5)− e(x = 0.45) and∆uarl = uarl(x = 0.5)− uarl(x = 0.45). The extractor is
therefore defined by:

qv(v) =
2

0.052
E

[
∫

Ω

(δ(x− 0.5)− δ(x− 0.45)) {∆uarl − E [∆uarl]} v(x) dΩ
]

.

Figure 7. 1D adjoint monomodel associated toq∇(u).
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Figure 8. 1D adjoint monomodel associated toqv(u) whereFv = 2
0.052 (∆uarl − E [∆uarl]).

We now investigate the evolution of the relative error indicator:

ηr =
R(uarl, pa)

q(uarl)
,

wherepa is the approximate solution of the adjoint problem (using the FEM and Monte Carlo techniques
for instance). This error indicator (drawn in dashed line and circles), will be compared for each of the
two quantities of interest to the true relative error (drawnin solid line):

ηref =
q(uref )− q(uarl)

q(uarl)
.

whereq(uref ) is evaluated using a reference monomodel whose parameters are listed and computed
using the FEM and the Monte Carlo technique. The large numberof Monte Carlo draws used and the fine
spatial discretization allow to neglect the error (the standard deviation of the true relative errors, taking20
different sequences of100 000Monte-Carlo draws is less than10−3 for q∇ and less than5× 10−3 for qv).
In the following subsections, we study the evolution of the error related toq∇(u) (results in Section 5.1.1,
associated adjoint problem described in Fig. 7), andqv(u) (results in Section 5.1.2, associated adjoint
problem described in Fig. 8), with respect to two parameters: the numberMC of Monte Carlo draws
used for the primal model (left result in figures) and the half-size of the stochastic patchLs (right result
in figures). Asq(uarl) depends on the sequence of Monte Carlo draws, we show resultsfor 20 different
sequences of draws. The set of parameters used for the reference model, the primal model and the adjoint
model are defined in Tab. I and Tab. II. In these tables, when a monomodel is used, we give also the spatial
discretization mesh sizeh.

models type Ls Lc MC hd hs h

reference mono - - 100 000 - - 0.002
primal arlequin 0.3 0.01 [20, 100 000] 0.002 0.002 -
adjoint mono - - 100 000 - - 0.002

Table I. Definition of model parameters used for the study ofq∇ and qv with respect toMC. 20 different
sequences of Monte Carlo draws are used for the primal model.

models type Ls Lc MC hd hs h

reference mono - - 100 000 - - 0.002
primal arlequin [0.2, 0.5] 0.01 100 000 0.002 0.002 -
adjoint mono - - 100 000 - - 0.002

Table II. Definition of model parameters used for the study ofq∇ andqv with respect toLs. 20 different sequences
of Monte Carlo draws are used for the primal model.

5.1.1. Example A: study of the evolution of the relative error associated withq∇(u)
In Fig. 9, as the adjoint model is solved with the same refinement as for the reference model, the

estimated error is superposed to the true relative error. Asexpected, the error decreases in both cases.
On Fig. 9 (right), when the half-size of the stochastic patchevolves from0.2 to 0.5, the error decreases
from almost2% down to less than0.5%. On Fig. 9 (left), with more than500 Monte Carlo draws, for
a half-size of0.3, the error is lower than5%. Nevertheless, we remark that, when the number of Monte
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Carlo draws increases, the error does not tend to zero. This comes from the fact that the primal model
is approximated using Monte Carlo draws but also using the Arlequin method. That means that both
Monte Carlo draws and half-size of the stochastic patch (Ls = 0.3) contribute to the total error. Indeed,
the asymptotic value of the error in the left picture corresponds to an error close to1.4% for Ls = 0.3 in
Fig. 9 (right).
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Figure 9. Evolution of relative errors for the evaluation ofq∇ with primal models defined by Tab. I and Tab. II:
ηr andηref (superposed) in gray markers for several sequences of drawswith mean in solid line and standard
deviations (error bars), with analytical rate of1/

√

MC in dashed line with respect to the number of Monte Carlo
draws [left] and with respect to the half-size of the stochastic patch [right].

