
HAL Id: hal-00869725
https://centralesupelec.hal.science/hal-00869725

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algorithmic Survey of Parametric Value Function
Approximation

Matthieu Geist, Olivier Pietquin

To cite this version:
Matthieu Geist, Olivier Pietquin. An algorithmic Survey of Parametric Value Function Approxi-
mation. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24 (6), pp.845-867.
�10.1109/TNNLS.2013.2247418�. �hal-00869725�

https://centralesupelec.hal.science/hal-00869725
https://hal.archives-ouvertes.fr

1

An Algorithmic Survey of
Parametric Value Function Approximation

Matthieu Geist and Olivier Pietquin (Senior Member, IEEE)

Abstract—Reinforcement learning is a machine
learning answer to the optimal control problem. It
consists in learning an optimal control policy through
interactions with the system to be controlled, the
quality of this policy being quantified by the so-called
value function. A recurrent subtopic of reinforcement
learning is to compute an approximation of this value
function when the system is too large for an exact rep-
resentation. This survey reviews state-of-the-art meth-
ods for (parametric) value function approximation by
grouping them into three main categories: bootstrap-
ping, residual and projected fixed-point approaches.
Related algorithms are derived by considering one of
the associated cost functions and a specific minimiza-
tion method, generally a stochastic gradient descent or
a recursive least-squares approach.

Index Terms—Reinforcement learning, survey, value
function approximation

I. Introduction
Reinforcement Learning (RL) [1][2][3][4][5][6][7] ad-

dresses the problem of the optimal control of a stochastic
dynamic system. In this paradigm, an artificial agent
learns an optimal control policy through interactions with
the dynamic system (also considered as its environment).
After each interaction, the agent receives an immedi-
ate scalar reward information and the optimal policy
it searches for is the one that maximizes the expected
cumulative reward over the long term. The system to be
controlled is usually modeled as a Markovian Decision
Process (MDP). An MDP is made up of a set of states
(the different configurations of the system), a set of ac-
tions (which cause a change of the system’s state), a set
of Markovian transition probabilities (the probability to
transit from one state to another under a given action; the
Markovian property states that the probability depends on
the current state-action pair and not on the path followed
to reach it), a reward function associating a scalar to
each transition and a discounting factor which decreases
long-term rewards’ influence. How the agent acts with
the system is modeled by a policy which associates to
each state a probability distribution over actions. The
quality of such a policy is quantified by a value function
which associates to each state the expected cumulative
discounted reward from starting in the considered state
and then following the given policy (expectation being
done over all possible trajectories). An optimal policy is

Matthieu Geist and Olivier Pietquin are with the IMS-MaLIS
Research Group, Supélec (France). Olivier Pietquin is also with the
UMI 2958 (GeorgiaTech - CNRS).

one of those which maximize the associated value function
for each state.

Thanks to the Markovian property, value functions can
be (more or less easily) computed using Bellman equations.
The value function of a given policy satisfies the (linear)
Bellman evaluation equation and the optimal value func-
tion (which is linked to one of the optimal policies) sat-
isfies the (nonlinear) Bellman optimality equation. These
Bellman equations are very important for reinforcement
learning, as they allow computing the value function.

If the model (that is transition probabilities and the
reward function) is known and if state and action spaces
are small enough, the optimal policy can be computed
using dynamic programming. A first scheme, called policy
iteration, consists in evaluating an initial policy (that is
computing the associated value function using the linear
Bellman evaluation equation) and then improving this
policy, the new one being greedy with respect to the
computed value function (it associates to each state the
action which maximizes the expected cumulative reward
obtained from starting in this state, applying this action
and then following the initial policy). Evaluation and
improvement steps are iterated until convergence (which
occurs in a finite number of iterations). A second scheme,
called value iteration, consists in computing directly the
optimal value function (using the nonlinear Bellman op-
timality equation and an iterative scheme based on the
fact that the value function is the unique fixed-point of
the associated Bellman operator). The optimal policy is
greedy with respect to the optimal value function.

Reinforcement learning aims at estimating the optimal
policy without knowing the model and from interactions
with the system. Value functions can no longer be exactly
computed, they have to be estimated, which is the main
scope of this paper. Reinforcement learning heavily relies
on dynamic programming, in the sense that most ap-
proaches are some sorts of generalization of value or policy
iteration. A first problem is that computing a greedy
policy (required for both schemes) from a value function
requires the model to be known. The action-value (or Q-)
function alleviates this problem by encoding the value of
state-action couples (instead of states only). It is defined,
for a given policy and for a state-action couple, as the
expected discounted cumulative reward starting in the
given state, applying the given action and then following
the fixed policy. A greedy policy can thus be obtained by
maximizing the Q-function over actions.

There are two main approaches to estimate an optimal

2

policy through value functions. The first one, based on
value iteration, consists in estimating directly the optimal
action-value function which is then used to derive an esti-
mate of the optimal policy (with the drawback that errors
in the Q-function estimation can lead to a bad derived
policy). The second one, based on policy iteration, consists
in mixing the estimation of the Q-function of the current
policy (policy evaluation) with policy improvement in a
generalized policy iteration scheme (generalized in the
sense that evaluation and improvement processes inter-
act, independently of the granularity and other details).
This scheme presents many variations. Generally, the Q-
function is not perfectly estimated when the improvement
step occurs (optimistic policy iteration). Each change in
the policy implies a change in the associated Q-function;
therefore, the estimation process can be non-stationary.
The control policy can be derived from the estimated
action-value function (for example, using a Boltzmann
distribution or an ε-greedy policy). There is generally an
underlying dilemma between exploration and exploitation.
At each time step, the agent should decide between act-
ing greedily with respect to its uncertain and imperfect
knowledge of the world (exploitation) and taking another
action which improves this knowledge and possibly leads
to a better policy (exploration). The policy can also have
its own representation, which leads to actor-critic archi-
tectures (which are a form of policy iteration). The actor
is the policy, and the critic is an estimated value or Q-
function which is used to correct the policy representation.

All these approaches share a common subproblem: esti-
mating the (action-) value function, of a given policy (eval-
uation operator) or the optimal one (optimality operator)
directly. This issue is even more involved when state or
action spaces are too large for a tabular representation,
which implies to use some approximate representation.
Generally speaking, estimating a function from samples is
addressed by the supervised learning paradigm. However,
in reinforcement learning, the (action-) values are not
directly observed, which renders the underlying estimation
problem more difficult. Despite this, a number of (action-)
value function estimation algorithms have been proposed
in the past decades. The aim of this paper is to review a
panel as large as possible of these algorithms by adopting
a unifying view which classifies them into three main
categories: bootstrapping approaches (Sec. III), residual
approaches (Sec. IV) and projected fixed-point approaches
(Sec. V). Each of them is related to a specific cost function,
and algorithms are derived considering one of these costs
and a specific way to minimize it (almost always a stochas-
tic gradient descent or a recursive least-squares approach).
Sections III to V are the core of this survey on parametric
value function approximation, but additional important
topics are briefly covered at the end of the article. Sec. VI
shows how these approaches can be embedded in the
more general control problem, Sec. VII discusses when
choosing what algorithm (among surveyed methods and
depending on the practical context) and Sec. VIII provides
a brief overview of other ways to estimate a value function,

not covered here (such as nonparametric approaches or
extensions to eligibility traces). Before this, the underlying
formalism is presented in Sec. II.

II. Preliminaries
A Markovian decision process (MDP) is a tuple

{S, A, P,R, γ} where S is the (finite) state space, A the
(finite) action space, P : s, a ∈ S × A → p(.|s, a) ∈
P(S) the family of Markovian transition probabilities,
R : s, a, s′ ∈ S × A × S → r = R(s, a, s′) ∈ R the
bounded deterministic reward function and γ the discount
factor weighting long term rewards. According to these
definitions, the system stochastically steps from state to
state conditionally to the actions the agent performed. Let
i be the discrete time step. To each transition (si, ai, si+1)
is associated an immediate reward ri. The action selection
process is driven by a policy π : s ∈ S → π(.|s) ∈ P(A).

A. Bellman Equations
The quality of a policy is quantified by the value

function V π ∈ RS , defined as the expected discounted
cumulative reward starting in a state s and then following
the policy π:

V π(s) = E[
∞∑

i=0

γiri|s0 = s, π].

Thanks to the Markovian property, the value function of a
policy π satisfies the linear Bellman evaluation equation1:

V π(s) = Es′,a|s,π[R(s, a, s′) + γV π(s′)]. (1)

Let us define the Bellman evaluation operator Tπ : V ∈
RS → TπV ∈ RS :

[TπV](s) = Es′,a|s,π[R(s, a, s′) + γV (s′)].

The operator Tπ is a contraction and V π is its unique
fixed-point:

V π = TπV π.

An optimal policy π∗ maximizes the associated value
function for each state: π∗ ∈ argmaxπ∈P(A)S V π. The
associated optimal value function, written V ∗, satisfies the
nonlinear Bellman optimality equation:

V ∗(s) = max
a∈A

Es′|s,a[R(s, a, s′) + γV ∗(s′)].

The optimal value function is unique, but this is not
necessarily the case for the optimal policy. Let us define the
Bellman optimality operator T ∗ : V ∈ RS → T ∗V ∈ RS :

[T ∗V](s) = max
a∈A

Es′|s,a[R(s, a, s′) + γV (s′)]. (2)

The operator T ∗ is a contraction and V ∗ is its unique
fixed-point:

V ∗ = T ∗V ∗.

The action-value (or Q-) function encodes the values of
state-action couples. This is useful in a model-free context.

1Ex1|x2 denotes the expectation according to random variable x1

conditioned on x2.

3

It is defined as the expected cumulative reward starting in
s, applying a and then following π:

Qπ(s, a) = E[
∞∑

i=0

γiri|s0 = s, a0 = a, π].

The action-value function Qπ also satisfies the linear
Bellman evaluation equation:

Qπ(s, a) = Es′,a′|s,a,π[R(s, a, s′) + γQπ(s′, a′)].

It is clear that value and action-value functions are directly
linked:

V π(s) = Ea|s,π[Qπ(s, a)].

A Bellman evaluation operator related to the Q-function
can also be defined. By a slight abuse of notation, it is also
written Tπ, the distinction being clear from the context
(Tπ : Q ∈ RS×A → TπQ ∈ RS×A):

[TπQ](s, a) = Es′,a′|s,a,π[R(s, a, s′) + γQ(s′, a′)].

This operator is also a contraction and Qπ is its unique
fixed-point:

Qπ = TπQπ.

The optimal action-value function Q∗ satisfies the non-
linear Bellman optimality equation too:

Q∗(s, a) = Es′|s,a[R(s, a, s′) + γ max
a′∈A

Q∗(s′, a′)].

The associated Bellman optimality operator is defined as
(with the same slight abuse of notation) T ∗ : Q ∈ RS×A →
T ∗Q ∈ RS×A:

[T ∗Q](s, a) = Es′|s,a[R(s, a, s′) + γ max
a′∈A

Q(s′, a′)].

This is still a contraction and Q∗ is its unique fixed-point:

Q∗ = T ∗Q∗.

B. Relaxed Assumptions
As mentioned in Sec. I, an important subtopic of re-

inforcement learning is to estimate the (action-) value
function of a given policy or directly the Q-function of the
optimal policy (in all cases the fixed-point of a Bellman
operator) from samples, that is observed trajectories of
actual interactions. More precisely, learning is done from
a trajectory sampled according to a policy π, which can
be seen as a set of transitions:

{(sj , aj , rj , sj+1, aj+1)1≤j≤i}. (3)

A first problem is that the model (that is transition
probabilities and reward function) is assumed to be un-
known. Therefore, no Bellman operator (from which we
search a fixed-point for) can be computed. However, they
can be estimated from transitions. The sampled Bellman
value function evaluation operator T̂π

j , to be linked to
Eq. (1), is defined for a transition (sj , rj , sj+1) as:

T̂π
j : V ∈ RS → T̂π

j V ∈ R : T̂π
j V = rj + γV (sj+1). (4)

Notice that a sampled Bellman optimality operator cannot
be defined for the value function (to be linked to Eq. (2)),
as the maximum depends on the expectation. Similarly, a
sampled Bellman evaluation operator can be defined for
the Q-function. For a transition (sj , aj , rj , sj+1, aj+1), it
is defined as:

T̂π
j : Q ∈ RS×A → T̂π

j Q ∈ R : T̂π
j Q = rj + γQ(sj+1, aj+1).

Last but not least, a sampled Bellman optimality operator
can be defined for the Q-function (thanks to the fact that
the maximum depends on the expectation and not the
contrary). For a transition (sj , aj , rj , sj+1), we define:

T̂ ∗j : Q ∈ RS×A → T̂ ∗j Q ∈ R : T̂ ∗j Q = rj+γ max
a∈A

Q(sj+1, a).

A second problem is that the state space is usually too
large to allow an exact representation of the (action-) value
function. Therefore, an approximate representation should
be adopted. This article focuses on parametric approaches:
the estimated value (respectively action-value) function is
of the form V̂θ (respectively Q̂θ), where θ is the parameter
vector; this estimate belongs to an hypothesis space,

H = {V̂θ (resp. Q̂θ)|θ ∈ Rp},

which specifies the architecture of the approximation.
For example, if the state space is sufficiently small an
exact tabular representation can be chosen for the value
function. The estimate is thus of the form V̂θ(s) = eT

s θ
with es being an unitary vector which is equal to one in the
component corresponding to state s and zero elsewhere. A
common choice in RL is to adopt a linearly parameterized
value function: in this case, V̂θ(s) = φ(s)T θ with φ(s)
a vector of basis functions (e.g., a linear radial basis
function network) and θ the set of associated weights.
More complex hypothesis spaces can be envisioned, such
as neural networks. However, notice that some of the
approaches reviewed in this paper do not allow handling
nonlinear representations.

C. Survey Overview
Estimating a function from samples is a common topic of

supervised learning. However, estimating a value function
is a harder problem. Indeed, values are never directly
observed, so it is not a regression problem. The available
information is provided by the gathered rewards, of which
the accumulation defines the value function. Therefore,
supervised learning techniques cannot be directly applied
to learn such a function2. This article reviews state-of-
the-art (parametric) value function estimation algorithms
by grouping them into three categories. It will be shown
that all approaches minimize the following empirical cost

2Actually, this is not quite true. One can perform Monte Carlo
rollouts starting from a given set of states to obtain related estimated
returns (that is estimates of the expected discounted cumulative
reward for each state of the set) and use this in any supervised
learning scheme. However, this would require being able to sample
many possibly infinite trajectories for each state of the set, which is
therefore not really practical.

