
HAL Id: hal-00869801
https://centralesupelec.hal.science/hal-00869801

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning from Demonstrations: Is It Worth Estimating
a Reward Function?

Bilal Piot, Matthieu Geist, Olivier Pietquin

To cite this version:
Bilal Piot, Matthieu Geist, Olivier Pietquin. Learning from Demonstrations: Is It Worth Estimating
a Reward Function?. Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD 2013), Sep 2013, Prague, Czech Republic. pp.17-32, �10.1007/978-3-642-
40988-2_2�. �hal-00869801�

https://centralesupelec.hal.science/hal-00869801
https://hal.archives-ouvertes.fr

Learning from Demonstrations:
Is It Worth Estimating a Reward Function?

Bilal Piot1,2, Matthieu Geist1, Olivier Pietquin1,2

1 Supélec, IMS-MaLIS Research group, France
{bilal.piot,matthieu.geist,olivier.pietquin}@supelec.fr

2 GeorgiaTech-CNRS UMI 2958, France

Abstract. This paper provides a comparative study between Inverse
Reinforcement Learning (IRL) and Apprenticeship Learning (AL). IRL
and AL are two frameworks, using Markov Decision Processes (MDP),
which are used for the imitation learning problem where an agent tries
to learn from demonstrations of an expert. In the AL framework, the
agent tries to learn the expert policy whereas in the IRL framework,
the agent tries to learn a reward which can explain the behavior of the
expert. This reward is then optimized to imitate the expert. One can
wonder if it is worth estimating such a reward, or if estimating a policy
is sufficient. This quite natural question has not really been addressed
in the literature right now. We provide partial answers, both from a
theoretical and empirical point of view.

1 Introduction

This paper provides a comparative study between two methods, using the
Markov Decision Process (MDP) paradigm, that attempt to solve the imita-
tion learning problem where an agent (called the apprentice) tries to learn from
demonstrations of an expert. These two methods are Apprenticeship Learning
(AL) [1] and Inverse Reinforcement Learning (IRL) [8]. In the AL framework,
the agent tries to learn the expert policy or at least a policy which is as good
as the expert policy (according to an unknown reward function). In the IRL
framework, the agent tries to learn a reward which can explain the behavior of
the expert and which is optimized to imitate it. AL can be reduced to classifica-
tion [7,3,6,11] where the agent tries to mimic the expert policy via a Supervised
Learning (SL) method such as classification. There exist also several AL algo-
rithms inspired by IRL such as [1,10] but they need to solve recursively MDPs
which is a difficult problem when the state space is large and the dynamics of
the MDP is unknown.

The key idea behind IRL is that the reward is the most succinct represen-
tation of the task. However, as the outputs of IRL algorithms are rewards, it is
still required to solve an MDP to obtain an optimal policy with respect to this
reward. With AL algorithms, the output is a policy which can be directly used.
However, this policy is fixed and cannot adapt to a perturbation of dynamics
which could be done if one knew the true reward, as it is a representation of the

task possibly independent of the dynamics. Thus, a natural question arises: in
which circumstances is it interesting to use an IRL algorithm, knowing that it
still needs to solve an MDP in order to obtain a policy?

First, we analyse the difference of value functions between the apprentice and
the expert policies when a classifier is used as AL method (in the infinite horizon
case). When compared to the sole (as far as we know) related result in IRL,
quantifying the quality of an apprentice trained with the recently introduced
SCIRL (Structured Classification based IRL) algorithm [5], this analysis tells
us that estimating a reward only adds errors. Then, we perform an empirical
study on the generic Garnet framework [2] to see if this first partial answer
is confirmed. It turns out that it actually strongly depends on the (unknown)
reward optimized by the expert: roughly, the less informative the reward is, the
more IRL provides gains compared to AL. Finally, we push this empirical study
even further by perturbing the dynamics of the MDP, which goes beyond the
studied theory. In this case, the advantage of IRL is even clearer.

2 Background and Notations

2.1 General Notations

Let X = (xi){1≤i≤NX } be a finite set and f ∈ RX a function, f is identified to
a column vector and fT is the transposition of f . The powerset of X is noted
P(X). The set of probability distributions over X is noted ∆X . Let Y be a
finite set, ∆YX is the set of functions from Y to ∆X . Let ζ ∈ ∆YX and y ∈ Y,
ζ(y) ∈ ∆X , which can be seen as the conditional distribution probability knowing
y, is also noted ζ(.|y) and ∀x ∈ X , ζ(x|y) = [ζ(y)](x). Besides, let A ∈ P(X),
then χA ∈ RX is the indicator function on the subset A ⊂ X . The support of f
is noted Supp(f). Moreover, let µ ∈ ∆X , Eµ[f] is the expectation of the function
f with respect to the probability µ. Let x ∈ X , x ∼ µ means that x is sampled
according to µ. Finally, we define also for p ∈ N∗, the Lp-norm of the function
f : ‖f‖p = (

∑
x∈X (f(x)

p))
1
p , and ‖f‖∞ = maxx∈X f(x).