5.1.2. Example B: study of the evolution of the relative error associated withqv(u)
In Fig. 10, we remark that the true error and the estimated error decrease. Nevertheless, the error

estimate is very optimistic (lower in modulus) for the evolution with respect toLs and quite pessimistic
(higher in modulus) for the evolution with respect toMC. Contrary to the cases involvingq∇, here, the
main difference is that the adjoint problem cannot be solvedperfectly as its load is defined from the
primal displacement solution. Moreover, the difference between the true error and the estimated one is
also due to the linearization of the quantity of interest in (9). Again, a key point here is that the true error,
in the picture on the left, seems to tend to a significant non-zero value. For the same reasons as those
seen previously, it is due to the fact that both Monte Carlo draws and half-size of the stochastic patch
contribute to the total error. We then propose in the next section to study the evolution of the error when
we take an Arlequin model with the same half-size of the stochastic patch as the reference.
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Figure 10. Evolution of relative errors for the evaluation of qv with primal models defined by Tab. I and Tab. II:
ηr in gray circles for several sequences of draws, with mean (solid line) and standard deviations (error bars) and
of ηref in grey crosses for several sequences of draws with mean (dashed line) and standard deviations (error
bars), with respect to the number of Monte Carlo draws [left]and with respect to the half-size of the stochastic

patch [right].

5.1.3. Study of parameterMC when the reference model is an Arlequin model
We can remark that the parameterMC studied before drives the approximation of the stochastic

space. If we follow the splitting description of the total process, we can observe that the stochastic
approximation process occurs between two spatially discretized Arlequin models. That explains the fact
that when we study the evolution of the error with respect toMC, we also evaluate the error induced by
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the use of the Arlequin method. To avoid that, we propose hereto study the evolution of the error with
respect to a reference model which is an Arlequin model with the same coupling and the same spatial
mesh step as described in Tab. III.

models type Ls Lc MC hd hs h

reference arlequin 0.3 0.1 100 000 0.002 0.002 -
primal arlequin 0.3 0.1 [20, 100 000] 0.002 0.002 -
adjoint arlequin 0.3 0.1 100 000 0.002 0.002 -

Table III. Definition of models used for the study ofq∇ or qv with respect toMC with Arlequin model as the
reference.20 different sequences of Monte Carlo draws are used for the primal model.

Fig. 11 shows the evolution of the true relative errorηref (solid line) and the error estimateηr (dashed
line and circles) with respect to the number of Monte Carlo draws used in the primal problem, for the
evaluations ofq∇ (left) andqv (right). We remark in this case that we efficiently capture the error related
to the parameterMC alone. This time, the true errors actually decrease down to avalue close to zero.
In fact, the last point proposed here corresponds to the Arlequin reference model used in the example.
These curves correspond to a translation of the curves in Fig. 9 and Fig. 10 (left) of a value corresponding
to the error when a patch of half-sizeLs = 0.3 is used.
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Figure 11. Evolution of relative errors for the evaluation of q∇ [left] andqv [right] with models defined by Tab. III:
ηr (grey circles) andηref (grey crosses) for several sequences with mean in solid lineand standard deviations

(error bars), analytical rate of1/
√

MC in dashed line.

5.1.4. General conclusions on the influence of the parameters
For the quantities of interest studied here, the size of the stochastic patch or the number of Monte

Carlo draws used for the primal problem have a strong influence on the error. When the adjoint model
is solved with sufficient accuracy, the estimated error perfectly matches the true error in the case of the
linear quantity of interestq∇. For the estimation ofqv, the difference between the errors is due to the fact
that q(uex)− q(uarl) is estimated byq′(uarl, e) that corresponds to the first order term only (see (9)).
Finally, Section 5.1.3 showed that the error for highMC and largeLs comes from the use of an Arlequin
surrogate model for the solution of the adjoint problem.

In Section 5.2, we propose to study the influence of the enrichment of the adjoint model, compared to
the primal model one, when an approximate adjoint model is used to estimate the quantity of interestq∇.

