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Abstract

A novel approach for the compression of mechanical vibration signals is pre-
sented in this paper. The method relies on a simple and flexible decom-
position into a large number of subbands, implemented by an orthogonal
transform. Compression is achieved by a uniform adaptive quantization of
each subband. The method is tested on a large number of real vibration sig-
nals issued by plane engines. High compression ratios can be achieved, while
keeping a good quality of the reconstructed signal. It is also shown that com-
pression has little impact on the detection of some commonly encountered
defects of the plane engine.

Keywords: fault detection ; vibration signals ; uniform adaptive
quantization ; subband coding ; DCT ; compression

1. Introduction

Vibration signals provide useful information for the diagnosis of rotating
machineries and they represent a key prerequisite of mechanical health mon-
itoring systems. The goal of health monitoring systems is to perform off-line
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default detection in order to anticipate damage and maintenance. Defaults
that should be detected are mechanical defaults such as damaged bearings
(spalling or brinelling of the races and the rolling elements), damaged gears
(scuffing of the teeth), coupling between aero and mechanical abnormal be-
havior like fan flutter, fleeting events like a shock caused by a small FOD
(Foreign Object Damage, small birds ingestion for instance) or rubbing be-
tween a rotor and a stator. Impending failures (few minutes) are not in
the scope of health monitoring. The scope of health monitoring is to detect
damages few flights before failure, but it happens that the early symptom
of a future failure shall be detected during a single flight (this is the case of
fleeting and non-repetitive events). Such systems require, in general, a sig-
nificant amount of data to learn the features that are associated with faulty
behavior of the engine, as well as with its normal functioning. Furthermore,
the high sampling frequency of the vibration signals (for most engines appli-
cations, 2 accelerometers with a bandwidth up to 20kHz), as well as the long
time intervals required to perform a full acquisition (i.e. corresponding to
a particular stage of the flight, for instance an engine shut-down that lasts
approximately 2 minutes, at the end of the flight, or cruise that lasts few
hours), lead to a huge amount of data needing to be stored and transmitted.
Thus, compression becomes a mandatory component of a health monitoring
system and required compression rates into the range 10 to 100.

Within this framework, the main challenge we deal with is to define a
compression algorithm which is capable of achieving a high Compression
Ratio (CR), while keeping a reasonable reconstruction quality, in terms of
Reconstruction Signal to Noise Ratio (RSNR) or Mean Square Error (MSE).
Besides the aforementioned performance criteria, we aim to limit the im-
pact of compression on the signature of some particular potential faults of
the engine. Nevertheless, since in such an application we often deal with
complexity constraints (e.g. embedded systems, real-time monitoring), one
important objective is to keep compression algorithms at a reasonable level
of complexity.

All these specific constraints motivated our research efforts, which aimed
to define a new compression approach for mechanical vibration signals. The
proposed algorithm meets the aforementioned objectives, by exploiting the
particular characteristics of the mechanical vibration signal.

Whereas the generic field of data compression is extensively treated in the
literature, the number of works dedicated to the specific topic of vibration
signals compression is rather limited. The most popular approach relies
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on transform based methods, mostly using various wavelet decompositions
such as in [1–3]. The affinity for wavelets comes from two directions: their
suitability for the compression of signals with non-stationary characteristics
and their extensive use in feature extraction for fault diagnosis purposes [3–
6]. However, in the reference [3], the author recalls that Wavelet Transform
(WT) shows a significant gain over the harmonic approaches - Discrete Cosine
Transform (DCT), Discrete Fourier Transform (DFT) - only for vibration
signals with strong non-stationary characteristics.

The second category of methods is represented by predictive coding [7,
8]. In general, various Adaptive Differential Pulse Coded Modulation (AD-
PCM) schemes are adopted. However, these papers mostly propose basic
approaches, and the reported results rely on a limited set of experiments.