2.2 Markov Decision Process

A finite Markov Decision Process (MDP) is a tupleM = {S,A,P,R, γ} where
S = (si){1≤i≤NS} is the finite state space, A = (ai){1≤i≤NA} is the finite action
space, P ∈ ∆S×AS is the Markovian dynamics of the MDP, R ∈ RS×A is the
reward function and γ is the discount factor. A stationary and Markovian policy
π ∈ ∆SA represents the behavior of an agent acting in the MDP M. The set of
all Markovian and stationary policies is noted ΠMS = ∆SA. When the policy π is
deterministic, it can also be seen as an element of AS and π(s) is the action cho-
sen by the policy π in state s. The quality of this behavior in the infinite horizon
framework is quantified by the value function vπR ∈ RS which maps to each state
the expected and discounted cumulative reward for starting in this state and fol-
lowing the policy π afterwards: ∀s ∈ S, vπR(s) = E[

∑
t≥0 γ

tR(st, at)|s0 = s, π].

A policy π∗R (according to the reward R) is said optimal if its value function v∗R
satisfies v∗R ≥ vπR for any policy π and component wise.

Let Pπ be the stochastic matrix Pπ = (
∑
a∈A π(a|s)P(s′|s, a)){(s,s′)∈S2} and

Rπ ∈ RS the function such that: ∀s ∈ S,Rπ(s) =
∑
a∈A π(a|s)R(s, a). With a

slight abuse of notation, we may write a the policy which associates the action
a to each state s. The Bellman evaluation (resp. optimality) operators TπR (resp.
T ∗R) : RS → RS are defined as TπRv = Rπ + γPπv and T ∗Rv = maxπ T

π
Rv.

These operators are contractions and vπR and v∗R are their respective fixed-points:
vπR = TπRv

π
R and v∗R = T ∗Rv

∗
R. The action-value function QπR ∈ S ×A adds a

degree of freedom on the choice of the first action, it is formally defined as
QπR(s, a) = [T aRv

π
R](s). We also write, when it exists, ρπ ∈ RS the stationary

distribution of the policy π (satisfying ρTπPπ = ρTπ). The existence and uniqueness
of ρπ is guaranteed when the Markov chain induced by the matrix of finite size
Pπ is irreducible which will be supposed true in the remaining of the paper.

2.3 AL and IRL

AL and IRL are two methods that attempt to solve the imitation problem using
the MDP paradigm. More precisely, in the AL framework, the apprentice, given
some observations of the expert policy πE , tries to learn a policy πA which is as
good as the expert policy according to the unknown reward R that the expert is
trying to optimize (often the expert is considered optimal: vπER = v∗R). This can
be expressed numerically: the apprentice tries to find a policy πA such that the
quantity: Eν [vπER − v

πA
R] is the lowest possible, where ν ∈ ∆S . In general ν = ρ

where ρ is the uniform distribution or ν = ρπE (ρπE is also noted ρE). In the IRL
framework, the apprentice is trying to learn a reward R̂ which could explain the
expert behavior. More precisely, given some observations of the expert policy πE ,
the apprentice is trying to learn R̂ such that πE ≈ π∗R̂. This can be expressed
numerically, the apprentice is trying to learn a reward R̂ such that the quantities
Eν [v

π∗R̂
R̂
− vπE
R̂

] or Eν [vπER − v
π∗R̂
R] are the lowest possible.

3 Theoretical Study

This section gives some theoretical insights into the question: Is it worth estimat-
ing a reward. First, we present a theoretical result for AL reduced to classification
for the infinite horizon case. A proof of this result is given on the appendix 6. The
result is an upper bound on the difference of the value functions of the expert
and apprentice policies. As a previous bound for AL reduced to classification in
the finite horizon case had been proposed in [11], we give an informal compar-
ison of the two results. Besides, there is also a performance bound for an IRL
algorithm [5] (SCIRL) which allows us to compare IRL and AL performances
from a theoretical point of view. We choose to compare those bounds because
the classification and the SCIRL algorithms does not need to resolve iteratively
MDPs. Thus, there is no Approximate Dynamic programming error to deal with
and to propagate to obtain the performance of the algorithm.

3.1 AL Reduced to Classification for the Infinite Horizon Case

A simple way to realize an AL method is by pure mimicry via an SL method such
as classification. More precisely, we assume that some demonstrations examples
DE = (si, ai){1≤i≤N} where ai ∼ πE(.|si) are available. Without loss of gener-
ality, we assume that the states si are sampled according to some probability
distribution ν ∈ ∆S . So, the data (si, ai) are sampled according to the distribu-
tion µE such that: µE(s, a) = ν(s)πE(a|s). Then, a classifier is learnt based on
these examples (with discrete actions, it is a multi-class classification problem)
thanks to an SL algorithm. This outputs a policy πC ∈ AS , which associates to
each state an action. The quality of the classifier is quantified by the classifica-
tion error: εC = EµE [χ{(s,a)∈S×A,πC(s)6=a}] =

∑
s∈S

∑
a∈A,a6=πC(s) ν(s)πE(a|s).