5.2. 1D model: adjoint problem approximation

As seen previously, in practice, the adjoint problem will also be approximated by the Arlequin method.
Not to increase too much the computation time, parameters ofthe adjoint problem have to be set up
correctly. In this part, we study the effectivity of the error estimates when adjoint model parameters vary.
The parameters under study are:

• the half-size of the stochastic patch (Lsa) used for the adjoint model (when the corresponding
parameterLsp varies in the primal model),

• the number of Monte Carlo draws (MCa) used for the adjoint model (when the corresponding
parameterMCp varies in the primal model).
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The aim is to get a feeling of how to enrich the adjoint model compared to the primal model to get an
accurate estimation of the true error.

5.2.1. Influence of the parameterLs for the estimation ofq∇(u)

models type Ls Lc MC hd hs h

reference mono - - 100 000 - - 0.002
primal arlequin [0.2, 0.5] 0.1 100 000 0.002 0.002 -
adjoint arlequin [0.2, 0.5] 0.1 100 000 0.002 0.002 -

Table IV. Definition of models used for the calibration of theadjoint problem (parameterLs) associated toq∇(u).
20 different sequences of Monte Carlo draws are used for the adjoint model.

Tab. V shows the evolution ofηr andηref with respect to the half-size of the stochastic patch used
for the primal model (Lsp). In this case, the increase of the size of the stochastic patch for the adjoint
model does not seem to have a strong influence on the accuracy of the error estimate. We can remark
a worsening of this accuracy when the size of the stochastic patch for the primal model increases. We
can also notice that with a half-size of patch of0.5 for the adjoint model, the difference between the true
error and the estimated error is low but still significant. That means that even with the largest patch, the
adjoint problem is not solved as accurately as in the previous section. This is mainly due to the fact that
the coupling zone constrains the stochastic solution in a non-zero part of the problem.

For the adaptive examples described in Section 5.3, we choose to set the patch size of the adjoint
model with only one value (Lsa = 0.45) independently of the patch size of the primal model (Lsp).

Lsa 0.2 0.3 0.4 0.5 ηref [10
−3]

Lsp = 0.2 18.0(2.4) 18.1(1.0) 18.3(0.9) 18.1(0.9) 18.5(1)
0.3 - 10.1(1.8) 10.7(0.7) 10.5(0.8) 13.7(1)
0.4 - - 5.3(0.9) 5.0(0.6) 8.6(1)
0.5 - - - 2.3(0.5) 3.4(1)

Table V. Evolution ofηr[10−3] with respect to the half-size of the stochastic patch of the primal model (Lsp), for
the evaluation ofq∇(u) with models defined by Tab. IV. Standard deviations are also given between parenthesis.

5.2.2. Influence of the parameterMC for the estimation ofq∇(u)

models type Ls Lc MC hd hs h

reference mono - - 100 000 - - 0.002
primal arlequin 0.3 0.1 [20, 100 000] 0.002 0.002 -
adjoint arlequin 0.45 0.1 [20, 100 000] 0.002 0.002 -

Table VI. Definition of models used for the calibration of theadjoint problem (parameterMC) associated toq∇.
20 different sequences of Monte Carlo draws are used for the adjoint model.

Tab. VII shows the evolution ofηr andηref with respect to the number of Monte Carlo draws used
for the primal model. We remark again that the estimation is only slightly modified when we take a
large number of Monte Carlo draws for the adjoint model. In Tab. VII, for MCp =MCa = 100 000,
the relative estimated error10.8× 10−4 can also be read in Tab. V forLs = 0.3 for the primal model
and betweenLs = 0.4 andLs = 0.5 for the adjoint model. For the adaptive examples described in
Section 5.3, the number of Monte Carlo draws for the adjoint model (MCa) is set to100 000.

5.2.3. General conclusions on the approximation of the adjoint model
As soon as the Arlequin model is used for the adjoint problem,the estimation of the error

loses efficiency, specially concerning the number of Monte Carlo draws used for the adjoint model.
Nevertheless, when the stochastic patch is long enough and when the number of Monte Carlo draws is
sufficiently large, the difference between the reference error and the estimated error is quite small. In
these cases, the estimated error tends to underestimate thetrue error.
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MCa 20 200 2 000 20 000 100 000 ηref [10
−3]

MCp = 20 −42.5(39.5) −36.2(36.6) −34.6(34.9) −34.2(35.0) −34.5(34.7) 4.1(1)
200 - 1.9(12.4) 2.7(8.7) 3.0(8.7) 3.0(8.7) 18.6(1)
2 000 - - 5.4(3.5) 4.7(1.2) 4.7(0.8) 11.8(1)
20 000 - - - 7.1(1.0) 7.4(0.7) 11.0(1)
100 000 - - - - 10.8(0.9) 13.7(1)

Table VII. Evolution ofηr[10−3] with respect to the number of Monte Carlo draws used for the primal model
(MCp), for the evaluation ofq∇ with models defined by Tab. VI. Standard deviations are also given between

parenthesis.