4

function (given for the Q-function, the value function
being a special case):

θi = argmin
ω∈Rp

i∑
j=1

(
T̂jQ̂ξ − Q̂ω(sj , aj)

)2

(5)

where T̂j denotes either T̂π
j or T̂ ∗j . Each of the three main

approaches is obtained by instantiating the parameter
vector ξ ∈ Rp, as explained below and summarized in
Tab. I.

a) Bootstrapping approaches (ξ = θj−1): bootstrap-
ping approaches (reviewed in Sec. III) consist in treating
value function approximation as a supervised learning
problem and to derive an online algorithm. As values
are not directly observable, they are replaced by an
estimate computed using a sampled Bellman operator
(bootstrapping refers to replacing an unobserved value by
an estimate). As first noticed in [8], this corresponds to
minimizing cost function (5) instantiated with ξ = θj−1.
If it is minimized using a stochastic gradient descent,
this provides TD-Q and Q-learning algorithms [2], given
that the sampled Bellman evaluation or optimality oper-
ator is considered. Using a (linear) recursive least-squares
approach, this gives the fixed-point Kalman filter algo-
rithm [8].

b) Residual approaches (ξ = ω): residual approaches
(reviewed in Sec. IV) consist in minimizing the squared
error between the (action-) value function and its im-
age through a Bellman operator. Practically, a sampled
operator is used, which leads to biased estimates. This
corresponds to minimizing cost function (5) instantiated
with ξ = ω. If it is minimized using a stochastic gradient
descent, it provides the residual algorithms of [9]. With a
linear recursive least-squares approach, it is the parametric
Gaussian Process Temporal Differences algorithm [10],
which can be extended using a statistical linearization
approach to nonlinear parameterizations and to the opti-
mality operator (the Kalman Temporal Differences frame-
work [11]).

c) Projected fixed-point approaches(ξ = θi−1/θi):
projected fixed-point approaches (reviewed in Sec. V)
minimize the squared error between the (action-) value
function and the image of this function under the (sam-
pled) Bellman operator projected onto the hypothesis
space. This is illustrated by Fig. 1 on Page 11. It can
be seen as searching for the fixed-point of an operator
defined as the composition of the projection with one
of the Bellman operators. Computing directly this fixed-
point corresponds to minimizing cost function (5) instan-
tiated with ξ = θi. Solved using a linear least-squares
approach, it gives the Least-Squares Temporal Differences
algorithm [12] (generalized using a statistical lineariza-
tion approach in [13]). Solved using a stochastic gradi-
ent descent approach, it provides a bunch of algorithms:
Gradient Temporal Difference 2 and Temporal Difference
with gradient Correction [14], nonlinear extension of these
algorithms [15], as well as GQ(λ), an extension to off-
policy learning and eligibility traces [16], and Greedy-

GQ, an extension to the Bellman optimality operator [17].
Computing the fixed-point associated to the composed
operator in an iterative way corresponds to minimizing
cost function (5) instantiated with ξ = θi−1. If solved
using a linear least-squares approach, it is the Least-
Squares Policy Evaluation algorithm [18], extended to the
Bellman optimality operator in [19]. In a batch setting
and using any supervised learning algorithm instead of the
projection, it is the fitted-Q approach [20][21].

Sec. III to V focus on how one can learn the action-value
function from samples. How these samples are generated
depends on the way the value function approximator is
embedded in a more general control scheme (the ultimate
goal of RL being to estimate an optimal policy), which is
discussed in Sec. VI.

III. Bootstrapping Approaches

Bootstrapping approaches deal with (action-) value
function approximation as a supervised learning problem.
The (action-) value function of interest is assumed to
be observed (either the value or action-value function of
a given policy π, or directly the optimal Q-function),
and it is projected onto the hypothesis space (minimizing
‖Q − Q̂θ‖2) using a stochastic gradient descent or a
recursive least-squares approach.

However, resulting algorithms make use of a value which
is actually not observed. Bootstrapping consists in re-
placing this missing observation by a pseudo-observation
computed by applying a sampled Bellman operator to
the current estimate of the (action-) value function. This
is an easy way to understand how to derive algorithms.
However, bootstrapping is not supervised learning, the
actual minimized cost function is provided in Sec. III-C.

A. Bootstrapped Stochastic Gradient Descent

Algorithms presented in this section aim at estimating
respectively the value function of a given policy (TD),
the Q-function of a given policy (TD-Q) or directly the
optimal action-value function (Q-learning) by combining
the bootstrapping principle with a stochastic gradient
descent over the associated empirical cost function [2].

1) TD with Function Approximation: TD with function
approximation (TD-VFA) aims at estimating the value
function V π of a fixed policy π. Let the notation vπ

j depict
a (possibly noisy) observation of V π(sj). The empirical
cost is:

ĴV π (θ) =
∑

j

(
vπ

j − V̂θ(sj)
)2

. (6)

More precisely, TD with function approximation mini-
mizes this empirical cost function using a stochastic gra-
dient descent: parameters are adjusted by an amount pro-
portional to an approximation of the gradient of (6), only
evaluated on a single training example. Let αi be a learn-
ing rate satisfying the classical stochastic approximation
criterion:

∑∞
i=1 αi = ∞ and

∑∞
i=1 α2

i < ∞. Parameters are

5

bootstrapping residual projected fixed-point
direct / iterated

stochastic TD-VFA [22] R-SGD [9] (nl)GTD2 ([15])[14]
gradient TDQ-VFA [23] (nl)TDC ([15])[14]
descent QL-VFA [24] Greedy-GQ [17]

(recursive) FPKF [8] GPTD [25] LSTD [12] LSPE [18]
least-squares KTD [11] slLSTD [13] Q-OSP [19]

other fitted-Q [21]

TABLE I
Summary.

updated according to the following Widrow-Hoff equation,
given the ith observed state si:

θi = θi−1 −
αi

2
∇θi−1

(
vπ

i − V̂θ(si)
)2

= θi−1 + αi

(
∇θi−1 V̂θ(si)

) (
vπ

i − V̂θi−1(si)
)

.

However, as mentioned above, the value of the state si is
not observed. It is where the bootstrapping principle ap-
plies. The unobserved value vπ

i is replaced by an estimate
computed by applying the sampled Bellman evaluation
operator (4) to the current estimate V̂θi−1(si). Assume
that not only the current state is observed, but the whole
transition (si, si+1) (sampled according to the policy π)
as well as associated reward ri. The corresponding update
rule is therefore:

θi = θi−1 + αi

(
∇θi−1 V̂θ(si)

) (
T̂π

i V̂θi−1 − V̂θi−1(si)
)

with T̂π
i V̂θi−1 = ri + γV̂θi−1(si+1).

The idea behind using this sampled operator (and more
generally behind bootstrapping) is twofold: if parameters
are perfectly estimated and if the value function belongs to
the hypothesis space, this provides an unbiased estimate of
the actual value (the value function being the fixed-point
of the unsampled operator) and this estimate provides
more information as it is computed using the observed
reward. Under some assumptions, notably a linear param-
eterization hypothesis, TD with function approximation
can be shown to be convergent [26] (and it converges to
the same solution as LSTD, described in Sec. V-A). This
is no longer the case when it is combined with a nonlinear
function approximator3 (a counterexample is exhibited
in [26]).

2) TD-Q with Function Approximation: TD-Q with
function approximation (TDQ-VFA) aims at estimating
the Q-function of a fixed policy π. Combined with a
control component such as an ε-greedy or a Gibbs policy,
it provides the well known SARSA algorithm (we use the
name TD-Q to separate clearly policy evaluation from
control, see Sec. VI). Notice that an MDP with a fixed
policy defines a valued Markov chain over the state-action
space, therefore value and Q-function evaluation are two
similar problems. Let qπ

j be a (possibly noisy) observation
of Qπ(sj). The considered algorithm aims at minimizing

ĴQπ (θ) =
∑

j

(
qπ
j − Q̂θ(sj , aj)

)2

.

3Despite this, one of the important empirical successes of RL is
based on TD with neural-network-based function approximation [27].

TD-Q with function approximation also minimizes the
related empirical cost function using a stochastic gradient
descent. Parameters are thus updated as follows, given the
ith state-action pair (si, ai):

θi = θi−1 −
αi

2
∇θi−1

(
qπ
i − Q̂θ(si, ai)

)2

= θi−1 + αi

(
∇θi−1Q̂θ(si, ai)

) (
qπ
i − Q̂θi−1(si, ai)

)
.

As before, qπ
i is not observed and it is replaced by an

estimate computed by applying the sampled Bellman
evaluation operator to the current estimate Q̂θi−1(si, ai).
Assume that the whole transition (si, ai, si+1, ai+1), ai+1

being sampled according to policy π, as well as associated
reward ri are observed. Parameters are therefore updated
according to:

θi = θi−1 + αi

(
∇θi−1Q̂θ(si, ai)

) (
T̂π

i Q̂θi−1 − Q̂θi−1(si, ai)
)

with T̂π
i Q̂θi−1 = ri + γQ̂θi−1(si+1, ai+1).

From a practical point of view, using the Q-function
instead of the value function is of interest because it does
not require the model to be known in order to derive a
greedy policy. Convergence results holding for TD with
function approximation apply rather directly to TD-Q
with function approximation.

Introduced as above, TD-Q estimates the action-value
function of the policy π followed to sample the trajec-
tory (3) used to feed the algorithm (on-policy learning).
However, one may want to estimate the Q-function of
some different target policy πt (off-policy learning). This
can be simply done by using the same transitions and
replacing T̂π

i by T̂πt
i . This means that the transition

(si, ai, si+1, ai+1) should be replaced by the transition
(si, ai, si+1, a

t
i+1), with at

i+1 being sampled according to
πt(.|st+1). Also, one can consider an alternative bootstrap
for qπt

i (with π = πt in the on-policy case). Instead of using
T̂πt

i Q̂θi−1 = ri +γQ̂θi−1(si+1, a
t
i+1), one can replace qπt

i by

ri + γEa|πt,si+1 [Q̂θi−1(si+1, a)].

This is also an unbiased estimate of [TπtQ̂θi−1](si, ai)
which can be used whenever πt is known and which
may lead to better estimates [28]. These ideas (off-policy
and alternative bootstrap) are quite general an can be
applied to any policy evaluation algorithm presented in
this survey (to any algorithm estimating a Q-function and
derived from the Bellman evaluation operator). However,
notice that if there is a too large mismatch between the

6

stationary distributions induced by the policies π and
πt, the Q-function will be badly estimated by the off-
policy approach. For convergence properties of off-policy
learning, see [29] and references therein.

3) Q-learning with Function Approximation: Q-learning
with function approximation (QL-VFA) aims at estimat-
ing directly the optimal action-value function Q∗. Let q∗j
be a (possibly noisy) observation of Q∗(sj). This algorithm
aims at minimizing the empirical cost function:

ĴQ∗(θ) =
∑

j

(
q∗j − Q̂θ(sj , aj)

)2

.

The same approach is used, and parameters are recursively
estimated using a stochastic gradient descent. Given the
ith state-action pair (si, ai), parameters should be updated
according to:

θi = θi−1 −
αi

2
∇θi−1

(
q∗i − Q̂θ(si, ai)

)2

= θi−1 + αi

(
∇θi−1Q̂θ(si, ai)

) (
q∗i − Q̂θi−1(si, ai)

)
.

As for preceding algorithms, the bootstrapping principle
is applied to estimate the unobserved q∗i value, using
the sampled Bellman optimality operator now, which
assumes that the transition (si, ai, si+1) as well as as-
sociated reward ri are observed. Notice that Q-learning
with function approximation is an off-policy algorithm, as
it also evaluates a policy (the optimal one in this case)
from samples generated according to a different policy.
Practically, transitions can be sampled according to any
sufficiently explorative policy. Parameters are updated as:

θi = θi−1 + αi

(
∇θi−1Q̂θ(si, ai)

) (
T̂ ∗i Q̂θi−1 − Q̂θi−1(si, ai)

)
with T̂ ∗i Q̂θi−1 = ri + γ max

a∈A
Q̂θi−1(si+1, a).

Under some assumptions, notably a linear parameteriza-
tion and the fact that the sampling policy π is explorative
enough (it should visit all state-action pairs), QL-VFA can
be shown to be convergent [30].

4) A Summary View: These algorithms can be formal-
ized using the same unified notation. First, value and
action-value function evaluation (TD and TD-Q with func-
tion approximation) are somehow redundant. As V π(s) =
Ea|π,s[Qπ(s, a)], any algorithm aiming at estimating a Q-
function can easily be specialized to the related value
function, as long as the policy is known (thus, this does not
apply to Q-learning with function approximation). Prac-
tically, it consists in replacing the Q-function by the value
function and state-action pairs by states. Consequently,
value function estimation is not considered anymore in
this article. Let T̂j denote either the sampled evaluation
or optimality operator, depending on the context. Let also
qj be either qπ

j or q∗j , also depending on the context. TD-
Q and Q-learning with function approximation aim at
minimizing the following empirical cost function, which

is instantiated by specifying if evaluation or direct opti-
mization is considered:

Ĵ(θ) =
∑

j

(
qj − Q̂θ(sj , aj)

)2

.

As before, parameters are estimated using a stochastic gra-
dient descent and by applying the bootstrapping principle,
which leads to the following update:

θi = θi−1+αi

(
∇θi−1Q̂θ(si, ai)

) (
T̂iQ̂θi−1 − Q̂θi−1(si, ai)

)
.

A practical algorithm is instantiated by specifying which
of the sampled Bellman operator is used for T̂ , that is T̂π

or T̂ ∗. Algorithms have been detailed so far, for the sake of
clarity. However, in the rest of this article this summarizing
point of view is adopted. Notice also that this update is
actually a Widrow-Hoff equation of the following form:

θi = θi−1 + Kiδi. (7)

In this expression, δi = T̂iQ̂θi−1 − Q̂θi−1(si, ai) is the
so-called temporal difference (TD) error, which is the
reward prediction error given the current estimate of
the action-value function (it depends on which Bellman
operator is considered) and Ki = αi∇θi−1Q̂θ(si, ai) is a
gain indicating in which direction the parameter vector
should be corrected in order to improve the estimate. Most
of (online) algorithms presented in this paper satisfy a
Widrow-Hoff update.

B. Bootstrapped Recursive Least-Squares

The fixed-point Kalman Filter (FPKF) [8] also seeks at
minimizing the empirical cost function linking (actually
unobserved) action-values to the estimated Q-function
(still with a bootstrapping approach):

Ĵi(θ) =
i∑

j=1

(
qj − Q̂θ(sj , aj)

)2

.

However, the parameterization is assumed to be linear and
a (recursive) least-squares approach is adopted instead of
the stochastic gradient descent used for preceding algo-
rithms. The considered hypothesis space is of the form

H = {Q̂θ : (s, a) ∈ S ×A → φ(s, a)T θ ∈ R|θ ∈ Rp},

where φ(s, a) is a feature vector (to be chosen beforehand).
For a given state-action couple (sj , aj), φ(sj , aj) is short-
ened as φj . The corresponding empirical objective function
can thus be rewritten as:

Ĵi(θ) =
i∑

j=1

(
qj − φT

j θ
)2

.

Thanks to linearity in parameters, this cost function is
convex and has a unique minimum:

θi = argmin
θ∈Rp

Ĵi(θ).

7

This optimization problem can be solved analytically by
zeroing the gradient of Ĵi(θ); this is the principle of the
least-squares method. Parameters are thus estimated as:

θi =

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

φjqj .

Let us write P−1
i =

∑i
j=1 φjφ

T
j . The Sherman-Morrison

formula allows updating directly the inverse of a rank-one
perturbed matrix:

Pi = Pi−1 −
Pi−1φiφ

T
i Pi−1

1 + φT
i Pi−1φi

.

This allows estimating parameters recursively:

θi = θi−1 +
Pi−1φi

1 + φT
i Pi−1φi

(
qi − Q̂θi−1(si, ai)

)
.