The quality of the expert (respectively to the unknown reward function R) may
be quantified with vπER . Usually, it is assumed that the expert is optimal (that
is, vπER = v∗R), but it is not necessary for the following analysis (the expert may
be sub-optimal respectively to R). The quality of the policy πC can also be
quantified by its value function vπCR . In the following, we bound Eν [vπER − v

πC
R]

which represents the difference between the quality of the expert and the clas-
sifier policy. If this quantity is negative, that is fine, because (in mean), πC is
better than πE . So, only an upper bound is computed. This upper-bound shows
the soundness of the AL through classification method for the infinite horizon
case.

Let define the following concentration coefficient: Cν = (1− γ)
∑
t≥0 γ

tcν(t)

where ∀t ∈ N, cν(t) = maxs∈S
(νTP tπE

)(s)

ν(s) . Notice that if ν = ρE , which is a quite
reasonable assumption, then Cν = CρE = 1.

Theorem 1. Let πC be the classifier policy (trained on the data set DE to im-
itate the expert policy πE). Let also εC be the classification error and Cν the
above defined concentration coefficient. Then ∀R ∈ RS×A:

Eν [v
πE
R − v

πC
R] ≤ 2Cν‖R‖∞

(1− γ)2
εC .

The proof of Th. 1 is given on the appendix 6 and is based on the propagation
of the classification error. In [11], the authors have established similar bounds in
the finite horizon case. However, as most of AL and IRL algorithms considered
so far the infinite horizon framework, we think that our result has its interest.

3.2 The Bound on the Finite-Horizon Case

In this section, we introduce specific notations to the finite horizon case and we
interpret the results from [11]. Let consider a finite MDP M = {S,A,P,R}
with horizon H and without discount factor γ. A Markovian and non-stationary
policy is an element of the set ΠH

MS ; if π is non-stationary, then πt refers to
the stationary policy that is equal to the tth component of π. Similarly to the

infinite horizon case, we define the value function of the policy π at time t:

∀s ∈ S, vπt,R(s) = E[
H∑
t′=t

R(st′ , at′)|st = s, π].

Let Dt
π be the distribution on state-action pairs at time t under policy π. In

other words, a sample (s, a) is drawn from Dt
π by first drawing s1 ∼ ν ∈ ∆S ,

then following policy π for time steps 1 through t, which generates a trajectory
(s1, a1, . . . , st, at), and then letting (s, a) = (st, at). More formally, we have:

∀1 ≤ t ≤ H,∀(s, a) ∈ S ×A, Dt
π,ν(s, a) = (νT (Pπ1 × · · · × Pπt−1))(s)πt(a|s).

In [11], the authors suppose the availability of the set of trajectories DE =
(ωi){1≤i≤N} where ωi = (si1, a

i
1, . . . , s

i
H , a

i
H) with si1 ∼ ν ∈ ∆S and (sit, a

i
t) ∼

Dt
πE where 1 ≤ t ≤ H and πE is the non-stationary and Markovian expert

policy. In the finite horizon case, Apprenticeship Learning through classification
will consists in learning an apprentice policy πC = (πtC){1≤t≤H} thanks to H
classifiers trained on the sets Dt

E = (sit, a
i
t){1≤i≤N}. Thus, for each set Dt

E =
(sit, a

i
t){1≤i≤N}, we train a multi-class classifier and learn a deterministic policy

πtC with classification error:

εtC = EDtE [χ{(s,a)∈S×A,πtC(s)6=a}].

We note εC = max1≤t≤H ε
t
C . Then we have the following theorem:

Theorem 2. Let πE be the expert non-stationary and Markovian expert policy,
DE a set of N trajectories with si1 ∼ ν ∈ ∆S and πC the policy learnt by the H
classifiers, then:

Eν [vπE1,R − v
πC
1,R] ≤ min(2

√
εCH

2, 4εCH
3 + δπE)‖R‖∞,

where δπE =
Eν [v∗1,R−v

πE
1,R]

‖R‖∞ represents the sub-optimality of the expert.

It is possible to compare these results with our bound, even if one deals with
the infinite horizon case and the other with the finite horizon case, by informally
noticing that the introduction of the discount factor γ in the infinite horizon
corresponds to an horizon of length 1

1−γ :
∑
t≥0 γ

t = 1
1−γ . By replacing H by

1
1−γ in the the precedent bound, we obtain:

Eν [vπE1,R − v
πC
1,R] ≤ min(

2
√
εC

(1− γ)2
,

4εC
(1− γ)3

+ δπE)‖R‖∞.

So, if we informally identify the classification errors and the horizon H to 1
1−γ ,

our bound is slightly better either by
√
εC or by 2

1−γ . Moreover, as our bound
is specific to the infinite horizon, it is more adapted to AL and IRL algorithms
as most of them consider the infinite horizon case.

3.3 SCIRL and Its Performance Bound

[5] assume that the unknown reward is linearly parameterized by some feature
vector. More precisely, let φ(s, a) = (φ1(s, a), . . . , φp(s, a))

T be a feature vector
composed of p ∈ N∗ basis functions φi ∈ RS×A, the parameterized reward
function is Rθ(s, a) = θTφ(s, a) =

∑
1≤i≤p θiφi(s, a). Searching a good reward

thus reduces to searching a good parameter vector θ ∈ Rp. The choice of features
is done by the user. Moreover, SCRIL needs the estimation of the expert feature
expectation ωπE [5] which is the expected discounted cumulative feature vector
for starting in a given state, applying a given action and following the expert
policy:

ωπE (s, a) = E[
∑
t≥0

γtφ(st, at)|s0 = s, a0 = a, πE].