In regards to the number of Monte Carlo draws used for the adjoint model, it seems that the estimated
error is sufficiently accurate when this number is very large. For instance, if we take100 000 Monte
Carlo draws, the estimated error is very accurate as the patch size of the adjoint problem (Lsa = 0.45)
still affects the approximation of the adjoint solution, and therefore the quality of the estimation.

Finally, for model adaptation, we choose to approximate theadjoint problem using the Arlequin
method but with a large patch size (Ls = 0.45), and a large number of Monte Carlo trials (MC =
100 000). The other parameters are set to:hd = 0.01 andhs = 0.002. This choice is non unique and
can be discussed and changed if needed (in the case where we have to refine the mesh size for example).

5.3. Model adaptation for the 1D problem

We study in this section the problem described in Section 5.1. In particular, we present results from the
adaptation process obtained when we investigate the two quantities of interestq∇ andqv. The parameters
areLs (half-size of the stochastic patch),MC (number of Monte Carlo draws used), the spatial mesh
sizehd of the deterministic model, while the spatial mesh sizehs of the stochastic model is fixed at
0.002.

In Fig. 12 and Tab. VIII, we show the results for the error associated withq∇. We observe that the main
error sources are due to the use of a low number of Monte Carlo draws, then to the use of the Arlequin
method. By increasing the corresponding parameters (Ls from 0.2 to 0.45 andMC from 5 to 2 000),
the relative estimate errorηr decreases from8.7% to 6.6%. The corresponding true error decreases from
14% to 0.7%. More precisely, the algorithm stops after iteration3 and the dominant error is due to the
use of the Arlequin model. The last iteration is added manually to illustrate the possibility to decrease
the total error by increasing the number of Monte Carlo draws(the second main source of the error),
and therefore decreasing the stochastic error. Tab. VIII also shows the evolution of the true errors with
respect to the patch size, the discretization and the Monte Carlo truncation. As we can see, the various
error estimates (ηm,ηh,ηθ) give a good indication on the true errors, specially forηθ andηh. The bias on
the estimation of the total error impacts only the estimation of the modeling error.

model 1 2 3 4
Ls 0.2 0.2 0.45 0.45
MC 5 200 200 2 000
hd 0.05 0.05 0.05 0.05
hs 0.002 0.002 0.002 0.002
ηm 0.0682 0.0907 0.0658 0.0639
ηrefm 0.0158 0.0189 0.0061 0.0059
ηh −0.0216 −0.0197 −0.0127 −0.0131

ηrefh 0.0432 −0.0150 −0.0103 −0.0126
ηθ −0.1342 0.0180 0.0288 −0.0005

ηrefθ −0.1995 0.0210 0.0265 −0.0009
|ηr| 0.0876 0.089 0.0842 0.0660
|ηref | 0.1405 0.0248 0.0223 0.0077

Table VIII. Evolution of parameters and relative errors (true and estimate) for the evaluation ofq∇.
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Figure 12. Evolution of the relative estimates of the total error ηr (white), modeling errorηm (light gray),
discretization errorηh (dark gray), and stochastic errorηθ (black) during adaptive process for the estimation

of q∇.

In Fig. 13 and Tab. IX, we study the error associated toqv. In this case, the study shows that the main
error sources are due to: (i) the use of a low number of Monte Carlo realizations; (ii) the size of the
stochastic patch; (iii) finally (for the last iteration) thesize of the mesh of the deterministic model. By
increasing the corresponding parameters alternately, therelative estimate errorηr decreases from more
than86% to less than0.5%.