As for algorithms presented in Sec. III-A, the bootstrap-
ping principle is applied and the unobserved qi action-
value is replaced by the estimate T̂iQ̂θi−1 :

θi = θi−1 +
Pi−1φi

1 + φT
i Pi−1φi

(
T̂iQ̂θi−1 − Q̂θi−1(si, ai)

)
.

This equation is actually a Widrow-Hoff update (7).
The temporal difference error is still δi = T̂iQ̂θi−1 −
Q̂θi−1(si, ai); this prediction error term is actually common
to all algorithms aiming at estimating the action-value
function.The gain depends on the fact that a least-squares
minimization has been considered:

Ki =
Pi−1φi

1 + φT
i Pi−1φi

.

This gain can be compared to the one obtained us-
ing a stochastic gradient descent approach, presented in
Sec. III-A. With a linear parametrization, the correspond-
ing gain is Ki = αiφi. Therefore, FPKF can be seen as a
variation of TD-Q or Q-learning for which there is some
automatic coordinate-based step-size adaptation.

If the sampled Bellman evaluation operator is consid-
ered, the FPKF update rule specializes as:

θi = θi−1 + Ki

(
ri + γφT

i+1θi−1 − φT
i θi−1

)
.

If the sampled Bellman optimality operator is considered,
this update rule specializes as:

θi = θi−1 + Ki

(
ri + γ max

a∈A

(
φ(si+1, a)T θi−1

)
− φT

i θi−1

)
.

This algorithm can be shown to be convergent under
some assumptions, for both sampled operators (evaluation
and optimality in the case of optimal stopping problems).
See [8] for details.

C. Summary
The principle of bootstrapping algorithms is to derive an

online algorithm which minimizes a supervised-learning-
based cost function:

θi = argmin
ω∈Rp

i∑
j=1

(qj − Q̂ω(sj , aj))2.

As values are not observed, the bootstrapping principle
is applied: the unobserved qj value is replaced by some
estimate. Given that we are looking for a fixed-point of
one of the Bellman operators, this estimate is provided
by T̂jQ̂θj−1 . Therefore, bootstrapping approaches solve the
following optimization problem (as first noticed in [8]):

θi = argmin
ω∈Rp

i∑
j=1

(
T̂jQ̂θj−1 − Q̂ω(sj , aj)

)2

.

This corresponds to Eq. (5) instantiated with ξ = θj−1.
Practical algorithms are then derived given that this cost
function is minimized using a stochastic gradient descent
or a recursive least-squares approach, and given what
Bellman operator is considered. This is summarized in the
first column of Tab. I on Page 5.

IV. Residual Approaches

Residual approaches aim at finding an approximation of
the fixed-point of one of the Bellman operators by mini-
mizing the distance between the (action-) value function
and its image through one of the Bellman operators. The
associated cost function is:

J(θ) = ‖Q̂θ − TQ̂θ‖2.

Practically, learning is done using samples and the Bell-
man operator is replaced by a sampled Bellman operator,
the model (particularly transition probabilities) being un-
known. The associated empirical cost function is therefore:

Ĵ(θ) =
∑

j

(
Q̂θ(sj , aj)− T̂jQ̂θ

)2

. (8)

A common drawback of all approaches aiming at minimiz-
ing this cost function is that they produce biased estimates
of the (action-) value function. Basically, this is due to the
fact that the expectation of a square is not the square of
the expectation:

Esj+1|sj ,aj ,π[(Q(sj , aj)− T̂jQ)2] =

(Q(sj , aj)− (TQ)(sj , aj))2 + Varsj+1|sj ,aj ,π(T̂jQ).

There is an unwanted variance term acting as a penalty
factor which favorises smooth functions. If such penalties
are commonly used for regularization, this one is harmful
here as it cannot be controlled [31]. All methods presented
below can be modified so as to handle this problem, this
will be shortly discussed. However, it is important to notice
that any algorithm aiming at minimizing this cost presents
this bias problem.

A. Residual Stochastic Gradient Descent

So-called residual algorithms (R-SGD for residual
stochastic gradient descent) have been introduced in [9].

8

Their principle is to minimize the empirical cost func-
tion (8) using a stochastic gradient descent. The corre-
sponding update rule is therefore:

θi = θi−1 −
αi

2
∇θi−1

(
(Q̂θ(si, ai)− T̂iQ̂θ)2

)
with ∇θi−1

(
(Q̂θ(si, ai)− T̂iQ̂θ)2

)
=(

∇θi−1

(
Q̂θ(si, ai)− T̂iQ̂θ

)) (
T̂iQ̂θi−1 − Q̂θi−1(si, ai)

)
.

Here again, this update is actually a Widrow-Hoff equa-
tion (see Eq. (7)) with δi = T̂iQ̂θi−1 − Q̂θi−1(si, ai) and
Ki = αi∇θi−1(Q̂θ(si, ai)− T̂iQ̂θ). If the sampled Bellman
evaluation operator is considered, gain and temporal dif-
ference error are given by:

Ki = αi∇θi−1

(
Q̂θ(si, ai)− γQ̂θ(si+1, ai+1)

)
,

δi = ri + γQ̂θi−1(si+1, ai+1)− Q̂θi−1(si, ai).

A first problem arises when the sampled Bellman optimal-
ity operator is considered. In this case, we have:

Ki = αi∇θi−1

(
Q̂θ(si, ai)− γ max

a∈A
Q̂θ(si+1, a)

)
,

δi = ri + γ max
a∈A

Q̂θi−1(si+1, a)− Q̂θi−1(si, ai).

Here, the gradient of the max operator must be computed:
∇θi−1(maxa∈A Q̂θ(si+1, a)). This is not straightforward; if
this gain is introduced in [9], no solution is provided to
compute it4. Another problem is that these algorithms
compute biased estimates of the (action-) value function,
as explained above. This is inherent to all approaches
minimizing a residual cost function using a sampled Bell-
man operator. In order to handle this problem, it is
proposed in [9] to use a double sampling scheme. Let us
consider the Bellman evaluation operator. Two transitions
are independently generated from the state-action cou-
ple (si, ai): (si, ai, r

′
i, s

′
i+1, a

′
i+1) and (si, ai, r

′′
i , s′′i+1, a

′′
i+1).

One of these transitions is used to compute the gain, and
the other one to compute the TD error:

Ki = αi∇θi−1

(
Q̂θ(si, ai)− γQ̂θ(s′i+1, a

′
i+1)

)
,

δi = ri + γQ̂θi−1(s
′′
i+1, a

′′
i+1)− Q̂θi−1(si, ai).

These two transitions being sampled independently, taking
the expectation of Kiδi leads to the use of the true (that
is unsampled) Bellman operator, without variance term
contrary to the use of the same transition in both gain
and TD error. However, this suggests that transitions can
be sampled on demand (for example using a simulator),
which might be a strong assumption.

B. Residual Least-Squares
In this section, methods based on a least-squares mini-

mization of cost function (8) are reviewed. The paramet-
ric Gaussian Process Temporal Differences [10] algorithm

4maxa∈A Q̂θ(si+1, a) is generally non-differentiable resp. to θ; a
solution could be to rely on Fréchet subdifferentials [32].

minimizes it by assuming a linear parameterization as well
as the Bellman evaluation operator, and the Kalman Tem-
poral Differences framework [11] generalizes it to nonlinear
parameterizations as well as to the Bellman optimality
operator thanks to a statistical linearization approach [33].

1) Gaussian Process Temporal Differences: Assuming a
linear parametrization and the Bellman evaluation opera-
tor, cost function (8) is linear and can be rewritten as:

Ji(θ) =
i∑

j=1

(rj + γφT
j+1θ − φT

j θ)2. (9)

Thanks to the linearity in parameters, it can be solved
using a recursive least-squares approach: zeroing the gra-
dient (∇θJi(θ) = 0) provides a batch estimate which
can be made recursive by using the Sherman-Morrison
formula. To any least-squares problem can be linked a
so called observation model, linking outputs to inputs
through the hypothesized parametric model plus some
white observation noise nj . In this case, it is simply the
sampled Bellman evaluation equation:

rj = φT
j θ − γφT

j+1θ + nj .

With a unitary noise (that is nj is of unitary variance,
Pnj

= 1), the corresponding least-squares problem is
provided by Eq. (9).

The (parametric) Gaussian Process Temporal Differ-
ences (GPTD) algorithm [10] considers the same obser-
vation model, with a not necessarily unitary noise nj . The
effect of the noise variance is to weight square terms in the
minimized cost function, this is the slight difference with
cost (9):

Ji(θ) =
i∑

j=1

1
Pnj

(
rj + γφT

j+1θ − φT
j θ

)2
.

If one has some prior knowledge about the noise ni, this
can be used to obtain this simple weighted least-squares
problem. If not, it is sufficient to consider a constant
variance (therefore weighting no longer affects the solution
of this optimization problem).

Let us write ∆φj = φj − γφj+1. The unique parameter
vector minimizing the above convex cost-function can be
computed analytically by zeroing the gradient with respect
to the parameter vector:

θi = argmin
θ∈Rp

Ji(θ) =

 i∑
j=1

1
Pnj

∆φj∆φT
j

−1
i∑

j=1

1
Pnj

∆φjrj .

Let us write Pi = (
∑i

j=1
1

Pnj
∆φj∆φT

j)−1. Thanks to the
Sherman-Morrison formula, Pi can be computed itera-
tively and parameters can be estimated recursively. Let θ0

and P0 be some priors, the (parametric) GPTD algorithm
is given by these two equations:

θi = θi−1 +
Pi−1∆φi

Pni
+ ∆φT

i Pi−1∆φi

(
ri −∆φT

i θi−1

)
,

Pi = Pi−1 −
Pi−1∆φi∆φT

i Pi−1

Pni
+ ∆φT

i Pi−1∆φi
.

9

One can recognize the temporal difference error δi =
ri − ∆φT

i θi−1 and a gain Ki = Pi−1∆φi

Pni
+∆φT

i Pi−1∆φi
, to be

linked again with the generic Widrow-Hoff update (7).
Notice that Pi is actually a variance matrix quantifying the
uncertainty over current parameters estimation (it is the
variance of the parameter vector conditioned on past i ob-
served rewards). This is not clear from the proposed least-
squares-based derivation, however it is direct by adopting
a Bayesian perspective [25]. Notice that this interpretation
of Pi as being a variance matrix can be useful for handling
the dilemma between exploration and exploitation [10].

As all other residual methods, GPTD produces bi-
ased estimates of the value function when transitions are
stochastic. To alleviate this problem, a colored observation
noise nj can be used instead of the classical white noise as-
sumption (a noise being white if ∀i 6= j, ni and nj are inde-
pendent, and a colored noise is any non-white noise) [34].
This noise allows removing the bias (because it leads to
minimizing another cost function, linking state estimates
to Monte Carlo samples of the discounted return [34][10,
Ch. 4.4.3]), but it also induces a memory effect which
prevents from learning in an off-policy manner, much like
eligibility traces do (e.g., see [35]). These developments are
not pursued here (they rely mainly on Bayesian inference
and eligibility traces, just the later topic being briefly
addressed in Sec. VIII).

The GPTD framework has been originally introduced
in a different, non-parametric, manner [25]: the value
function is modeled as a Gaussian process and a kernel-
based online sparsification scheme is used to obtain a
practical algorithm. As we focus on parametric value
function approximation, the algorithm we review is the
parametric GPTD [10, Sec. 4.3]. There also exists an
LSTD-based variation of GPTD (see Sec. V-A for LSTD),
derived from a maximum likelihood interpretation of the
LSTD algorithm [10, Sec. 4.5]. In the parametric case, it
is actually an `2-regularized form of LSTD, so it is not
further developed here.

2) Kalman Temporal Differences: As the GPTD frame-
work, the Kalman Temporal Differences framework [11]
also seeks at minimizing cost function (8), not necessarily
considering a unitary noise variance too. Let us write
T̂iQ = ri + γP̂iQ with:

P̂iQ =

{
Q(si+1, ai+1) (if sampled evaluation op.)
maxa∈A Q(si+1, a) (if sampled optimality op.)

.

Estimated parameters should minimize:

Ĵi(θ) =
i∑

j=1

1
Pnj

(
rj −

(
Q̂θ(sj , aj)− γP̂jQ̂θ

))2

. (10)

Contrary to GPTD, KTD does not assume a linear param-
eterization nor the sampled evaluation operator. Instead,
it makes use of a derivative-free linearization scheme (the
derivative-free aspect allows considering the sampled opti-
mality operator), the so-called statistical linearization [33].
The basic idea is to linearize this cost function (taking
the distribution of parameters into account), which can

subsequently be solved using a classical recursive least-
squares approach.

Linearization of (10) goes through the linearization of
the associated observation model (to be considered as a
function of θ, the state-action couple being fixed):

rj = Q̂θ(sj , aj)− γP̂jQ̂θ + nj . (11)

Assume that it is evaluated in n sampled parameter
vectors θ(k) of associated weights wk (how to sample them
practically and efficiently being addressed later):(

θ(k), r
(k)
j = Q̂θ(k)(sj , aj)− γP̂jQ̂θ(k)

)
1≤k≤n

.

The following statistics of interest are defined:

θ̄ =
n∑

k=1

wkθ(k), r̄j =
n∑

k=1

wkr
(k)
j , (12)

Pθ =
n∑

k=1

wk

(
θ(k) − θ̄

) (
θ(k) − θ̄

)T

,

Pθrj
=

n∑
k=1

wk

(
θ(k) − θ̄

) (
r
(k)
j − r̄j

)T

= PT
rjθ,

Prj
=

n∑
k=1

wk

(
r
(k)
j − r̄j

)2

. (13)

Statistical linearization consists in linearizing the non-
linear observation model (11) around θ̄ (with Pθ being
actually the spread of sampling) by adopting a statistical
point of view. It finds a linear model rj = Ajθ + bj + uj ,
uj being a noise, by minimizing the sum of square errors
between values of nonlinear and linearized functions in the
regression points:

(Aj , bj) = argmin
A,b

n∑
k=1

(
e
(k)
j

)2

with e
(k)
j = r

(k)
j −

(
Aθ(k) + b

)
The solution of this optimization problem is given by:

Aj = PrjθP
−1
θ and bj = r̄j −Aj θ̄.

Moreover, it is easy to check that the covariance matrix
of the error is given by:

Pej
=

n∑
k=1

(
e
(k)
j

)2

= Prj
−AjPθA

T
j .

The nonlinear observation model (11) can thus be replaced
by the following equivalent linear observation model:

rj = Ajθ + bj + uj with uj = ej + nj .

Notice that the linearization error is taken into account
through the noise ej . Noises ej and nj being independent,
the variance of Puj is given by Puj = Pej + Pnj . Given
this statistically linearized observation model, the least-

10

squares problem can be rewritten in a linear form:

θi = argmin
θ∈Rp

 i∑
j=1

1
Puj

(rj −Ajθ − bj)
2


=

 i∑
j=1

1
Puj

AT
j Aj

−1
i∑

j=1

Aj (rj − bj) .

With this cost function, the higher is the statistical lin-
earization error of a given transition (quantified by Puj

through Pej), the less the corresponding square term con-
tributes to the cost. Using the Sherman-Morrison formula,
a recursive update of this estimate can be obtained (ex-
pressing the gain Ki directly as a function of the statistics
of interest defining Ai and bi and assuming some priors θ0

and Pθ0):

Ki =
Pθiri

Pui
+ Pri

,

θi = θi−1 + Ki (ri − r̄i) , (14)

Pθi
= Pθi−1 −Ki (Pvi

+ Pri
) KT

i .