It can be seen that: QπERθ (s, a) = θTωπE (s, a). An estimation of the feature expec-
tation ω̂πE is done via the expert data set: DE . The problem of estimating the
expert feature is a policy evaluation problem. Then, SCIRL uses the estimation
of the expert feature expectation ω̂πE as the basis function of a linearly param-
eterized score-based multi-class classifier fed by the set DE . The classification
error is εC = EµE [χ{(s,a)∈S×A,πC(s)6=a}] with πC(s) = argmaxa∈A θ

T
C ω̂πE (s, a)

and θC the output of the score-based classifier. The reward outputted by the
SCIRL algorithm is RC = θTCφ. Then, the performance bound for this algorithm
is:

0 ≤ EρE [v∗RC − v
πE
RC] ≤

Cf
(1− γ)

(
2‖RC‖∞εC

1− γ
+ εQ

)
,

With Cf = (1 − γ)
∑
t≥0 γ

tcf (t) where ∀t ∈ N, cf (t) = maxs∈S
(ρTEP

t
π∗RC

)(s)

ρE(s) .
Moreover, εQ = EρE [maxa∈A εQ(., a) − mina∈A εQ(., a)], where εQ(s, a) =
θTC(ω̂πE (s, a) − ωπE (s, a)), is a measure of the error estimation of the feature
expectation. This bound is specific to the reward RC and the constant Cf is
not equal to 1 when ν = ρE , which makes this bound possibly quite worst than
the pure classification bound, even when the expert feature expectation is per-
fectly estimated (εQ = 0). This seems to indicate that this IRL algorithm is less
interesting than a simple classification algorithm in theory. However, in prac-
tice, we will see that for specific unknown rewards SCIRL can have much better
performance than a classification algorithm (see Sec. 4).

4 Empirical Study

This section shows through experiments that the previous theoretical bounds
does not tell everything about AL methods and IRL methods. Here, several ex-
periments are conducted and show the interest of finding a reward thanks to
a general framework of experiments called the Garnet framework. We choose
a particular framework where all the problems are finite MDPs with a tabular
representation. Even if those problems are not challenging, they allow compar-
ing fairly the different approaches without the problem of bias induced by the

choice of representation. The comparison is done between a pure classification
algorithm and two recently published IRL algorithms which are SCIRL and Rel-
ative Entropy IRL (RE) [4], for which there is no known error analysis. The pure
classification algorithm was chosen as a benchmark for the AL approach because
it has a theoretical performance guarantee and does not need to resolve itera-
tively MDPs unlike most of the other algorithms. SCIRL and RE were chosen
as benchmarks for the IRL approach because they also do not need to resolve
iteratively MDPs which reduces the impact of Approximate Dynamic Program-
ming (ADP) in the interpretation even if the outputted reward is optimized via
the policy iteration algorithm. These experiments show that the choice of the
underlying unknown reward, which is used in order to create the expert policy
thanks to the policy iteration algorithm, is crucial. Indeed when the unknown
reward is normally distributed on each state-action-couple the classification has
quite good performance whereas it has quite low performance when the reward is
sparse or state-only-dependent. The intuitive idea behind those results is: when
the reward is too informative, the impact of the optimization horizon is reduced,
which favors the classification approach.

4.1 AL and IRL Algorithms

The first algorithm is a pure classification algorithm. More precisely, it is multi-
class classification algorithm fed by the set DE using a structured large-margin
approach [12] which consists in minimizing the following criterion with respect
to Q ∈ RS×A:

L0(Q) =
1

N

N∑
i=1

max
a∈A

[Q(si, a) + l(si, a)]−Q(si, ai) + λ‖Q‖22,

where l(s, a) = 0 when ∃1 ≤ i ≤ N, (s, a) = (si, ai) and l(s, a) = 1 otherwise. The
minimization is realized via a sub-gradient descent [9]. Then the policy obtained
by the algorithm is a deterministic policy such that πC(s) ∈ argmaxa∈AQ∗(s, a)
where Q∗ is the output of the minimisation of the criterion L0 via the sub-
gradient descent. The two other algorithms are IRL algorithms. SCIRL (pre-
sented in Sec. 3.3) needs only the set DE to be implemented and outputs a re-
ward RC . The instantiation of SCIRL, in our experiments, is the one described
in the original paper. In order to obtain a policy πC , this reward is optimized
by the policy iteration algorithm with respect to the reward RC . The policy
iteration algorithm needs the knowledge of the whole dynamics of the MDP to
be implemented but allows a comparison which does not depend on the choice
of an ADP algorithm (we need solving an MDP to measure the efficiency of
the estimate, but not to obtain the estimate). Like SCIRL, the RE algorithm
supposes a linear parametrization of the reward. The principle of the Relative
Entropy method is based on minimizing the relative entropy (KL divergence)
between the empirical distribution of the state-action trajectories under a ran-
dom policy and the distribution of the trajectories under a policy that matches
the expert feature expectation [4]. The RE algorithm used in this paper is the

one described in the original paper. It needs the set DE and also requires a set
DP of sampled trajectories according to a non-expert policy. In the experiments,
the random policy will be chosen in order to generate the set DP (see Sec. 4.3).
The output of the algorithm is a reward RC and a policy iteration algorithm is
also used to obtain the policy πC relative to the outputted reward.