Figure 13. Evolution of the relative estimates of the total error ηr (white), modeling errorηm (light gray),
discretization errorηh (dark gray), and stochastic errorηθ (black) during adaptive process for the estimation

of qv .

This simple example shows the efficiency of the splitting error sources methodology. Indeed, the
stochastic error and the discretization error correspond to the true errors as soon as the second iteration.
The approximation of the adjoint problem using an Arlequin model mainly affects the modeling error
estimate. Finally, the use of this technique permits to decrease efficiently the error estimate by adapting
the corresponding parameter for each step of the process.
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model 1 2 3 4 5 6
Ls 0.2 0.2 0.3 0.3 0.35 0.35
MC 200 10 000 10 000 50 000 50 000 50 000
hd 0.05 0.05 0.05 0.05 0.05 0.01
hs 0.002 0.002 0.002 0.002 0.002 0.002
ηm −0.174 −0.0893 −0.0661 −0.0121 0.0007 −0.0036
ηθ −0.7077 −0.0724 −0.0819 −0.0022 −0.0040 −0.0001
ηh 0.0189 0.0360 0.0009 0.0006 −0.0128 −0.0008
|ηr| 0.862 0.126 0.147 0.0137 0.0161 0.0045

Table IX. Evolution of parameters and relative error for theevaluation ofqv .
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Figure 14. 2D case and associated mesh used for the estimation of the residualR.

5.4. Model adaptation of a 2D problem

We now consider a 2D sampleΩ inscribed in the box[−3, 3]× [−1, 1] (see Fig. 14). The sample
is submitted to a prescribed Dirichlet condition, with no bulk load. The boundary conditions are
u(x = −3, y) = 0, u(x = 3, y) = 1, and∇u · n = 0 for the remaining edges, almost surely. The model
is described by a random material propertyK(x, θ), modeled as a uniform field with bounds0.3542 and
2.1938 (with geometric mean1/E [1/K(x, θ)] = 1, and standard deviationσK = 0.2), and exponential
correlation with correlation lengthLcor = 0.05 in each direction. To estimate the residual numerically,
the reference monomodel problem is spatially discretized by 33 792 elements and we useMC = 5 000
Monte Carlo draws to represent the stochastic fieldK.

The quantity of interest considered here is the componentx of the gradient in a given zoneΩint.
Considering the model given in Fig. 15,Ωint is located near the middle of the sample (where the loading
is applied). This quantity of interest is defined by:

q2D(u) = E

[
∫

Ωint

∇u · ix dΩ
]

. (14)

The reference problem is approximated by the Arlequin method with a centered patch. The
corresponding adjoint problem is described in Fig. 15. It isloaded bypq = K(x, θ)∇u(x, θ) = ix with
ix the unit vector of the x-axis. It is spatially discretized by8 448 elements for the deterministic model
and6 144 for the stochastic model in a patch of half-sizeLs = 1.8. Moreover, we use5 000 Monte Carlo
draws for the adjoint model.

Figure 15. 2D associated adjoint problem.

Using the adaptive strategy introduced in Section 4.2, we investigate the absolute value ofηr :

ηr =
R(uarl, pa)

q2D(uarl)
. (15)
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Fig. 16 and Tab. X show that the main error sources are due to the use of a weak number of Monte
Carlo draws and due to the use of the Arlequin method. By increasing the corresponding parameters, the
relative estimate errorηr decreases from21% to 5%.

Figure 16. Evolution of relative estimates of the total error ηr (white), modeling errorηm (light gray),
discretization errorηh (dark gray), and stochastic errorηθ (black) during adaptive process for the estimation

of q2D .

Ls 0.75 0.9 0.9 1.65
MC 5 5 500 500
Nd 528 528 528 528
Ns 3040 3424 3424 5632
ηm 0.1098 0.1018 0.0908 0.0539
ηh −0.0038 −0.0038 −0.0031 −0.0013
ηθ 0.1067 0.1135 −0.0057 −0.0024
|ηr| 0.2128 0.2116 0.0820 0.0502

Table X. Evolution of parameters and relative errors for theevaluation ofq2D . Nd andNs represent the number
of elements of the deterministic discretized model and of the stochastic patch respectively. Note thatNs increases

only becauseLs increases, the patch mesh is not finer.