Here again, the gain’s magnitude is directly linked to the
linearization error, and large errors will result in small
updates (this can be seen as an automatic learning rate).
Eq. (14) corresponds also to a Widrow-Hoff update, with
ri − r̄i being a statistically linearized temporal difference
error (r̄i is a prediction of the reward given the currently
estimated Q-function and the experienced transitions; the
algorithm does not optimize a myopic TD error).

How to actually sample parameter vectors in order to
perform statistical linearization is addressed now. With
this recursive estimation, θi−1 (the previous estimate) and
Pi−1 (the associated uncertainty matrix, as explained in
Sec. IV-B1) are known, and the issue is to compute Ai

and bi. A first thing is to choose the point around which
to linearize and with which magnitude. It is legitimate
to sample around the previous estimate θi−1 and with a
spread related to the uncertainty of these estimates. In
other words, n parameter vectors are sampled such that
θ̄i = θi−1 and Pθi = Pi−1. Notice that θ̄i, the point
around which linearization is performed in order to update
parameters, is different from θi, the updated parameter
vector. There remains the choice of how parameter vec-
tors are sampled. A natural idea would be to assume a
Gaussian distribution of mean θi−1 and variance Pi−1 and
to compute statistics of interest (Eqs. (12) to (13)) using
a Monte Carlo approach. However, this would be partic-
ularly inefficient. Actually, the problem of sampling these
points can be stated as follows: how to sample a random
variable (here the parameter vector) of known mean and
variance (here θi−1 and Pi−1) in order to compute accurate
estimates of first and second order moments of a nonlinear
mapping of this random variable (here Q̂θ(si, ai)−γP̂iQ̂θ).
The unscented transform [36] provides a solution to this

problem and is used by the KTD framework5. Full details
are provided in [11].

KTD generalizes GPTD in the sense that it allows
handling nonlinearities: nonlinear parameterization thanks
to the linearization, and the (sampled) Bellman optimality
operator thanks to the fact that this linearization scheme
does not rely on a gradient computation. Notice that KTD
reduces to parametric GPTD if a linear parameteriza-
tion as well as the sampled Bellman evaluation operator
are considered. As other residual approaches, KTD suf-
fers from the bias problem when system transitions are
stochastic. In order to handle this issue, a colored noise
model (based on the idea of eligibility traces) can be
used [40] (which is actually a generalization of the noise
proposed in [34] for GPTD). However, as mentioned in
Sec. IV-B1, this induces some memory effects which pre-
vent from learning in an off-policy manner. Consequently,
the sampled Bellman optimality operator can no longer be
considered in this setting, because of its off-policy aspect.
Using a colored noise also leads to minimizing a different
cost function. As for GPTD, these developments are not
pursued here, see the corresponding papers [40][34][35].
Notice that the available uncertainty information (matrix
Pi) can be useful for the dilemma between exploration and
exploitation [41][42].

C. Summary
Residual approaches aim at finding an approximation of

the fixed-point of one of the Bellman operators by mini-
mizing the distance between the (action-) value function
and its image through one of the Bellman operators. The
associated theoretical cost function is J(θ) = ‖Q̂θ−TQ̂θ‖2.

Practically, learning is done using samples and the
Bellman operator is replaced by its sampled counterpart,
the model being unknown. The associated empirical cost
function is therefore:

θi = argmin
ω∈Rp

i∑
j=1

(
T̂jQ̂ω − Q̂ω(sj , aj)

)2

.

This is exactly Eq. (5) instantiated with ξ = ω. Minimizing
this cost function by considering one of the Bellman
operator and using either a stochastic gradient descent or a
recursive least-squares approach (possibly generalized us-
ing a statistical linearization) provides one of the presented
algorithms (see the second column of Tab. I).

A common drawback of all approaches aiming at min-
imizing this cost function is that they produce biased
estimates of the (action-) value function: minimizing the
empirical cost function (8) does not lead to minimize the
theoretical cost function ‖Q̂θ −TQ̂θ‖2 asymptotically. All
methods presented in Sec. IV can be modified so as to
handle the problem: a double sampling scheme is suggested
in Sec. IV-A, and original methods based on coloring the

5Notice that other approximation schemes can be considered in-
stead of the unscented transform, such as the scaled unscented trans-
form [37], approximation schemes based on Sterling interpolation [38]
or more generally sigma-point-based transforms [39].

11

observation noise in Sections IV-B1 and IV-B2. Neverthe-
less, it is important to notice that any algorithm aiming
at minimizing this cost presents this bias problem.

V. Projected Fixed-point Approaches
Projected fixed-point approaches seek at minimizing the

distance between the estimated action-value function and
the projection (the projection operator being written Π)
of the image of this function under a Bellman operator
onto the hypothesis space H:

J(θ) = ‖Q̂θ −ΠTQ̂θ‖2 with Πf = argmin
f̂∈H

‖f − f̂‖2. (15)

This is illustrated in Fig. 1. The action-value function
estimate Q̂θ lies in the hypothesis space H. Its image
under a Bellman operator TQ̂θ does not necessarily lye
on this hypothesis space. Residual approaches of Sec. IV
try to minimize the distance between these two functions,
that is line 1© in Fig. 1, with the drawback that using
a sampled Bellman operator leads to biased estimates,
as discussed before. The function TQ̂θ can be projected
onto the hypothesis space, this projection minimizing the
distance between TQ̂θ and the hypothesis space (line 2© in
Fig. 1). Projected fixed-point methods aim at minimizing
the distance between this projection and Q̂θ, represented
by line 3© in Fig. 1.

Fig. 1. Projected fixed-point principle.

Contrary to bootstrapping and residual approaches,
least-squares-based algorithms have been introduced be-
fore stochastic-gradient-based ones for solving the pro-
jected fixed-point problem. Thus, they are reviewed first.

A. Least-Squares-based Approaches
This section reviews algorithms which use a least-

squares approach to minimize the empirical cost linked
to (15):

θi = argmin
θ∈Rp

i∑
j=1

(
Q̂θ(sj , aj)− Q̂ωθ

(sj , aj)
)2

(16)

with ωθ = argmin
ω∈Rp

i∑
j=1

(
Q̂ω(sj , aj)− T̂jQ̂θ

)2

. (17)

Obviously, cost related to (16) is minimized for θ = ωθ

(assuming that this equation has a solution, which can
at least be ensured for the evaluation operator and a

linear parametrization). Therefore, nested optimization
problems (16) and (17) can be summarized as θi = ωθi :

θi = argmin
ω∈Rp

i∑
j=1

(
Q̂ω(sj , aj)− T̂jQ̂θi

)2

. (18)

Notice that as θi appears in both sides of this equation,
this is not a pure quadratic cost function, but a fixed-point
problem. The least-squares temporal differences (LSTD)
algorithm [12] assumes a linear parameterization and
the (sampled) Bellman evaluation operator in order to
solve the above optimization problem. The statistically
linearized LSTD (slLSTD) algorithm [13] generalizes it to
nonlinear parameterizations and to the (sampled) Bellman
optimality operator thanks to a statistical linearization
process (the generalization from LSTD to slLSTD being
quite close to the generalization from GPTD to KTD).

1) Least-Squares Temporal Differences: LSTD6 as-
sumes a linear parameterization as well as the sampled
Bellman evaluation operator. Using the same notations as
before, optimization problem (18) can be rewritten as:

θi = argmin
ω∈Rp

i∑
j=1

(
rj + γφT

j+1θi − φT
j ω

)2
.

Thanks to linearity in ω (linear parameterization assump-
tion), this can be analytically solved:

θi =

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

φj

(
rj + γφT

j+1θi

)
.

Thanks to linearity in θi (linear parameterization and
evaluation operator assumptions), the parameter vector
can be isolated:

θi =

 i∑
j=1

φj (φj − γφj+1)
T

−1
i∑

j=1

φjrj . (19)

Eq. (19) defines the (batch) LSTD estimate. Let us write
M−1

i =
∑i

j=1 φj∆φT
j . Thanks to the Sherman-Morrison

formula, a recursive form of this estimation process can
be obtained (assuming some priors θ0 and M0):

Ki =
Mi−1φi

1 + (φi − γφi+1)
T

Mi−1φi

,

θi = θi−1 + Ki

(
ri + γφT

i+1θi−1 − φT
i θi−1

)
,

Mi = Mi−1 −Ki

(
MT

i−1 (φi − γφi+1)
)T

.

Once again, Ki is a gain and ri + γφT
i+1θi−1 − φT

i θi−1 a
temporal difference error, to be linked to the Widrow-Hoff
update (7).

LSTD can be slightly modified to have an improved
computational cost [45] (assuming that the features are
sparse, which is not necessarily the case), and it can be
“mixed” with a residual approach [46].

6Notice that LSTD has not been originally introduced as a pro-
jected fixed point method (like in [43]), but as a residual least-squares
debiased using instrumental variables [44]. See [12] for details.

12

2) Statistically Linearized LSTD: The slLSTD algo-
rithm [13] generalizes LSTD: it does not assume a linear
parameterization nor the Bellman evaluation operator.
The corresponding optimization problem is therefore (this
equation being valid thanks to the subsequent lineariza-
tion):

θi = argmin
ω∈Rp

i∑
j=1

(
rj + γP̂jQ̂θi

− Q̂ω(sj , aj)
)2

. (20)

How slLSTD generalizes LSTD is very close to how KTD
generalizes GPTD: a statistical linearization is performed,
which allows solving this optimization problem analyti-
cally and recursively. Eq. (20) can be linked to the follow-
ing observation model (nj being here a unitary white and
centered observation noise):

rj + γP̂jQ̂θi
= Q̂ω(sj , aj) + nj . (21)

The noise is chosen unitary to strengthen parallel to
LSTD, but extension to non-unitary noise is straightfor-
ward. As for KTD, a statistical linearization is performed.
However, here two different quantities have to be lin-
earized: Q̂ω(sj , aj) and P̂jQ̂θi

.
Assume that n parameter vectors ω(k) of associated

weights wk are sampled (using the unscented transform),
and that their images are computed:(

ω(k), q
(k)
j = Q̂ω(k)(sj , aj)

)
1≤k≤n

.

Using the statistical linearization process explained in
Sec. IV-B2 and defining the statistics of interest accord-
ingly to Eqs. (12) to (13), the following linear observation
model is obtained:

Q̂ω(sj , aj) = Ajω + bj + ej (22)
with Aj = PqjωP−1

ω , bj = q̄j −Ajω̄

and Pej
= Pqj

−AjPωAT
j .

Recall that the noise ej is centered and can be sampled
as e

(k)
j = q

(k)
j − (Ajω

(k) + bj). The term P̂ Q̂θi
(sj , aj) also

needs to be linearized. Assume that n parameter vectors
θ
(k)
i of associated weights wk are sampled (again using the

unscented transform), and that their images are computed:(
θ
(k)
i , p(k)

qj
= P̂ Q̂

θ
(k)
i

(sj , aj)
)

1≤k≤n
.

Using the statistical linearization process explained in
Sec. IV-B2 and defining the statistics of interest accord-
ingly to Eqs. (12) to (13), the following linear observation
model is obtained:

P̂ Q̂θi(sj , aj) = Cjθi + dj + εj (23)
with Cj = Ppqj

θi
P−1

θi
, dj = p̄qj

− Cj θ̄i

and Pεj
= Ppqj

− CjPθi
CT

j .

Recall that the noise εj is centered and can be sampled as
ε
(k)
j = p

(k)
qj − (Cjθ

(k)
i + dj). Notice also that θ̄i is not equal

to θi a priori.

Linearized models (22) and (23) can be injected into
observation model (21):

rj + γ (Cjθi + dj + εj) = Ajω + bj + ej + nj

⇔ rj + γ (Cjθi + dj) = Ajω + ej − γεj + nj .

The linearization error is taken into account in the cen-
tered noise uj of variance Puj

:

uj = nj + ej − γεj and Puj
= E[u2

j].

This equivalent observation model leads to the following
optimization problem, which can be solved analytically:

θi = argmin
ω∈Rp

i∑
j=1

1
Puj

(rj + γ (Cjθi + dj)− (Ajω + bj))
2(24)

= (
i∑

j=1

1
Puj

AT
j (Aj − γCj))−1

i∑
j=1

1
Puj

Aj (rj + γdj − bj) .

(25)

This is the statistically linearized variation of optimization
problem (20) (which explains the similarity between the
LSTD batch estimate (19) and Eq. (25)). Also, similarly
to what happens with KTD, the statistical linearization
error is taken into account through the noise variance Puj

(the bigger the statistical linearization error, the lesser the
impact of the related sample on the learning process).
The Sherman-Morrison formula allows again deriving a
recursive estimation of θi. Assume that some priors θ0 and
M0 are chosen, the slLSTD algorithm is defined as:

Ki =
Mi−1A

T
i

Pui + (Ai − γCi)Mi−1AT
i

,

θi = θi−1 + Ki (ri + γdi − bi − (Ai − γCi) θi−1) ,

Mi = Mi−1 −Ki

(
MT

i−1 (Ai − γCi)
T
)T

.

Notice that once again, this satisfies the Widrow-Hoff
update, with a gain Ki and a temporal difference error
ri + γdi − bi − (Ai − γCi)θi−1 (which can be shown to
simplify as ri + γp̄qi

− q̄i, the TD error being more visible
under this form). Given this recursive formulation, there
still remains to choose how to sample parameter vectors
(related to ω and θi) in order to compute Ai, bi, Ci, di

and Pui
.

As for KTD, the unscented transform is used to sample
these parameter vectors. The parameter vector ω to be
considered is the solution of Eq. (24), that is the solution
of the fixed-point problem θi = ωθi . In this recursive
estimation context, it is legitimate to linearize around
the last estimate θi−1. The mean being chosen, the only
remaining choice is the associated variance Pi−1. In [13], it
is proposed to use the same variance matrix as would have
been provided by a statistically linearized recursive least-
squares [47] used to perform supervised learning of the
approximate action-value function given true observations
of the Q-values. The fact that the unobserved action-
values are not used to update the variance matrix tends

13

to legitimate this choice. The associated matrix update is:

Pi = Pi−1 −
Pi−1A

T
i AiPi−1

1 + AiPi−1AT
i

The same approach is used to compute Ci and di, coming
from the statistical linearization of P̂iQ̂θi

. As before, the
linearization is performed around the last estimate θi−1

and considering the matrix variance Σi−1 provided by
a statistical linearized recursive least-squares that would
perform a supervised regression of P̂iQ̂θi

:

Σi = Σi−1 −
Σi−1C

T
i CiΣi−1

1 + CiΣi−1CT
i

These choices being made, Ai, bi, Ci and di can be
computed, see [13] for details. A last thing is to compute
the variance Pui

of the noise ui = ni + ei − γεi. The noise
ni is independent of others, and the variance of ei − γεi

can be computed using the unscented transform, which
provides an analytical expression for this variance.

Mixing all these elements, the slLSTD can be built.
Notice that it can be easily shown that with a linear
parameterization and the (sampled) Bellman evaluation
operator, slLSTD indeed reduces to LSTD [13] (this relies
on the fact that the unscented transform is no longer
an approximation for a linear mapping). Notice also that
slLSTD being a projected fixed-point approach, it does
not suffers from the bias problem, even if the observation
noise is assumed to be white (contrary to GPTD/KTD).