4.2 The Garnet Framework

The Garnet problems are a class of randomly constructed finite MDPs meant
to be totally abstract while remaining representative of the kind of finite MDPs
that might be encountered in practice [2]). The routine to create an instance
of a stationary Garnet problem is characterized by 3 parameters and written
as Garnet(NS , NA, NB). The parameters NS and NA are the number of states
and actions respectively, and NB is a branching factor specifying the number
of next states for each state action pair. The next states are chosen at random
from the state set without replacement. The probability of going to each next
state is generated by partitioning the unit interval at NB − 1 cut points selected
randomly. The reward R(s, a) will be chosen depending on the experiments. For
each Garnet problem, it is possible to compute an expert policy πE thanks to
the reward R via the policy iteration algorithm. Finally, the discount factor is
fixed to 0.99.

4.3 Pure Classification Versus SCRIL and RE

The idea, in order to obtain a general result, is to run the same experiment on
hundreds of MDPs and regroup the results at the end. All the algorithms are
fed with data sets of the the following type: DE = (si, ai){1≤i≤N} where ai ∼
πE(.|si). More particularly, DE = (ωj){1≤i≤KE} where ωj = (si,j , ai,j){1≤i≤HE}
is a trajectory obtained by starting from a random state s1,j (chosen uni-
formly) and applying the policy πE HE times (si+1,j ∼ P (.|si,j , ai,j)). So, DE

is composed by KE trajectories of πE of length HE and we have KEHE = N .
We also fed the RE algorithms with a data set of sampled transitions DP =
(si, ai, s

′
i){1≤i≤N ′} where ai ∼ πR(.|si) with πR the random policy (uniform dis-

tribution over the actions for each state) and where s′i ∼ P (.|si, ai). Actually, DP

has the particular form DP = (τj){1≤j≤KP } where τj = (si,j , ai,j , s
′
i,j){1≤i≤HP }

is a trajectory obtained by starting from a random state s1,j (chosen uniformly)
and applying the policy πR HP times (s′i,j = si+1,j ∼ P (.|si,j , ai,j)). So, DP is
composed by KP trajectories of πR of length HP and we have KPHP = N ′.
Therefore, if we have for a given Garnet problem πE and πR, the set of param-
eters (KE , HE ,KP , HP) is sufficient to instantiate sets of types DE and DP .

Our first experiment shows the performance of the algorithms when HE is in-
creasing and when the reward for each Garnet is chosen normally distributed for
each state-action couple. The reward R(s, a) is selected randomly according to
a normal distribution with mean 0 and with standard deviation 1. It consists in
generating 100 Garnet problems of the type Garnet(NS , NA, NB), where NS is
uniformly chosen between 50 and 100,NA uniformly chosen between 5 and 10 and

NB uniformly chosen between 2 and 5 . This gives us the set of Garnet problems
G = (Gp){1≤p≤100}. On each problem p of the set G, we compute πpE and πpR. The
parameter HE takes its values in the set (Hk

E){1≤k≤11} = (50, 100, 150, .., 500),
KE = 1,HP = 10,KP = 50. Then, for each set of parameters (KE , H

k
E ,KP , HP)

and each Gp, we compute 100 expert policy sets (Di,p,k
E){1≤i≤100} and 100 ran-

dom policy sets (Di,p,k
P){1≤i≤100}. Our criteria of performance for each cou-

ple (Di,p,k
E , Di,p,k

P) is the following: T i,p,k =
Eρ[v

π
p
E
R −v

π
i,p,k
C
R]

Eρ[v
π
p
E
R]

, where πpE is the

expert policy, πi,p,kC is the policy induced by the algorithm fed by the cou-
ple (Di,p,k

E , Di,p,k
P) and ρ is the uniform distribution over the state space S.

For the pure classifier, we have πi,p,kC (s) ∈ argmaxa∈A Q̂
∗(s, a) where Q̂∗ is

the minimizer of L0. For the SCIRL and RE algorithms, πi,p,kC is the pol-
icy obtained by optimizing the reward RC outputted by the algorithm via
the policy iteration algorithm. Our mean criterion of performance for each
set of parameters (KE , H

k
E ,KP , HP) is: T k = 1

10000

∑
1≤p≤100,1≤i≤100 T

i,p,k.
For each algorithm we plot (Hk

E , T
k){1≤k≤15}. Another criterion is also use-

ful in order to interpret the results. For each Garnet problem and each set
of parameters, we calculate the standard deviation stdp,k for each algorithm:

stdp,k =
{

1
100

∑
1≤i≤100[T

i,p,k −
∑

1≤j≤100 T
j,p,k]2

} 1
2

. Then we compute the
mean standard deviation over the 100 Garnet problems for each set of parame-
ters: stdk = 1

100

∑
1≤p≤100 std

p,k. For each algorithm we plot (Hk
E , std

k){1≤k≤15}.
Results are reported on Fig. 1. Here, we see that the pure classification algorithm