As for the 1D adaptation example, the splitting of error sources technique permits to identify the
dominating error source. The associated parameter can thenbe refined. For this 2D example, the Arlequin
model with a relatively small number of Monte Carlo draws, and a medium-sized patch, gives an
estimation of the quantity of interest with less than6% of error.

5.5. Practical study case

In dental restoration, dentists use bio-compatible resin to replace the ill part of a tooth (damaged by
caries for example). The adhesion of this resin with the tooth is a key issue of the treatment.

When caries reach the dentin, the adhesion is currently achieved by micromechanical seal of the resin
with the demineralized dentin. The resin has to sufficientlyinfiltrate the dentin to obtain an effective
adhesion. We study in this part the infiltration speed of a resin in the demineralized dentin. The studied
problem is described in Fig. 17. The resin infiltrates first the tubule (represented by "holes" in the figure)
and then a network of collagen fibers that is the main component of a demineralized dentin. The porosity
of this medium is modeled by a stochastic field.

We assume that the flow follows the Darcy assumptions in a permanent regime. The pressure
verifies the equation (1) where the random material propertyK(x, θ) is modeled as a uniform field
with bounds[1.43× 10−6, 1.43× 10−4]µm2(Pa · s)−1 (with geometric mean1/E [1/K(x, θ)] = 3.19×
10−5µm2(Pa · s)−1), and exponential correlation with correlation lengthLcor = 1µm in each direction.

19



Figure 17. Study of resin infiltration in demineralized dentin. Two dentinal tubules of diameter3µm are modeled.

Only one of the tubule is filled of resin whereas the other tubule does not. This condition is modeled by
a prescribed pressure of1 bar on the bottom tubule (which corresponds to the pressure applied manually
by the dentist), whereas the other edges are submitted to an over pressure of0 bar. The problem is
described using the Arlequin approach in which a square patch, centered on the sample, is used to model
the tubules and the stochastic field, whereas the substrate does not contain tubules and heterogeneities.
With these considerations, the smallest patch is a square of18µm side length. We seek to adapt the
different parameters of the method by considering as quantity of interest the average flow velocity along
they axis in a specific zone defined byZint = {M(x, y)|(x, y) ∈ [−1/3, 1/3]× [2− 1/3, 2 + 1/3]}:

qf (p) = E

[

−1

|Zint|

∫

Zint

K(x, θ)∇p(x, θ) · iy dΩ
]

(16)

Figure 18. Mean value ofy-component of the flow velocity [µm · s−1] in an Arlequin patch (size :18µm)
obtained from100 Monte Carlo realizations and with a triangular mesh (whose the maximum diameter of the
inscribed circle is0.05µm (corresponding to a total estimated error of−0.2% for the evaluation ofqf ). The

boundary of the substrate is visible in solid lines.

The results (see Fig 18) show that the flow is highly localizedbetween the two tubules. Following
the approach described on this paper, the quantityqf can be evaluated with an estimated accuracy of
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less than0.2% for the absolute value of the total error (0.06% for the modeling error,−0.18% for the
stochastic error and0.001% for the discretization error) reached at the first increment.

6. CONCLUSIONS

The main contribution of the paper has been to propose a computational framework for addressing the
control of errors coming from three different sources:

a. the modeling error, due to the use of the Arlequin method coupling a deterministic model with a
stochastic one to approximate a full stochastic problem,

b. the discretization error, due to the discretization of the spatial dimension, using the FEM for
instance,

c. the stochastic error, due to the use of the Monte Carlo technique to approximate statistical
moments.

A goal-oriented error estimation technique was introducedto quantify the capability of the Arlequin
framework to evaluate some specific quantities of interest.Adaptivity was also considered. For that
purpose, the corresponding error strategy was enriched to identify separately the different error sources.
Using only the solution of the primal problem, the solution of the adjoint problem, and the definition of
the residual associated to specific intermediate problems,we showed that it is possible to identify the
major error source and refine the corresponding parameter toreduce the total error.

Future research will deal with the development of an optimaladaptive process where the error could
be spatially analyzed, on one hand, and the coupling betweentwo stochastic models, on the other hand.
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