B. Stochastic Gradient Descent-based Approaches

Algorithms presented in this section aim at minimizing
the same cost function, that is :

Ji(θ) = argmin
θ∈Rp

i∑
j=1

(
Q̂θ(sj , aj)− Q̂ωθ

(sj , aj)
)2

(26)

with Q̂ωθ
= Π̂T̂ Q̂θ.

However, here a stochastic gradient descent approach is
considered instead of the least-squares approach of the
above section. Algorithms presented in Sec. V-B1, namely
Gradient Temporal Difference 2 (GTD2) and Temporal
Difference with Gradient Correction (TDC) [14], assume
a linear parameterization and the (sampled) Bellman
evaluation operator. Algorithms presented in Sec. V-B2,
namely nonlinear GTD2 (nlGTD2) and nonlinear TD
(nlTDC) [15], extend them to the case of a nonlinear
parameterization. The (linear) TDC algorithm has also
been extended to eligibility traces [16] and to the Bellman
optimality operator [17], these extensions being briefly
presented in Sec. V-B3.

1) Gradient Temporal Difference 2, Temporal Difference
with Gradient Correction: GTD2 and TDC algorithms [14]
aim at minimizing cost function (26) while considering
the Bellman evaluation operator, and they differ on the
route taken to express the gradient followed to perform the
stochastic gradient descent. Both methods rely on a linear

parameterization, and are based on a reworked expression
of the cost function. Let Q̂ be:

Q̂ =
(
Q̂(s1, a1) . . . Q̂(si, ai)

)T
.

Cost function (26) can be rewritten as:

Ji(θ) = ‖Q̂θ − Q̂ωθ
‖2 = (Q̂θ − Q̂ωθ

)T (Q̂θ − Q̂ωθ
). (27)

Let also Φi (respectively Φ′i) be the p × i matrix
which columns are the features φ(sj , aj) (respectively
φ(sj+1, aj+1)):

Φi =
[
φ(s1, a1) . . . φ(si, ai)

]
and Φ′i =

[
φ(s2, a2) . . . φ(si+1, ai+1)

]
.

Let Ri be the set of observed rewards:

Ri =
(
r1 . . . ri

)T
.

As the parameterization is linear and as the Bellman
evaluation is considered, the Q-values and their images
through the sampled operator are given as:

Q̂θ = ΦT
i θ,

T̂ Q̂θ = Ri + γ (Φ′i)
T

θ.

Q̂ωθ
is the projection of T̂ Q̂θ onto the hypothesis space.

Let us write Πi the empirical projection:

Q̂ωθ
= ΦT

i ωθ = ΠiT̂ Q̂θ with Πi = ΦT
i

(
ΦiΦT

i

)−1
Φi.

Cost function (27) can thus be rewritten as:

Ji(θ) =
∥∥∥(

ΦT
i θ −Πi

(
Ri + γ (Φ′i)

T
θ
))∥∥∥2

.

Two basic properties of projection operator are useful
here. First, ΠiΦT

i θ = ΦT
i θ (the hypothesis space is invari-

ant under the projection operator). Second, ΠiΠT
i = Πi.

Using these relationships, the cost can be rewritten as:

Ji(θ) = (ΦT
i θ −Ri − γ(Φ′i)

T θ)T Πi(ΦT
i θ −Ri − γ(Φ′i)

T θ).

Let δj(θ) = rj + γφT
j+1θ − φT

j θ be the temporal difference
error, Ji(θ) is finally given as:

Ji(θ) = (
i∑

j=1

φjδj(θ))T (
i∑

j=1

φjφ
T
j)−1(

i∑
j=1

φjδj(θ)). (28)

Notice that a Gradient Temporal Difference (GTD) algo-
rithm has been first introduced by considering a slightly
different cost function [48]:

J ′i(θ) =

 i∑
j=1

φjδj(θ)

T  i∑
j=1

φjδj(θ)

 .

This explains why the algorithm of [14] is called GTD2.
The negative gradient of cost function (28) is given by:

− 1
2
∇θJi(θ) = (29) i∑

j=1

(φj − γφj+1) φT
j

  i∑
j=1

φjφ
T
j

−1  i∑
j=1

δj(θ)φj

 .

14

In order to avoid a bias problem, a second modifiable
parameter vector ω ∈ Rp is used to form a quasi-stationary
estimate of the term (

∑i
j=1 φjφ

T
j)−1(

∑i
j=1 δj(θ)φj), this

being called the weight-doubling trick. Parameter vector
θ is updated according to a stochastic gradient descent:

θi = θi−1 + αi (φi − γφi+1) φT
i ωi−1.

Their remains to find an update rule for ωi. In order
to obtain a O(p) algorithm, it is also estimated using a
stochastic gradient descent [14]. One can remark that ωi is
actually the solution of a linear least-squares optimization
problem:

ωi =

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

δj(θ)φj

= argmin
ω∈Rp

i∑
j=1

(
φT

j ω − δj(θ)
)2

. (30)

This suggests the following update rule for ωi (minimiza-
tion of Eq. (30) using a stochastic gradient descent):

ωi = ωi−1 + βiφi

(
δi(θi−1)− φT

i ωi−1

)
.

Learning rates satisfy the classical stochastic approxi-
mation criterion. Moreover, they are chosen such that
βi = ηαi with η > 0. The GTD2 algorithm is thus:

θi = θi−1 + αi (φi − γφi+1) φT
i ωi−1,

ωi = ωi−1 + βiφi

(
δi(θi−1)− φT

i ωi−1

)
,

with δi(θ) = ri + γφT
i+1θ − φT

i θ.

Under some assumptions, this algorithm can be shown
to be convergent to the fixed point of ΠT [14]. Notice
that if this algorithm is derived from the gradient of an
objective function, it is not a true stochastic gradient
method, because the expected weight update direction
may differ from the direction of the negative gradient of
the objective function (it is a pseudo-gradient method) [4].

By expressing the gradient in a slightly different way,
another algorithm called TDC can be derived. Rewrites
Eq. (29):

− 1
2
∇θJi(θ) =

 i∑
j=1

δj(θ)φj


− γ

 i∑
j=1

φj+1φ
T
j

  i∑
j=1

φjφ
T
j

−1  i∑
j=1

δj(θ)φj

 .

This gives rise to the following update for θ, ω being
updated as before:

θi = θi−1 + αiφiδi(θi−1)− αiγφi+1φ
T
i ωi−1.

This algorithm is called TD with gradient correction
because the first term, αiφiδi(θi−1), is the same as for
TD with function approximation (see Sec. III-A) under a
linear function approximation architecture, and the second
term, −αiγφi+1φ

T
i ωi−1, acts as a correction. For TDC,

learning rates αi and βi are chosen such as satisfying the
classic stochastic approximation criterion, and such that
limi→∞

αi

βi
= 0. This means that θi is updated on a slower

time-scale. The idea behind this is that ωi should look
stationary from the θi point of view. The TDC algorithm
can be summarized as follows:

θi = θi−1 + αiφiδi(θi−1)− αiγφi+1φ
T
i ωi−1,

ωi = ωi−1 + βiφi

(
δi(θi−1)− φT

i ωi−1

)
,

with δi(θ) = ri + γφT
i+1θ − φT

i θ.

This algorithm can also be shown to be convergent (also
to ΠT) under some assumptions [14].

2) Nonlinear extensions: in [15], GTD2 and TDC are
extended to the case of a general nonlinear parameteriza-
tion Q̂θ, as long as it is differentiable with respect to θ.
The corresponding hypothesis space H = {Q̂θ|θ ∈ Rp}
is a differentiable submanifold onto which projecting is
generally not computationally feasible. One may assume
that the parameter vector θ is slightly updated in one
step (given that learning rate are usually small), which
causes the surface of the submanifold to be close to
linear. Therefore, projection is done onto the tangent plane
defined as T H = {(s, a) ∈ S×A → ωT∇θQ̂θ(s, a)|ω ∈ Rp}
(in other words, linearization of Q̂θ(s, a) by a first order
Taylor expansion). The corresponding projection operator
Πθ

i can be obtained as in Sec. V-B1, the tangent space
being an hyperplane:

Πθ
i =

(
Φθ

i

)T
(
Φθ

i

(
Φθ

i

)T
)−1

Φθ
i ,

with Φθ
i =

[
∇θQ̂θ(s1, a1) . . . ∇θQ̂θ(si, ai).

]
The corresponding cost function can therefore be derived
as in Sec. V-B1, with basically feature vectors φ(s, a)
being replaced by linearized features φθ

j = ∇θQ̂θ(sj , aj),
and by writing δj(θ) the temporal difference error rj +
γQ̂θ(sj+1, aj+1)− Q̂θ(sj , aj):

Ji(θ) = (
i∑

j=1

φθ
jδj(θ))T (

i∑
j=1

φθ
j (φ

θ
j)

T)−1(
i∑

j=1

φθ
jδj(θ)).

The gradient of this cost function is [15]:

− 1
2
∇θJi(θ)

=

 i∑
j=1

(
φθ

j − γφθ
j+1

) (
φθ

j

)T

 ωi + h(θ, ωi) (31)

=
i∑

j=1

δj(θ)φθ
j − γ

 i∑
j=1

φθ
j+1

(
φθ

j

)T

 ωi + h(θ, ωi) (32)

with ωi =

 i∑
j=1

φθ
j

(
φθ

j

)T

−1  i∑
j=1

δj(θ)φθ
j


and h(θ, ω) = −

i∑
j=1

(
δj(θ)−

(
φθ

j

)T
ω
) (
∇2Q̂θ(sj , aj)

)
ω.

15

GTD2 and TDC are generalized to nlGTD2 and nlTDC
using a stochastic gradient descent on the above cost
function. Parameter vector ωi is updated as in Sec. V-B1:

ωi = ωi−1 + βiφ
θi−1
i

(
δi(θi−1)−

(
φ

θi−1
i

)T

ωi−1

)
.

The nonlinear GTD2 algorithm performs a stochastic
gradient descent according to Eq. (31):

θi = θi−1 + αi

((
φ

θi−1
i − γφ

θi−1
i+1

) (
φ

θi−1
i

)T

ωi−1 − hi

)
with

hi =
(

δi(θi−1)−
(
φ

θi−1
i

)T

ωi−1

) (
∇2

θi−1
Q̂θ(si, ai)

)
ωi−1.

Learning rates are chosen as for the TDC algorithm, that
is satisfying the classic stochastic approximation criterion
and such that limi→∞

αi

βi
= 0, which means that θ is

updated on a slower timescale than ω. The nonlinear TDC
algorithm performs a stochastic gradient descent according
to Eq. (32):

θi = θi−1+αi

(
φ

θi−1
i δi(θi−1)− γφ

θi−1
i+1

(
φ

θi−1
i

)T

ωi−1 − hi

)
with

hi =
(

δi(θi−1)−
(
φ

θi−1
i

)T

ωi−1

) (
∇2

θi−1
Q̂θ(si, ai)

)
ωi−1.

Learning rates are chosen as above. Both nlGTD2 and
nlTDC can be shown to be convergent to an undefined
local minimum under some assumptions [15].

3) Extensions of TDC: the TDC algorithm (see
Sec. V-B1) has been extended to eligibility traces in [16].
Moreover, this algorithm, called GQ(λ), allows off-policy
learning, that is learning the value of one target pol-
icy while following another behaviorial policy. This new
algorithm (for which some convergence guarantees are
provided) still minimizes the empirical cost function linked
to (15). However, instead of the Tπ Bellman operator
considered so far, an eligibility-based Tπ

λ operator is used
(λ being the eligibility factor), this operator being defined
as the expected λ-return. See [16] for more details. Using
eligibility traces induce a memory effect which prevents
from learning in an off-policy manner without caution,
see [35] for example. To cope with this problem, impor-
tance sampling [49] is used in [16] (the idea of using
importance sampling for value function approximation
having been first introduced in [35]). They present GQ(λ)
as an extension of Q-learning, which can be misleading.
Actually, they consider off-policy learning (with a known
and fixed target policy), but not the Bellman optimality
operator.

Nevertheless, the TDC algorithm has also been ex-
tended to this operator [17] (this new algorithm being
called Greedy-GQ). To do so, they consider the Bellman
evaluation operator Tπθ for a policy πθ which depends
on the currently estimated action-value function (through
parameters θ). Therefore, the considered policy is non-
stationary (it evolves with parameters’ estimation). If πθ is

greedy with respect to the learnt value function, then it is
equivalent to considering the Bellman optimality operator.
However, in this case, there are some non-differentiability
problems (due to the max operator), and Fréchet subdif-
ferentials are used to provide the algorithm [17]. A conver-
gence analysis for these algorithms is also provided [17].

C. Iterative projected fixed point
Methods presented so far in Sec. V aim at minimizing

the distance between the action-value function and the
projection of the image of this function under a Bellman
operator onto the hypothesis space:

J(θ) = ‖Q̂θ −ΠTQ̂θ‖2.

This can be interpreted as trying to find a fixed-point of
the operator ΠT , which is the composition of the projec-
tion operator Π and of one of the Bellman operator T .
Assuming that this operator is a contraction (which is not
always the case, it depends on the projection operator),
there exists a unique fixed-point which can be found by
iterating the application of the ΠT operator:

Q̂θi = ΠTQ̂θi−1 .

Methods presented in this section adopt this point of view
to provide algorithms.

1) Fitted-Q: Fitted-Q is a batch algorithm. It assumes
that a set of N transitions is available beforehand:

{(sj , aj , rj , sj+1, aj+1)}1≤j≤N .

An initial Q-function Q̂θ0 is considered, and estimates are
refined by iterating the (sampled) ΠT operator:

Q̂θi = Π̂T̂ Q̂θi−1 , ∀i > 0.

Some important comments have to be made here. A sam-
pled Bellman operator is used, because as usual transition
probabilities are unknown. Most of time, fitted-Q suggests
the sampled Bellman optimality operator, but this ap-
proach is of course still valid for the sampled Bellman
evaluation operator. The Π operator indeed represents
any supervised learning algorithm (which can be more
or less directly seen as a projection). Notice that the
representation of the estimated action-value function is not
necessarily parametric (e.g., using a tree-based supervised
learning algorithm [21]).

A practical example is given now. Assume that at
iteration i the estimate Q̂θi−1 is available. A first thing
is to compute the image of this estimate through the
sampled Bellman (here optimality) operator. This con-
sists in computing the following training base, com-
posed of state-action couples and estimated optimal Q-
values: {(sj , aj , rj + γ maxa∈A Q̂θi−1(sj+1, a))}1≤j≤N . A
supervised learning algorithm is then used on this set,
associating inputs (sj , aj) to estimated outputs rj +
γ maxa∈A Q̂θi−1(sj+1, a). This iteration is repeated until
a stopping criterion is met (e.g., a maximum number of
steps or little changes in the representation).

16

The fitted-Q idea probably dates back to [50]. Its
convergence properties have been analyzed in [20], who
reasons on the contraction property of the ΠT operator.
In [51], its performance bounds in `p norm is analyzed.
This is particularly judicious: if performance bounds of
supervised learning algorithms are very often analyzed in
`p norm, this is not the case for (approximate) dynamic
programming which is most of the time analyzed in `∞
norm. Fitted-Q has been considered with many different
function approximators. For example, see [52] for fitted-Q
with a kernel-based regression, [53] for fitted-Q with neural
networks trained by backpropagation or [21] for fitted-Q
with tree-based methods.