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

H
E
k=length of the expert trajectory

Tk =C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

Classif
SCIRL
RE

(a) Performance

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

H
E
k=length of the expert trajectory

st
d

k

Classif
SCIRL
RE

(b) Standard deviation

Fig. 1. Garnets experiment: normally distributed reward.

has a better performance over the IRL algorithms when the number of data is
increasing. This can be explained by the particular shape of the reward which is
particularly suited to make the pure classification algorithm work well and IRL

algorithms work bad. Indeed, as there are rewards for each state-action couples
which are normally chosen, doing a misclassification is not so important as there
will be rewards with the same form in the next states. However, as there are
a lot of rewards everywhere, a lot of data is needed for an IRL algorithm to
be able to estimate a meaningful reward. Another possible but complementary
interpretation of those results is: as the reward is very informative, the choice of
the action does not depend too much on the future states and the impact of the
optimization horizon is strongly reduced.

The second experiment is exactly the same as the first one, except that the
reward is no longer normally distributed. For each Garnet, we generate a reward
with a small support: Supp(R) ≤ NSNA

50 by randomly choosing between 1 and
NSNA

50 couples (s, a) such that R(s, a) 6= 0 (reward randomly chosen between 0
and 1). For the other couples (s, a), R(s, a) = 0. Results are reported on Fig. 2.
Here, we see that the IRL algorithms work better than previously and the pure

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

H
E
k=length of the expert trajectory

Tk =C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

Classif
SCIRL
RE

(a) Performance

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H
E
k=length of the expert trajectory

st
d

k

Classif
SCIRL
RE

(b) Standard deviation

Fig. 2. Garnets experiment: sparse reward.

classification algorithms has its performance deteriorated a little bit compared
to the previous experiment. This can be explained by the shape of the unknown
reward. As the unknown reward is sparse, doing a misclassification on a state
where the expert choose the action that gives a reward is important as there
are only few state-action couples with rewards. Thus, the pure classification
algorithm may have some problems with few data which is what we observe
on Fig. 2(a). Moreover, the IRL algorithms have a better performance, maybe
because the unknown reward has a simpler structure to learn. Again as the
reward is less informative, the impact of the optimization horizon may be more
important than for the previous reward which deteriorates the performance of
the classification.

The third experiment is exactly the same as the first one, except that the
reward is state-only-dependent. To construct a state-only-dependent reward, it is

sufficient for each s ∈ S to select randomly a value R(s) according to a normal
distribution with mean 0 and with standard deviation 1 and then ∀(s, a) ∈
S × A = R(s, a) = R(s). Results are reported on Fig 3. Here, the performance

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

H
E
k=length of the expert trajectory

Tk =C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

Classif
SCIRL
RE

(a) Performance

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

H
E
k=length of the expert trajectory

st
d

k

Classif
SCIRL
RE

(b) Standard deviation

Fig. 3. Garnets experiment: state-only-dependent reward.

of the IRL algorithms is better than the second experiment and than the pure
classification. This can be explained by the fact that the structure of the reward is
even simpler. The pure classification see its performance deteriorated compared
to the second experiment. As the unknown reward depends only on the state and
not on the action, it is very important to follow the path of the expert to obtain
a good performance. Thus, a misclassification on a given state which leads to a
bad path can be very damageable and lead to bad performance.

5 Dynamics Perturbations

In this section, we want to show that it can be interesting to retrieve the reward
in order to be more stable to dynamics perturbations. As the reward is seen as
the most succinct hypothesis explaining the behavior of the expert, we can expect
that the reward outputted by the IRL algorithms is such that its optimization
will lead to a near-optimal behavior even if there is a dynamics perturbation.
The dynamics perturbations considered are the ones which keep identical the
structure of the MDP. The structure of the MDP is for a given state-action couple
(s, a) the different states that could be reached by choosing the action a in state s,
that is Supp(Ps,a). The structure of the MDP is the set (Supp(Ps,a)){(s,a)∈S×A}.
Therefore a dynamic perturbation is the choice of a dynamics P̃ different from
P such that: (Supp(Ps,a)){(s,a)∈S×A} = (Supp(P̃s,a)){(s,a)∈S×A}.

The first experiment consists in in generating 100 Garnet problems of the
type Garnet(NS , NA, NB), where NS is chosen randomly between 50 and 100,

NA randomly chosen between 5 and 10 andNB chosen randomly between 2 and 5
. This gives us the set of Garnet problems G = (Gp){1≤p≤100}. Here, The reward
R(s, a) is selected randomly according to a normal distribution with mean 0 and
with standard deviation 1. Then for each Gp, we realize 50 dynamics perturba-
tion and we obtain the set of Garnets problems G̃ = (Gp,q){1≤p≤100,1≤q≤50}. On
each problem p, q of the set G̃, we compute πp,qE and πp,qR and on each problem p
of the set G, we compute πpE and πpR. The parameter HE takes its values in the
set (Hk

E){1≤k≤15} = (50, 100, 150, .., 500), KE = 1, HP = 10, KP = 50. Then, for
each set of parameters (KE , H

k
E ,KP , HP) and each Gp, we compute 100 expert

policy sets (Di,p,k
E){1≤i≤100} and 100 random policy sets (Di,p,k

P){1≤i≤100}. Our
criteria of performance for each couple (Di,p,k

E , Di,p,k
P) on each Gp,q problem is

the following: T i,p,q,k =
Eρ[v

π
p,q
E
R −v

π
i,p,k
C
R]