In the category of more specific approaches, we can mention [9], where
the signal is transformed into an image and then compressed in the domain
of a lifting-scheme WT, or the use of Empirical Mode Decomposition (EMD)
[10], which, due to its redundancy, is better suited for analysis than for
compression.

It should be noted that most of the aforementioned papers focus mainly
on signal analysis and feature extraction, compression being only marginally
considered. As it has already been noticed, vibration signal processing relies
usually on the use of some transformations/decompositions (WT, EMD). In
this way, the signal is decomposed into several subbands, where the features
of interest can be easily identified. It is well known, on the other hand,
that Subband Coding (SBC) is one of the classical approaches in the data
compression field [11]. In the case of mechanical vibration signals, a widely
considered model is based on a sum of harmonics [12], which are related to the
speed of the rotating machinery. These frequency components can be easily
highlighted by a subband decomposition and effective compression can be
achieved by an adaptive quantization of the subbands. Surprisingly, although
it seems particularly suitable to vibration signal compression and analysis,
classical subband decomposition was never considered for this subject, to the
best of the authors’ knowledge.

In this paper, we propose a new compression method for mechanical vibra-
tion signals. This method is referred to as Subband Adaptive Quantization
(SAQ). SAQ can be viewed as an alternative approach to the classical SBC,
based on filter banks [13]. It is well adapted to vibration signals properties of
an aircraft engine environment: the frequency content is the superposition of
a non-uniform colored noise (due to the combustion chamber, and structural
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frames and mounts eigenmodes) and many integer harmonics of the fluctuat-
ing rotating speeds of the shafts (unbalances, misalignments, blade passing
frequencies and gearmesh frequencies). During a flight, the rotating speed
of each shaft is almost constant around few hundreds of Hertz during cruise
with small fluctuations of few Hertz. The main shafts are not mechanically
coupled; their rotating speeds are the result of the aerodynamic balance be-
tween compressors and turbines for a throttle set by the pilot. From flight to
flight, those rotating speeds may vary by more than a dozen Hertz because of
the contextual environment changes between two different flights (external
ambient temperature change, for instance). In order to take into account
those variations of the rotating speeds, a sampling rate of a dozen Hertz is
sufficient for the acquisition of those parameters. SAQ of the vibrations for
this application is therefore well adapted, because it allows simple and flexi-
ble subband decomposition on a large number of narrow-band signals, using
suitable orthogonal transforms. Each subband is uniformly quantized on a
number of bits which are adaptively allocated using an energetic criterion.
The use of a uniform quantization, combined with an adaptive bit distribu-
tion, preserves system simplicity and allows high compression ratios to be
obtained with a reasonable amount of distortion. This method is applied to
a large number of real vibration signals, issued by plane engines in various
working regimes and health statuses. Compression performance, evaluated
from the reconstruction quality perspective, is compared with several existing
approaches. It shows that SAQ is better suited to the vibration signals than
the other methods. We also study the impact of SAQ-based compression on
the detection of two of the most common defects of the engine: rolling ele-
ments fatigue and rotor-stator rubbing. We show that these defects remain
detectable even when a strong compression has been applied to the signal.

In section 2, we explain how subband decomposition can be implemented
using an orthogonal transform. The choice of the appropriate transform is
investigated in section 3. In section 4, we introduce the principles of SAQ.
Compression is tested on a large dataset of vibration signals, the results
being presented in section 5. Compression impact on the fault detection of
two particular defects of the engine is investigated in section 6, whereas the
last section is dedicated to concluding remarks.
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2. Transform-based subband coding

Since the compression method proposed in this paper relies on the SBC
principle, we will focus in this section on SBC implementation using an or-
thogonal transform. In [14, 15] Malvar exhibits the link between transform
coding and SBC. As Malvar emphasizes, SBC systems, in general, can only
work with a reduced number of subbands, because of the computational com-
plexity of the Quadrature Mirror Filters (QMF) that are usually employed.
The use of a transform in an SBC implementation allows these issues to be
bypassed. In this way, the SBC system can be implemented in a simple and
flexible manner, making signal decomposition possible in a large number of
subbands.