2) Least-Squares Policy Evaluation: The least-squares
policy evaluation (LSPE) algorithm has been proposed7

in [18]. It is directly introduced using the concept of
eligibility traces, but this aspect is left apart in this
article. The LSPE algorithm can be roughly seen as a
fitted-Q algorithm using a linear parameterization, the
(sampled) Bellman evaluation operator and for which a
new training sample is added to the training set at each
iteration. Thanks to linearity (linear parameterization and
evaluation operator), an efficient online algorithm can be
obtained.

The LSPE algorithm solves recursively Q̂θi = ΠiT̂ Q̂θi−1 ,
the Πi projection operator being defined in Sec. V-B1.
Given linearity, this can be rewritten as:

θi = argmin
θ∈Rp

i∑
j=1

(
φT

j θ − rj − γφT
j+1θi−1

)2

=

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

φj

(
rj + γφT

j+1θi−1

)
= θi−1 + (

i∑
j=1

φjφ
T
j)−1

i∑
j=1

φj(rj − (φj − γφj+1)T θi−1).

All terms involved can be computed recursively and effi-
ciently, using notably the Sherman-Morrison formula:

B−1
i =

 i∑
j=1

φjφ
T
j

−1

= B−1
i−1 −

B−1
i−1φiφ

T
i B−1

i−1

1 + φT
i B−1

i−1φi

,

Ai =
i∑

j=1

φj (φj − γφj+1)
T = Ai−1 + φi (φi − γφi+1)

T
,

bi =
i∑

j=1

φjrj = bi−1 + φiri.

The LSPE update can therefore be expressed in a form
close to a Widrow-Hoff update:

θi = θi−1 + B−1
i (bi −Aiθi−1) .

7Actually, if the name LSPE has been introduced in [18] (in a
multistep value-iteration context), the related algorithm has first
been introduced in [54], where it is built upon λ-policy-iteration.

Actually, the way LSPE is presented here differs from [18]
in the sense that the B−1

i matrix is originally scaled with
a learning rate. The algorithm presented here is the case
where the learning rate is chosen constant and equal to
one. This algorithm (with a constant learning rate equal
to one) is shown to be convergent in [55]. Notice that ideas
behind LSPE have other applications [56] and can also be
linked to variational inequalities [57].

3) Q-learning for optimal stopping problems: The Q-
learning for optimal stopping problems (Q-OSP) [19] ex-
tends LSPE to the (sampled) Bellman optimality operator,
the parameterization being still linear. This algorithm is
originally presented in the case of optimal stopping prob-
lems, which are a restrictive class of Markovian decision
processes. However, it is presented here in the general case.

The derivation of this algorithm is the same as for the
LSPE one, by considering the optimality operator instead
of the evaluation one:

θi = argmin
θ∈Rp

i∑
j=1

(
φT

j θ − rj − γ max
a∈A

(
φ(sj+1, a)T θi−1

))

=

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

(
rj + γ max

a∈A

(
φ(sj+1, a)T θi−1

))
.

The matrix (
∑i

j=1 φjφ
T
j)−1 can still be computed recur-

sively and efficiently. However, this is not the case for
the term

∑i
j=1(rj + γ maxa∈A(φ(sj+1, a)T θi−1)) which

requires remembering the whole trajectory and needs to
be computed at each iteration. In [19] this algorithm is
shown to be convergent for optimal stopping problems and
under some assumptions, and some more computationally
efficient variations for the same restrictive class of MDPs
are also proposed.

D. Summary

Projected fixed-point approaches seek at estimating a
fixed-point of the composed operator ΠT , Π being the
projection onto the hypothesis space H and T being one of
the Bellman operator. This fixed-point can be computed
directly, which corresponds to minimizing ‖Q̂θ−ΠTQ̂θ‖2.
The associated optimization problem is given by:

θi = argmin
ω∈Rp

i∑
j=1

(
Q̂ω(sj , aj)− T̂jQ̂θi

)2

.

This is Eq. (5) instantiated with ξ = θi. If solved with
a recursive least-squares approach, it gives the LSTD
algorithm (or its statistical-linearization-based generaliza-
tion). If solved using a stochastic gradient descent, it can
provide GTD2 and TDC as well as their generalization
to nonlinear parametrization, and their extensions to off-
policy learning and to the Bellman optimality operator
(GQ(λ) and greedy GQ).

Other approaches search for this fixed point using an
iterative method: Q̂θi

= ΠTQ̂θi−1 . The corresponding

17

optimization problem is:

θi = argmin
ω∈Rp

i∑
j=1

(
Q̂ω(sj , aj)− T̂jQ̂θi−1

)2

.

This is Eq. (5) instantiated with ξ = θi−1. Solved using
a least-squares approach, it provides LSPE or Q-OSP,
given what Bellman operator is considered. In a batch
setting and using any supervised learning algorithm as the
projection, it is fitted-Q. See the third column of Tab. I.

VI. Control
The ultimate goal of reinforcement learning is the con-

trol problem, that is computing an optimal control policy.
We show here how the studied value function approxima-
tors integrate in the more general control problem.

A. Batch learning
Assume that a set of trajectories, sampled according to

some (explorative enough) behaviorial policy, is available.
In a batch setting, the aim is to estimate an optimal policy
from the available data. To do so, approximate dynamic
programming (ADP) can be used.

Approximate policy iteration (API) is generally speak-
ing a policy iteration scheme where the policy evaluation
step is approximated. API is initialized with some policy
π0. At each time step k, policy πk is evaluated using
any approximate policy evaluation algorithm fed with the
available data (that is, any action-value function approxi-
mator based on the Bellman evaluation operator and used
in an off-policy setting, as explained in Sec. III-A2). This
gives an estimate Q̂πk

θ , which is used to improve the policy:
πk+1(s) = argmaxa Q̂πk

θ (s, a), notably for any s in the
dataset. The process iterates until some stopping crite-
rion is satisfied. A classic API algorithm is LSPI (Least-
Squares Policy Iteration) [43], which uses LSTD as the
value function approximator. However, any other policy
evaluation algorithm could be used (TD-Q, GPTD, TDC,
etc.). Notice that instead of working with an imposed
set of data, new trajectories could be generated at each
iteration (generally, using the current estimated policy
slightly perturbed, in order to ensure variety of samples).

Approximate value iteration (AVI) consists in comput-
ing directly an estimate of the optimal value function. Gen-
erally speaking, any value function approximator based
on the Bellman optimality operator (such as Q-learning,
greedy-GQ, KTD or slLSTD for example) can serve as
an AVI algorithm, even if fitted-Q is perhaps best known.
Given the available dataset and a value function approxi-
mator (based on T ∗), an estimate Q̂∗

θ of the optimal action-
value function is computed, and it is used to provide an
estimated optimal policy: π̂∗(s) = argmaxa Q̂∗

θ(s, a).
Notice that other approximate dynamic programming

algorithms exist, such as ADP based on linear program-
ming [58][59], on modified policy iteration [60] or on
conservative policy iteration [61]. However, these do not
necessarily rely on a value function approximation algo-
rithm.

B. Online learning
Assume that the goal is now to learn in an online

fashion, that is improving the policy while interacting
with the system. This can be handled by an asynchronous
API approach: at each time step, the greedy action (with
respect to the currently estimated Q-function) is applied
and the action-value function is updated using any policy
evaluation algorithm (this implies using an online value
function approximator, generally in an on-policy setting).

However, learning online induces a dilemma between
exploration and exploitation and the greedy action should
not be applied at each time step. Instead, from time to
time an explorative action (suboptimal according to the
currently estimated action-value function but with the
potential to improve this estimate) should be chosen. A
classic asynchronous API approach is SARSA: the Q-
function is updated according to the TD-Q algorithm (on-
policy setting) and the applied action is chosen according
to an ε-greedy policy (greedy action with probability
1− ε, random action else). However, any policy evaluation
algorithm could be used instead (such as R-SGD, GPTD,
LSTD, etc.), and other action selection schemes could
be envisioned (such as a Gibbs sampling approach, for
example).

Notice that learning control online induces non-
stationarity problems: as the evaluated policy depends on
the currently estimated Q-function, it actually changes
at each time step, and the value function approximator
should take this into account. If gradient-based policy
evaluation algorithms handle this well, thanks to the use
of a learning rate, this is not the case for least-squares-
based algorithms. A simple solution to this problem is to
add a forgetting factor to the minimized cost function:

θi = argmin
ω∈Rp

i∑
j=1

βi−j
(
T̂jQ̂ξ − Q̂ω(sj , aj)

)2

,

where 0 � β < 1 is the forgetting factor. Notice that
more general schemes for handling non-stationarity are
possible through the original formulation of the KTD
framework [11].

Similarly, it is possible to consider asynchronous AVI.
This is exactly the same approach, replacing the policy
evaluation algorithm by a value function approximator
based on the Bellman optimality operator (this approx-
imator must be able to learn in an online fashion, which
could exclude fitted-Q). Asynchronous AVI tends to be less
cautious than asynchronous API, in the sense that the esti-
mated Q-function do not take into account the explorative
steps of the action selection scheme (this cautious aspect
also depends heavily on the exploration strategy). This is
well illustrated by the cliff-walking task [2, Ch. 6.5].

C. Actor-critic algorithms
The online approaches discussed so far use an explicit

representation for the action-value function, but not for
the policy (which depends explicitly on the Q-function).
Actor-critic methods [62][63][64][65][66] use an explicit

18

representation for both these objects (Q and π). This
approach as several advantages. Notably, it allows con-
sidering in a principled way continuous actions (which are
a problem due to the greedy and the max operators of
other approaches) and it somehow implicitly handles the
dilemma between exploration and exploitation.

Assume that the policy πw is parameterized by some
vector w. Actor-critic algorithms aim at maximizing the
value on a distribution d0 of starting state: find w such
that ρ(w) = Es∼d0 [V

πw] is maximum. This can be done
by performing a gradient ascent (or possibly a natural
gradient ascent [65]): wi+1 = wi + αi∇ρ(wi). Let dπ

denote the so-called discounted stationary distribution,
dπ(s) = (1 − γ)

∑
i≥0 γiP (si = s|s0, π), the gradient

admits an analytical expression [64]:

∇ρ(w) =
1

1− γ
Es∼dπw ,a∼πw(.|s)[Qπw(s, a)∇wπw(a|s)].

Generally speaking, actor-critic approaches maximize ρ
using a (natural) gradient ascent, and the gradient ∇ρ is
estimated using an approximation of the Q-function Qπw

(instead of the unavailable true Q-function).
However, one cannot use any approximation Q̂θ of

Qπw [63][64]. First, Q̂θ must be a “good approximation” of
Qπw (in a least-squares sense, see [64] for details). Second,
the parameterizations of Q̂θ and πw must be “compatible”,
meaning that they should satisfy [63][64]:

∇θQ̂θ(s, a) = ∇w lnπw(a|s).

Therefore, choosing one parameterization imposes the
other.

At this stage, one can remark that if the parameteriza-
tion is compatible, then Ea∼π(.|s)[Q̂θ(s, a)] = 0: Q̂θ is not a
Q-function, but an advantage function (generally defined
as A(s, a) = Q(s, a) − V (s)). Algorithms studied in this
survey do not allow learning directly such a function, and
the literature offers variations of existing algorithms to
learn Q̂θ(s, a) (e.g., see the LSTD-Q variation in [65]).

There is a simple solution to this problem. As shown
in [67], it is possible to replace Qπw by a “good approx-
imation” Q̂θ,ξ(s, a) = fθ(s, a) + gξ(s) with ∇θfθ(s, a) =
∇w lnπw(a|s) (no specific condition on gξ). This way, Q̂θ,ξ

is actually an action-value function (not an advantage
function) and all important theorems of [64][65] can be
shown to hold. Therefore, one can plug its favorite para-
metric policy evaluation algorithm in an actor-critic ap-
proach, see [67] for details. However, notice that if the com-
patibility condition is satisfied, the “good approximation”
condition may not be perfectly satisfied. Nevertheless, it
often works well in practice.

VII. Algorithms comparison

This section aims at comparing surveyed algorithms.
First, alternative taxonomies are provided. Then, we dis-
cuss when choosing what algorithm, depending on the
context. Finally, we give some pointers to the literature,
regarding experimental results.

A. Alternative taxonomies

Surveyed algorithms have been divided into three cate-
gories (bootstrapping, residual and projected fixed-point)
and two subcategories (gradient-based or least-squares-
based). Other taxonomies are possible, as summarized in
Tab. II.

First, they either estimate the action-value function of a
given policy (Qπ) or the optimal Q-function (Q∗) directly.
In the first case, they can be used as the policy evaluation
component of a more general API scheme, as explained
above. In the second case, they provide directly the opti-
mal policy through the estimated Q-function, which is an
AVI scheme. This is depicted as pi/vi in Tab. II (equiv-
alently, pi means that the Bellman evaluation operator
is considered and vi means that the Bellman optimality
operator is considered).

Some of the reviewed algorithms are only defined for lin-
ear parameterization of the action-value function, whereas
others allow considering nonlinear architectures such as
multi-layered neural networks (mainly through a gradient
descent or thanks to a statistical linearization). This is
depicted as l/nl in Tab. II.

A point not discussed so far is the computational (and
memory) complexity of the reviewed algorithms. There
are basically two cases. For stochastic gradient descent-
based algorithms, complexity is in O(p), and for recursive
least-squares-based approach, complexity is in O(p2). No-
tice that for algorithms handling the Bellman optimality
operator, these complexities have to be scaled by the
number of actions (because of the max computation).
Exceptions (to the two aforementioned cases) are fitted-Q
(which complexity depends on the considered supervised
learning scheme) and Q-OSP (which is moreover linear
in the length of the trajectory). Considering the sample
efficiency of these algorithms, second order approaches are
usually more efficient (a notable exception being FPKF,
see [68]).

Lastly, some algorithms produce biased estimates (resid-
ual approaches, if not combined with a double sampling
scheme or with some colored noise), whereas the other
provide unbiased estimates (bootstrapping and projected
fixed-point). This is depicted as b/ub in Tab. II. We
also recall how ξ is instantiated (see Eq. (5)) and if the
algorithm is based on a stochastic gradient descent (sgd)
or a recursive least-squares (rls) approach.

B. Which algorithm to choose?

One can wonder when choosing what algorithm. Unfor-
tunately, there is no easy answer to this. Nevertheless, we
try to give some clues here.

First, one may choose between (asynchronous) API and
AVI. We think that the choice between an online and a
batch learning algorithm (that is asynchronous or not)
is more linked to the studied problem than a real choice
(is the data imposed? can we sample easily trajectories?).
Choosing between API and AVI is a matter of taste (as

19

policy iteration (pi) linear (l) computational biased (b) ξ stoch. grad. descent (sgd)
value iteration (vi) non-linear (nl) complexity unbiased (ub) (see Eq. (5)) rec. least-squares (rls)

TD-Q pi l/nl O(p) ub θj−1 sgd
Q-learning vi l/nl O(p) ub θj−1 sgd
FPKF pi/vi l O(p2) ub θj−1 rls
R-SGD pi l/nl O(p) b ω sgd
GPTD pi l O(p2) b ω rls
KTD pi/vi l/nl O(p2) b ω rls
GTD2/TDC pi l/nl O(p) ub θi sgd
Greedy-GQ vi l O(p) ub θi sgd
LSTD pi l O(p2) ub θi rls
slLSTD pi/vi l/nl O(p2) ub θi rls
LSPE pi l O(p2) ub θi−1 rls
Q-OSP vi l * ub θi−1 rls
fitted-Q vi l/nl ** ub θi−1 **

TABLE II
Algorithm properties.

far as we know, there is no definitive argument in favor of
one or the other).