Eρ[v
π
p,q
E
R]

, where πp,qE is the expert policy on the

problem Gp,q, π
i,p,k
C is the policy induced by the algorithm fed by the couple

(Di,p,k
E , Di,p,k

P) and ρ is the uniform distribution over the state space S. For the
pure classifier, we have πi,p,kC (s) ∈ argmaxa∈A Q̂

∗(s, a) where Q̂∗ is the output.
For the SCIRL and RE algorithms, πi,p,kC is the policy obtained by optimizing the
reward R outputted by the algorithm via the policy iteration algorithm. More-
over, when πi,p,kC = πpE , then T

i,p,q,k represents the best performance possible to
achieve by an AL algorithm: this curve will be noted AL in our figures. Finally,
when πi,p,kC = πpR, then T

i,p,q,k represents the performance of the random policy
and this curve will be noted Rand in our figures.

Our mean criterion of performance for each set of parameters (KE , H
k
E ,KP , HP)

is: T k = 1
500000

∑
1≤p≤100,1≤q≤50,1≤i≤100 T

i,p,q,k. For each algorithm we plot
(Hk

E , T
k){1≤k≤15}. Another criterion is also useful in order to interpret the re-

sults. For each Garnet problem Gp and each set of parameters, we calculate the
standard deviation stdp,k for each algorithm:

p,k

std =

 1

5000

1≤q≤50∑
1≤i≤100

[T i,p,q,k −
1≤q′≤50∑
1≤j≤100

T j,p,q
′,k]2

1
2

.

Then we compute the mean standard deviation over the 100 Garnet problems for
each set of parameters: stdk = 1

100

∑
1≤p≤100 std

p,k. For each algorithm we plot
(Hk

E , std
k){1≤k≤15}. Results are reported on Fig. 4. Here, the reward is normally

distributed so a dynamic perturbation may not deteriorate too much the expert
policy. Indeed, as the reward is very informative, the impact of the optimization
horizon must be very small and the perturbation of dynamics will not change
too much the optimal policy. We can observe this on Fig. 4(a), where we see that
the yellow curve noted AL is not so far away from 0. With this shape of reward,
it is better to use a pure classification algorithm to have this stability property.

The second experiment is exactly the same as the previous one, except that
the reward is sparse. Results are reported on Fig. 5. As the reward is sparse,
we can expect that a dynamic perturbation leads to an important deterioration

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

H
E
k=length of the expert trajectory

Tk =C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

SCIRL
AL
Rand
RE
Classif

(a) Performance

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

H
E
k=length of the expert trajectory

st
d

k

SCIRL
AL
Rand
RE
Classif

(b) Standard deviation

Fig. 4. Perturbed dynamics: normally distributed reward.

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
E
k=length of the expert trajectory

Tk =C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

SCIRL
AL
Rand
RE
Classif

(a) Performance

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H
E
k=length of the expert trajectory

st
d

k

SCIRL
AL
Rand
RE
Classif

(b) Standard deviation

Fig. 5. Perturbed dynamics: sparse reward.

of the performance of the expert policy. Here, we see that IRL algorithms are
under the yellow curve when the number of data is increasing, which means that
no AL algorithms will be able to reach that level of stability. Thus, it seems
that estimating a reward function in that case can be very useful because it
guarantees a level of stability that no AL algorithms is able to provide.

The third experiment is exactly the same as the previous one, except that the
reward is state-only-dependent. Results are reported on Fig. 6. Here the shape
of reward is even simpler that the previous experiment. It seems that the IRL
algorithms are even more stable with less data. Again, as the impact of the opti-
mization horizon becomes important, the performance of the pure classification
and the one of the best possible AL algorithm are really deteriorated.

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
E
k=length of the expert trajectory

Tk =C
ri

te
ri

o
n

 o
f

p
er

fo
rm

an
ce

SCIRL
AL
Rand
RE
Classif

(a) Performance

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

H
E
k=length of the expert trajectory

st
d

k

SCIRL
AL
Rand
RE
Classif

(b) Standard deviation

Fig. 6. Perturbed dynamics: state-only-dependent reward.

6 Conclusion and Perspectives

In this paper, we tried to give some theoretical and empirical insights into the
following question: is it worth estimating a reward function? First, we upper-
bounded the difference between the value function of the expert and the value
function of the apprentice policy, for AL reduced to classification in the infinite
horizon case. This result gives a better bound than the theoretical performance
bound of the SCIRL algorithm and is informally better than the bound in the
finite horizon case proved in [11]. Thus, in theory, there are no specific reason to
use an IRL algorithm which still needs to solve an MDP in order to obtain an
optimal policy according to the reward found by the algorithm.

However, in practice, the experiments conducted in this paper on a generic
task (Garnet problems) show that for specific shapes of the unknown reward
function, IRL algorithms have better performance than the pure classification
algorithms and possess a stability property that no AL algorithm will be able to
achieve. Besides, it seems that the reward functions that favor the IRL algorithms
are the less informative ones. We think that the less informative the reward
is, the bigger the impact of the optimization horizon is. This is an obvious
disadvantage for the pure classification method which doest not take into account
this optimization horizon.