Second, one can choose between a residual and a
bootstrapping or a projected fixed-point approach (boot-
strapping and projected fixed-point approaches converge
to the same limit, when convergence occurs). Residual
approaches are more stable and more predictable [69],
but they suffer from the bias problem (which disappears
when the transitions are deterministic). Other arguments
in favor of each approach (residual vs projected fixed-
point) are developed in [70]. Therefore, if the dynamic
is (near-) deterministic (or even Lipschitz from our own
experience), then a residual method could be chosen (sta-
bility argument), else a projected fixed-point or bootstrap
approach must be preferred.

If the residual approach is rejected, there is still the
choice between bootstrapping and projected fixed-point
approaches. Generally speaking, gradient-based boot-
strapping algorithms offer less theoretical guarantees than
their projected fixed-point counterparts, but they empir-
ically learn faster and tuning meta-parameters is eas-
ier. This is no longer true for the least-squares-based
algorithms: FPKF is much slower than LSTD (due to
the bootstrapping), and they provide the same solution
asymptotically.

Then, one can choose between a gradient-based and
a least-squares based approach. Least-squares approaches
are more sample efficient (which can be theoretically
argued in some cases, see for example the finite sample
analysis of LSTD [71]), but they also have a higher
computational cost. So this choice is a trade-off between
sample efficiency and computational cost. If samples are
costly to generate or imposed, we advocate to use a least-
squares approach. In the other hand, if there are many
features (thus many parameters to be learnt) and if the
transitions are easy to generate, gradient-based methods
may be preferred.

We have provided a unified derivation of surveyed al-
gorithms, but most of them were introduced differently
than in their original derivation. Notably, concerning
GPTD [10] and KTD [11], the parameter vector to be
learnt is modeled as a random variable of which mean

and variance are estimated8. Therefore, during learning,
uncertainty information about parameters estimates is
available. This can be used to compute some variance
about the estimated action-value function, for any state-
action couple. This can be useful for solving the dilemma
between exploration and exploitation (for example, it may
be interesting to choose an action with a low estimated
value if this estimate is uncertain or adopt an optimistic
action selection). See [41] for a discussion on this subject.
The same idea can be adapted to (sl)LSTD, less directly,
see [13] for details.

One can also choose between linear and nonliear pa-
rameterization. If good linear features are available, it is
certainly better to use them, thus to choose a linear para-
metric value function approximator. However, sometimes
a multi-layered artificial neural network can provide bet-
ter results (generally speaking, the underlying hypothesis
space may be richer). In this case, one has to choose an RL
algorithm able to handle such nonlinearities. Notice that
the only algorithms to come with theoretical guarantees
in the nonlinear case are nlTDC and nlGTD2 (but KTD
and slLSTD work well in practice, and learn faster, but at
a higher computational cost).

Last but not least, the ease of implementation (or the
availability of some library) and the ease of choosing
the meta-parameters can also drive the choice of the
algorithm. Generally speaking, linear-least-squares-based
algorithms are easier to tune (there is no learning rate).

C. Experimental comparisons
Another point not addressed so far in this article is the

thorough experimental comparison of the reviewed algo-
rithms. This is beyond the scope of this algorithmic survey,
but Tab. III provides links to the literature, showing where
a comparison between algorithm X and algorithm Y can
be found (often within a control scheme). This table can
be read line by line. Please notice that this does not
pretend to be exhaustive (for example, there are some
application papers, notably for dialogue management in
spoken dialog systems, but not all of them are reported).

8What allows us deriving it differently here is the close link be-
tween recursive least-squares, Kalman filtering and Bayesian filtering.

20

gradBoot FPKF GPTD KTD gradPFP LSTD slLSTD fitted-Q
gradBoot [2][27][35] [8][68] [68] [11][40][72] [14][15][17] [12][43][73][68] [13] [21]
FPKF [8][68] [68] [68]
gradRes [9]
GPTD [68] [68] [10][25][34][42] [11][74] [10][75][68]
KTD [11][40][72] [11][74] [11][76] [11][40][41][72] [13] [72]
gradPFP [14][15][17] [14][15] [13]
LSTD [12][43][73][68] [68] [10][75][68] [11][40][41][72] [43] [13] [21][77]
slLSTD [13] [13] [13] [13]
itPFP [54][68] [68] [68] [68]
fitted-Q [21] [72] [21][77] [20][21][51][53]

TABLE III
Links to Experimental Comparisons.

In the table, gradBoot refers to gradient-based bootstrap-
ping algorithms (TD-V, TD-Q, Q-learning), gradRes refers
to gradient-based residual algorithms (R-SGD), gradPFP
refers to gradient-based projected-fixed-point approaches
(GTD2, TDC and greedy-GQ) and itPFP refers to iterated
fixed-point algorithms (LSPE and Q-OSP, fitted-Q being
left appart). If an algorithm is compared to itself in
the table, it means either that it is actually a group of
algorithms (as gradBoot for example) or that the paper
contains some illustrative example (as the illustration of
the variance information provided by the GPTD algorithm
in [10]) or some problem-specific experiment/large-scale
application.

VIII. Other value function approximators

This article surveys parametric value function approx-
imators, but there exist other ways to estimate a value
function. Some of them are briefly mentioned hereafter.

A. Extension to eligibility traces
TD learning with eligibility traces [2], known as TD(λ),

provides a nice bridge between temporal difference learn-
ing and Monte Carlo learning, and by controlling the
bias/variance trade-off [78], their use can significantly
speed up learning. When the value function is approxi-
mated through a linear architecture, the depth λ of the
eligibility traces is also known to control the quality of
approximation [26].

Using eligibility traces amounts to looking for the fixed-
point of the following variation of the Bellman operator [1]
(here we assume a fixed policy, that is the evaluation
problem): TλV = (1 − λ)

∑∞
i=0 λiT i+1V . As we have

introduced a sampled Bellman operator to derive surveyed
algorithms, the same can be done for this Tλ operator. For
a partial trajectory (sk, rk, sk+1)j≤k≤i−1, we define T̂λ

j,i the
sampled and truncated operator (e.g., see [68]):

T̂λ
j,iV = V (sj) +

i∑
k=j

(γλ)k−j(rk + γV (sk+1)− V (sk)).

This being defined, the work done in this survey can be
repeated by replacing T̂j by T̂λ

j,i in Eq. (5):

θi = argmin
ω∈Rp

i∑
j=1

(
T̂λ

j,iV̂ξ − V̂ω(sj , aj)
)2

.

Notice that this only holds for the evaluation problem (the
Bellman optimality operator is not considered) and in the
on-policy case. To handle the off-policy case, it is necessary
to use also importance sampling. See [68][79], where this
approach is used to derive new off-policy least-squares-
based and eligibility-traces-based algorithms.

B. Nonparametric approaches

Given an approximation architecture, this survey has
shown that there exists a bunch of approaches to learn
the corresponding parameters. However, choosing a judi-
cious hypothesis space is highly problem-dependent and
it is generally a difficult issue. Therefore, we think that
research fields such as feature construction, feature se-
lection, or more generally non-parametric value function
approximation are of primary importance.

The GPTD algorithm [25] is kernel-based and non-
parametric in its more general form (not presented here).
Using the same idea (that is constructing the span of
the feature space implicitly defined by a Mercer kernel),
the LSTD algorithm has been kernelized [80] as well
as the LSPE algorithm [81]. More generally, kernelized
approaches to value function approximation are discussed
in [82].

Feature selection via `1-regularization has also been en-
visioned for non-parametric value function approximation:
adding an `1-penalty term imposes some parameters to be
exactly zero, which allows handling the case p � n (much
more features than samples). Adding such a penalty term
to value function approximation is not straightforward and
there are many ways to do it. See [83] for an approach
based on residual minimization and [84][85][86][87][88] for
approaches based on projected fixed-point ([88] provides
a synthetic overview of these methods).

Another approach consists in generating features, based
on the Bellman error [89][90][91][92][93] or upon graph
structure built from observed trajectories through the
state space [94]. State aggregation (e.g., [95][96]) can also
be seen as a feature generation scheme. Other methods
are based on local averagers or kernel smoothers (usually
Nadaraya-Watson-like estimators) [52][97][98]. These are
examples among others, this general topic would deserve
another survey.

21

C. Other criteria
In this article, the quality of a policy is quantified by

the value function defined as the expected discounted
cumulative reward, V π(s) = E[

∑
i≥0 γiri|s0 = s, π].

Other criteria can be envisioned, such as the finite hori-
zon criterion (and the value function is then V π(s) =
E[

∑H
i=0 ri|s0 = s, π] for some predefined horizon H) or the

average-reward criterion (for which the value function is
defined as V π(s) = limH→∞

1
H E[

∑H
i=0 ri|s0 = s, π]). The

γ-discounted criterion considered in this article is probably
the most frequently used in the literature, but notice that
the work done here cannot be directly adapted to the other
criteria.

IX. Conclusion
This article has reviewed a large part of the state of the

art in parametric (action-) value function approximation.
Basically, it has been shown that all these approaches can
be derived from the unified cost function (5). Further, they
can be categorized in three main classes, given the consid-
ered cost function (related to bootstrapping, residual or
projected fixed-point). In each of these groups, they can be
categorized given that the cost function is minimized using
a stochastic gradient descent or a recursive least-squares
approach (except fitted-Q, which can be considered with
any supervised learning algorithm). Projected fixed-point
approaches can be divided into two approaches, given
that the cost function is directly minimized or that the
underlying possible fixed-point is searched for using an
iterative scheme. All of this is summarized in Tab. I on
Page 5. Sec. VI to VIII have given clues on how the
surveyed value function approximators can be used for
control, how they can be compared and what are other
possible (not covered) approaches for estimating a value
function.

Acknowledgments
The authors would like to thank Jérémy Fix and Bruno

Scherrer for proofreading earlier versions of this article,
as well as the anonymous reviewers for useful comments
and suggestions. This research was partly funded by the
EU FP7 FET project ILHAIRE (grant n◦270780) and the
Région Lorraine (France).

References
[1] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Pro-

gramming (Optimization and Neural Computation Series, 3).
Athena Scientific, 1996.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 3rd ed. The MIT Press, March 1998.

[3] O. Sigaud and O. Buffet, Eds., Markov Decision Processes and
Artificial Intelligence. Wiley - ISTE, 2010.

[4] C. Szepesvári, Algorithms for Reinforcement Learning. Morgan
and Claypool, 2010.

[5] M. Wiering and M. van Otterlo, Reinforcement Learning: State
Of the Art. Springer, 2012.

[6] L. Bușoniu, R. Babuška, B. De Schutter, and D. Ernst, Rein-
forcement Learning and Dynamic Programming Using Function
Approximators. CRC Press, 2010.

[7] W. Powell, Approximate Dynamic Programming: Solving the
Curses of Dimensionality. Wiley, 2007.

[8] D. Choi and B. Van Roy, “A Generalized Kalman Filter for
Fixed Point Approximation and Efficient Temporal-Difference
Learning,” Discrete Event Dynamic Systems, vol. 16, pp. 207–
239, 2006.

[9] L. C. Baird, “Residual Algorithms: Reinforcement Learning
with Function Approximation,” in International Conference on
Machine Learning (ICML), 1995, pp. 30–37.

[10] Y. Engel, “Algorithms and Representations for Reinforcement
Learning,” Ph.D. dissertation, Hebrew University, April 2005.

[11] M. Geist and O. Pietquin, “Kalman Temporal Differences,”
Journal of Artificial Intelligence Research (JAIR), 2010.

[12] S. J. Bradtke and A. G. Barto, “Linear Least-Squares algorithms
for temporal difference learning,” Machine Learning, vol. 22, no.
1-3, pp. 33–57, 1996.

[13] M. Geist and O. Pietquin, “Statistically Linearized Least-
Squares Temporal Differences,” in IEEE International Confer-
ence on Ultra Modern Control Systems (ICUMT). Moscow
(Russia): IEEE, October 2010.

[14] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora, “Fast gradient-descent meth-
ods for temporal-difference learning with linear function ap-
proximation,” in International Conference on Machine Learning
(ICML). New York, NY, USA: ACM, 2009, pp. 993–1000.

[15] H. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Silver,
and R. S. Sutton, “Convergent temporal-difference learning
with arbitrary smooth function approximation,” in Advances
in Neural Information Processing Systems (NIPS), Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta,
Eds., 2009, pp. 1204–1212.

[16] H. R. Maei and R. S. Sutton, “GQ(λ): a general gradient
algorithm for temporal-differences prediction learning with eli-
gibility traces,” in Conference on Artificial General Intelligence,
2010.

[17] H. R. Maei, C. Szepesvari, S. Bhatnagar, and R. S. Sutton,
“Toward Off-Policy Learning Control with Function Approx-
imation,” in International Conference on Machine Learning
(ICML), 2010.

[18] A. Nedić and D. P. Bertsekas, “Least Squares Policy Evalua-
tion Algorithms with Linear Function Approximation,” Discrete
Event Dynamic Systems: Theory and Applications, vol. 13, pp.
79–110, 2003.

[19] H. Yu and D. P. Bertsekas, “Q-Learning Algorithms for Opti-
mal Stopping Based on Least Squares,” in European Control
Conference, Kos, Greece, 2007.

[20] G. Gordon, “Stable Function Approximation in Dynamic Pro-
gramming,” in International Conference on Machine Learning
(IMCL), 1995.

[21] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-Based Batch
Mode Reinforcement Learning,” Journal of Machine Learning
Research, vol. 6, pp. 503–556, 2005.

[22] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[23] G. A. Rummery and M. Niranjan, “Online q-learning us-
ing connectionist systems,” Cambridge University, Tech. Rep.
CUED/F-INFENG/TR 166, 1994.

[24] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, pp. 279–292, 1992.

[25] Y. Engel, S. Mannor, and R. Meir, “Bayes Meets Bellman: The
Gaussian Process Approach to Temporal Difference Learning,”
in International Conference on Machine Learning (ICML),
2003, pp. 154–161.

[26] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-
difference learning with function approximation,” IEEE Trans-
actions on Automatic Control, vol. 42, 1997.

[27] G. Tesauro, “Temporal Difference Learning and TD-Gammon,”
Communications of the ACM, vol. 38, no. 3, March 1995.

[28] H. van Seĳen, H. van Hasselt, S. Whiteson, and M. Wiering, “A
Theoretical and Empirical Analysis of Expected Sarsa,” in IEEE
International Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), 2009.

[29] H. Yu, “Least Squares Temporal Difference Methods: An Anal-
ysis Under General Conditions,” University of Helsinki, Tech.
report C-2010-39, 2010.

[30] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of
reinforcement learning with function approximation,” in Inter-
national Conference on Machine Learning (ICML), 2009, pp.
664–671.

22

[31] A. Antos, C. Szepesvári, and R. Munos, “Learning near-optimal
policies with Bellman-residual minimization based fitted policy
iteration and a single sample path,” Machine Learning, vol. 71,
no. 1, pp. 89–129, 2008.

[32] A. Kruger, “On Fréchet subdifferentials,” Journal of Mathemat-
ical Sciences, vol. 116, pp. 3325–3358, 2003.

[33] T. W. Anderson, An Introduction to Multivariate Statistical
Analysis. Wiley, 1984.

[34] Y. Engel, S. Mannor, and R. Meir, “Reinforcement Learning
with Gaussian Processes,” in International Conference on Ma-
chine Learning (ICML), 2005.

[35] D. Precup, R. S. Sutton, and S. P. Singh, “Eligibility Traces for
Off-Policy Policy Evaluation,” in International Conference on
Machine Learning (ICML). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2000, pp. 759–766.

[36] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman
filter to nonlinear systems,” in Int. Symp. Aerospace/Defense
Sensing, Simul. and Controls 3, 1997.

[37] S. J. Julier, “The scaled unscented transformation,” in Ameri-
can Control Conference, vol. 6, 2002, pp. 4555–4559.

[38] P. M. Nørgård, N. Poulsen, and O. Ravn, “New developments
in state estimation for nonlinear systems,” Automatica, vol. 36,
no. 11, pp. 1627–1638, 2000.

[39] R. van der Merwe, “Sigma-point kalman filters for probabilistic
inference in dynamic state-space models,” Ph.D. dissertation,
OGI School of Science & Engineering, Oregon Health & Science
University, Portland, OR, USA, April 2004.

[40] M. Geist and O. Pietquin, “Eligibility Traces through Colored
Noises,” in IEEE International Conference on Ultra Modern
Control Systems (ICUMT). Moscow (Russia): IEEE, October
2010.

[41] ——, “Managing Uncertainty within the KTD framework,” in
Active Learning and Experimental Design Workshop (collocated
with AISTATS 2010), ser. Journal of Machine Learning Re-
search - Workshop and Conference Proceedings, Sardinia, Italy,
2010.

[42] L. Daubigney, M. Gasic, S. Chandramohan, M. Geist,
O. Pietquin, and S. Young, “Uncertainty management for on-
line optimisation of a POMDP-based large-scale spoken dia-
logue system,” in Annual Conference of the International Speech
Communication Association (Interspeech), Florence (Italy),
August 2011, pp. 1301–1304.

[43] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,”
Journal of Machine Learning Research, vol. 4, pp. 1107–1149,
2003.

[44] T. Söderström and P. Stoica, “Instrumental variable methods
for system identification,” Circuits, Systems, and Signal Pro-
cessing, vol. 21, pp. 1–9, 2002.

[45] A. Geramifard, M. Bowling, and R. S. Sutton, “Incremental
Least-Squares Temporal Difference Learning,” in Conference of
American Association for Artificial Intelligence (AAAI), 2006,
pp. 356–361.

[46] J. Johns, M. Petrik, and S. Mahadevan, “Hybrid least-squares
algorithms for approximate policy evaluation,” Machine learn-
ing, 2009.

[47] M. Geist and O. Pietquin, “Statistically Linearized Recursive
Least Squares,” in IEEE International Workshop on Machine
Learning for Signal Processing (MLSP). Kittilä (Finland):
IEEE, 2010.

[48] R. S. Sutton, C. Szepesvari, and H. R. Maei, “A Convergent
O(n) Algorithm for Off-policy Temporal-difference Learning
with Linear Function Approximation,” in Advances in Neural
Information Processing Systems (NIPS), Vancouver, BC, 2008.

[49] B. D. Ripley, Stochastic Simulation. Wiley & Sons, 1987.
[50] A. Samuel, “Some studies in machine learning using the game

of checkers,” IBM Journal on Research and Development, pp.
210–229, 1959.

[51] R. Munos, “Performance Bounds in Lp norm for Approximate
Value Iteration,” SIAM Journal on Control and Optimization,
2007.

[52] D. Ormoneit and S. Sen, “Kernel-Based Reinforcement Learn-
ing,” Machine Learning, vol. 49, pp. 161–178, 2002.

[53] M. Riedmiller, “Neural Fitted Q Iteration - First Experiences
with a Data Efficient Neural Reinforcement Learning Method ,”
in European Conference on Machine Learning (ECML), 2005.

[54] D. P. Bertsekas and S. Ioffe, “Temporal Differences-Based Policy
Iteration and Applications in Neuro-Dynamic Programming,”
Labs for Information and Decision Systems, MIT, Tech. Rep.
LIDS-P-2349, 1996.

[55] D. P. Bertsekas, V. Borkar, and A. Nedic, Learning and Ap-
proximate Dynamic Programming. IEEE Press, 2004, ch.
Improved Temporal Difference Methods with Linear Function
Approximation, pp. 231–235.

[56] D. P. Bertsekas and H. Yu, “Projected Equation Methods for
Approximate Solution of Large Linear Systems,” Journal of
Computational and Applied Mathematics, vol. 227, pp. 27–50,
2007.

[57] D. P. Bertsekas, “Projected Equations, Variational Inequalities,
and Temporal Difference Methods,” in IEEE International Sym-
posium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), 2009.

[58] D. P. de Farias and B. V. Roy, “The Linear Programming
Approach to Approximate Dynamic Programming,” Operations
Research, vol. 51, no. 6, pp. 850–865, 2003.

[59] V. V. Desai, V. F. Farias, and C. C. Moallemi, “The Smoothed
Approximate Linear Program,” in Advances in Neural Informa-
tion Processing Systems (NIPS), 2009.

[60] B. Scherrer, V. Gabillon, M. Ghavamzadeh, and M. Geist,
“Approximate Modified Policy Iteration,” in International Con-
ference on Machine Learning (ICML), 2012.

[61] S. Kakade and J. Langford, “Approximately optimal approxi-
mate reinforcement learning,” in International Conference on
Machine Learning (ICML), 2002.

[62] A. Barto, R. Sutton, and C. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,”
IEEE Transactions on System, Man, and Cybernetics, vol. 13,
pp. 834–846, 1983.

[63] V. R. Konda and J. N. Tsitsiklis, “On Actor-Critic Algorithms,”
SIAM Journal on Control and Optimization, vol. 42, no. 4, pp.
1143–1166, 2003.

[64] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy Gradient Methods for Reinforcement Learning with
Function Approximation,” in Neural Information Processing
Systems (NIPS), 1999, pp. 1057–1063.

[65] J. Peters and S. Schaal, “Natural Actor-Critic,” Neurocomput-
ing, vol. 71, pp. 1180–1190, 2008.

[66] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee,
“Incremental natural actor-critic algorithms,” in Advances in
Neural Information Processing Systems (NIPS), Vancouver,
Canada, 2007.

[67] M. Geist and O. Pietquin, “Revisiting natural actor-critics with
value function approximation,” in International Conference
on Modeling Decisions for Artificial Intelligence (MDAI), ser.
LNAI, vol. 6408. Modeling Decisions for Artificial Intelligence,
2010, pp. 207–218.

[68] B. Scherrer and M. Geist, “Recursive Least-Squares Learning
with Eligibility Traces,” in European Workshop on Reinforce-
ment Learning (EWRL 2011), 2011.

[69] R. Munos, “Error Bounds for Approximate Policy Iteration,” in
International Conference on Machine Learning (ICML), 2003,
pp. 560–567.

[70] B. Scherrer, “Should one compute the Temporal Difference fix
point or minimize the Bellman Residual? The unified oblique
projection view,” in International Conference on Machine
Learning (ICML), 2010.

[71] A. Lazaric, M. Ghavamzadeh, and R. Munos, “Finite-Sample
Analysis of LSTD,” in International Conference on Machine
Learning (ICML), 2010.

[72] O. Pietquin, M. Geist, and S. Chandramohan, “Sample Efficient
On-line Learning of Optimal Dialogue Policies with Kalman
Temporal Differences,” in International Joint Conference on
Artificial Intelligence (ĲCAI), Barcelona, Spain, July 2011, pp.
1878–1883.

[73] J. A. Boyan, “Technical Update: Least-Squares Temporal Differ-
ence Learning,” Machine Learning, vol. 49, no. 2-3, pp. 233–246,
1999.

[74] L. Daubigney, M. Geist, and O. Pietquin, “Off-policy Learn-
ing in Large-scale POMDP-based Dialogue Systems,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). Kyoto (Japan): IEEE, 2012.

23

[75] C. W. Phua and R. Fitch, “Tracking value function dynamics
to improve reinforcement learning with piecewise linear func-
tion approximation,” in International Conference on Machine
Learning (ICML), 2007.

[76] M. Keramati, A. Dezfouli, and P. Piray, “Speed/Accuracy
Trade-Off between the Habitual and the Goal-Directed Pro-
cesses,” PLoS Comput Biol, vol. 7, 05 2011.

[77] O. Pietquin, M. Geist, S. Chandramohan, and H. Frezza-Buet,
“Sample-Efficient Batch Reinforcement Learning for Dialogue
Management Optimization,” ACM Transactions on Speech and
Language Processing, vol. 7, no. 3, pp. 7:1–7:21, 2011.

[78] M. Kearns and S. Singh, “Bias-Variance Error Bounds for Tem-
poral Difference Updates,” in Conference on Learning Theory
(COLT), 2000.

[79] B. Scherrer and M. Geist, “Recursive least-squares off-policy
learning with eligibility traces,” INRIA, Tech. Rep., 2012.

[80] X. Xu, D. Hu, and X. Lu, “Kernel-Based Least Squares Policy
Iteration for Reinforcement Learning,” IEEE Transactions on
Neural Networks, vol. 18, no. 4, pp. 973–992, July 2007.

[81] T. Jung and D. Polani, “Kernelizing LSPE(λ),” in IEEE Sym-
posium on Approximate Dynamic Programming and Reinforce-
ment Learning (ADPRL), 2007, pp. 338–345.

[82] G. Taylor, , and R. Parr, “Kernelized Value Function Approx-
imation for Reinforcement Learning,” in International Confer-
ence on Machine Learning (ICML), 2009.

[83] M. Loth, M. Davy, and P. Preux, “Sparse temporal difference
learning using lasso,” in IEEE International Symposium on Ap-
proximate Dynamic Programming and Reinforcement Learning
(ADPRL), Hawaï, USA, April 2007.

[84] J. Z. Kolter and A. Y. Ng, “Regularization and Feature Selec-
tion in Least-Squares Temporal Difference Learning,” in Inter-
national Conference on Machine Learning (ICML), Montreal
Canada, 2009.

[85] J. Johns, C. Painter-Wakefield, and R. Parr, “Linear Comple-
mentarity for Regularized Policy Evaluation and Improvement,”
in Advances in Neural Information Processing Systems (NIPS),
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta, Eds., 2010, pp. 1009–1017.

[86] M. Geist and B. Scherrer, “`1-penalized projected Bellman
residual,” in European Workshop on Reinforcement Learning
(EWRL), 2011.

[87] M. W. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos,
“Regularized Least Squares Temporal Difference learning with
nested `2 and `1 penalization,” in European Workshop on Re-
inforcement Learning (EWRL), 2011.

[88] M. Geist, B. Scherrer, A. Lazaric, and M. Ghavamzadeh, “A
Dantzig Selector Approach to Temporal Difference Learning,” in
International Conference on Machine Learning (ICML), 2012.

[89] I. Menache, S. Mannor, and N. Shimkin, “Basis Function Adap-
tation in Temporal Difference Reinforcement Learning,” Annals
of Operations Research, vol. 134, no. 1, pp. 215–238, 2005.

[90] P. W. Keller, S. Mannor, and D. Precup, “Automatic basis
function construction for approximate dynamic programming
and reinforcement learning,” in International Conference on
Machine Learning (ICML). New York, NY, USA: ACM Press,
2006, pp. 449–456.

[91] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman, “Analyz-
ing Feature Generation for Value-Function Approximation,” in
International Conference on Machine Learning (ICML), 2007.

[92] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L.
Littman, “An Analysis of Linear Models, Linear Value-
Function Approximation, and Feature Selection for Reinforce-
ment Learning,” in International Conference on Machine Learn-
ing (ICML), Helsinki, Finland, 2008.

[93] J. Wu and R. Givan, “Automatic Induction of Bellman-Error
Features for Probabilistic Planning,” Journal of Artificial Intel-
ligence Research (JAIR), 2010.

[94] S. Mahadevan and M. Maggioni, “Proto-value Functions: A
Laplacian Framework for Learning Representation and Control
in Markov Decision Processes ,” Journal of Machine Learning
Research, vol. 8, pp. 2169–2231, 2007.

[95] D. Bertsekas and D. Castañon, “Adaptive aggregation methods
for infinite horizon dynamic programming,” IEEE Transactions
on Automatic Control, vol. 34, no. 6, pp. 589–598, 1989.

[96] S. Singh, T. Jaakkola, and M. Jordan, “Reinforcement learning
with soft state aggregation,” Advances in neural information
processing systems (NIPS), pp. 361–368, 1995.

[97] J. Ma and W. B. Powell, “Convergence Analysis of Kernel-based
On-policy Approximate Policy Iteration Algorithms for Markov
Decision Processes with Continuous, Multidimensional States
and Actions,” Princeton University, Tech. Rep., 2010.

[98] A. Barreto, D. Precup, and J. Pineau, “Reinforcement learning
using kernel-based stochastic factorization,” in Advances in
Neural Information Processing Systems (NIPS), 2011.

Matthieu Geist obtained an Electrical En-
gineering degree and an Msc degree in Mathe-
matics from Supélec (France), both in Septem-
ber 2006, as well as a PhD degree in Mathe-
matics from the “Université Paul Verlaine de
Metz” (France) in November 2009. From Jan-
uary 2007 to January 2010, he was a member
of the Measure and Control lab (MC cluster) of
ArcelorMittal Research and a member of the
CORIDA project-team of INRIA. In February
2010, he joined the IMS-MaLIS research group

of Supélec as an assistant professor. His research interests include
statistical machine learning (especially reinforcement learning), as
well as applications to spoken dialogue systems. He authored or co-
authored more than 50 publications in these fields.

Olivier Pietquin (M’01 - SM’11) obtained
an Electrical Engineering degree from the Fac-
ulty of Engineering, Mons (FPMs, Belgium) in
June 1999 and a PhD degree in April 2004. In
2011, he received the Habilitation à Diriger
des Recherches (French Tenure) from the Uni-
versity Paul Sabatier (Toulouse, France). He
joined the FPMs Signal Processing depart-
ment (TCTS Lab.) in September 1999. In
2001, he has been a visiting researcher at the
Speech and Hearing lab of the University of

Sheffield (UK). Between 2004 and 2005, he was a Marie-Curie Fellow
at the Philips Research lab in Aachen (Germany). Now he is a
Professor at the Metz campus of the Ecole Supérieure d’Electricité
(Supélec, France). He is also a full member of the UMI 2958 (joint lab
with GeorgiaTech and CNRS) since 2010 where he coordinates the
computer science departments and heads the Machine Learning and
Interactive Systems group. From 2007 to 2011, he was also a member
of the IADI INSERM research team (in biomedical signal processing).
Since 2010, Olivier Pietquin sits at the IEEE Speech and Language
Technical Committee. His research interests include spoken dialog
systems evaluation, simulation and automatic optimisation, machine
learning, speech and signal processing. He authored or co-authored
more than 100 publications in these domains.