However, there is no theoretical proof explaining why IRL algorithms work
better with specific forms of reward functions. This can be an interesting perspec-
tive to give more soundness to the experiments leaded in this paper. Moreover,
it would be interesting to create an algorithm able to use data coming from dif-
ferent perturbed dynamics of the same MDP in order to learn a reward function
which will be even less sensible to perturbed dynamics. This can be useful with
applications where human are involved: in those kind of real-life applications,
each human can be seen as a perturbed version of an MDP.

Acknowledgements. The research leading to these results has received partial
funding from the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement n°270780.

References

1. Abbeel, P., Ng, A.: Apprenticeship learning via inverse reinforcement learning. In:
Proceedings of the 21st International Conference on Machine Learning (ICML)
(2004)

2. Archibald, T., McKinnon, K., Thomas, L.: On the generation of markov decision
processes. Journal of the Operational Research Society (1995)

3. Atkeson, C., Schaal, S.: Robot learning from demonstration. In: Proceedings of the
14th International Conference on Machine Learning (ICML) (1997)

4. Boularias, A., Kober, J., Peters, J.: Relative entropy inverse reinforcement learn-
ing. In: JMLR Workshop and Conference Proceedings Volume 15: AISTATS 2011
(2011)

5. Klein, E., Geist, M., Piot, B., Pietquin, O.: Inverse reinforcement learning through
structured classification. In: Advances in Neural Information Processing Systems
25 (NIPS) (2012)

6. Langford, J., Zadrozny, B.: Relating reinforcement learning performance to clas-
sification performance. In: Proceedings of the 22nd International Conference on
Machine Learning (ICML) (2005)

7. Pomerleau, D.: Alvinn: An autonomous land vehicle in a neural network. Tech.
rep., DTIC Document (1989)

8. Russell, S.: Learning agents for uncertain environments. In: Proceedings of the
11th annual conference on Computational Learning Theory (COLT) (1998)

9. Shor, N., Kiwiel, K., Ruszcaynski, A.: Minimization methods for non-differentiable
functions. Springer-Verlag (1985)

10. Syed, U., Schapire, R.: A game-theoretic approach to apprenticeship learning. In:
Advances in Neural Information Processing Systems 21 (NIPS) (2008)

11. Syed, U., Schapire, R.: A reduction from apprenticeship learning to classification.
In: Advances in Neural Information Processing Systems 23 (NIPS) (2010)

12. Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured predic-
tion models: A large margin approach. In: Proceedings of the 22nd International
Conference on Machine Learning (ICML) (2005)

Appendix: Proof of Th.1

We have:

vπER − v
πC
R

(a)
= TπER vπER − T

πE
R vπCR + TπER vπCR − v

πC
R

(b)
= γPπE (v

πE
R − v

πC
R) + TπER vπCR − v

πC
R ,

(c)
= (I − γPπE)−1(T

πE
R vπCR − v

πC
R),

Equality (a) holds because TπER vπE = vπER , Equality (b) is obtained by definition
of TπER and Equality (c) is true by invertibility of I − γPπE where I ∈ RS×S is
the identity matrix. The next step is to work on the term TπER vπCR − v

πC
R . For

any function v ∈ RS , by definition of TπER : TπER v = RπE +γPπEv. Noticing that:

TπER vπCR (s)−vπCR (s) =
∑
s′∈S

∑
a∈A

πE(s, a)[R(s, a)+γP(s′|s, a)vπCR (s′)]−vπCR (s),

and by definition of QπCR (s, a), we have:

∀s ∈ S, TπER vπCR (s)− vπCR (s) =
∑
a∈A

πE(s, a)QπCR (s, a)− vπCR (s),

=
∑

a∈A,a 6=πC(s)

πE(a|s)[QπCR (s, a)− vπCR (s)].

So:

νT (vπER − v
πC
R) = νT (I − γPπE)−1[T

πE
R vπCR − v

πC
R],

=
∑
s∈S

∑
t≥0

γt
(νTP tπE)(s)

ν(s)
ν(s)[TπER vπCR (s)− vπCR (s)],

=
∑
s∈S

∑
t≥0

γt
(νTP tπE)(s)

ν(s)
ν(s)

∑
a6=πC(s)

πE(a|s)[QπCR (s, a)− vπCR (s)].

Thus by definition of Cν :

νT (vπER − v
πC
R) ≤ Cν

1− γ
∑
s∈S

∑
a∈A,a 6=πC(s)

ν(s)πE(a|s)|QπCR (s, a)− vπCR (s)|,

(d)

≤ Cν
1− γ

2‖R‖∞
1− γ

∑
s∈S

∑
a∈A,a6=πC(s)

ν(s)πE(a|s),

(e)
=

2‖R‖∞CνεC
(1− γ)2

.

Inequality (d) is true because |QπCR (s, a)− vπCR (s)| ≤ 2‖R‖∞
1−γ and Equality (e) is

true by definition of εC . This ends the proof.

	Learning from Demonstrations: Is It Worth Estimating a Reward Function?