In order to illustrate the link between SBC and transform coding, we
show in figure 1 the block scheme of a classical SBC system and in figure 2
its equivalent using transform-based implementation. The successive-in-time
samples of each parallel output of the transform from figure 2 represent differ-
ent subband components of the input signal. The link between the classical
SBC system and its equivalent transform-based implementation is described
by the following rules [14]: 1. The impulse responses of the synthesis filters
are the transform basis functions; 2. The analysis filters are time-mirrored
versions of the synthesis filters; 3. The decimation factor from SBC sim-
ply equals the transform length; 4. Perfect reconstruction is possible due
to the orthogonality of the decomposition basis used in the transform-based
approach, which is equivalent to the “lossless” property, as defined in [16].

In the following, we will mathematically formalize these properties. Let
us consider the decomposition of the input signal into M subbands. In order
to apply an orthogonal transform, the input signal must be split in blocks
of L samples, represented by the vector : x = [x(0) x(1) ... x(L− 1)]T . The
orthogonal transform can be described in a matrix form as follows:

y = W · x (1)

where y = [y(0) y(1) ... y(M − 1)]T is the vector of the transform domain
coefficients and W is the transform matrix. For the usual discrete transforms
(DCT, DFT), L = M , and W is a square matrix. These transforms meet the
conditions for being part of a SBC system as shown in figure 2. Unfortunately,
they exhibit an important drawback: the length of the basis vectors (and
consequently the length of the filters from the SBC approach) equals the
number of subbands. This leads to some undesirable errors around the block
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Figure 1: The block-scheme of a classical SBC system.

edges when quantization is performed in the transform-domain samples. This
can only be avoided using a vector basis that spans over the data block to
be processed.

Queiroz [17] has proven that the equivalence between SBC and transform
coding holds for a special class of orthogonal transforms, called lapped trans-
forms. For these transforms, the input signal vector is composed of samples
spanning more than one data block (L = K · M , K-integer). In this case,
the buffer in figure 2 can be modeled as a L-size sliding window, which, in
order to build up a new input block for the orthogonal transform is shifted
by M samples only, thus creating superposition (lapping) between the ad-
jacent blocks. Obviously, by choosing L = M , there will be no overlapping
between the adjacent data blocks, which matches the case of the “regular”
(non-overlapped) orthogonal transforms.

If we consider the most general case, the M × L-size matrix W of the
orthogonal transform (L ≥ M), can be written as:

W = [w0 w1 ... wM−1]
T (2)

where wk are L-size vectors of the orthonormal basis. The link between the
classical SBC and its transform-based version is given by:

fk(L− 1− n) = gk(n) = wk(n) (3)
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Figure 2: SBC implementation using an orthogonal transform.

where fk(n) and gk(n) are the impulse responses of the analysis and synthesis
filters respectively, for the k-th subband.

3. Orthogonal transforms for the SBC of mechanical vibration sig-

nals

There are two key components of the SBC scheme shown in figure 2: the
transform block and the subband encoder. In this section, we will focus on
the first one, whereas the subband encoder will be examined in the next
section.

The main quality of an orthogonal transform from a data compression
perspective is its ability to concentrate signal energy into a small number
of coefficients (or subbands), which allows effective adaptive quantization to
be performed. Two transforms are widely used in data compression: the
DCT and the DWT. Among various transforms, the DCT has been shown to
be a good approximation of the statistically optimal Karhunen-Loeve trans-
form, for a wide class of signals. The DWT is also successfully employed
in various compression applications, due to its energy concentration proper-
ties as well as its ability to analyze a signal at variable time and frequency
resolutions. On the other hand, the Lapped Orthogonal Transform (LOT),
although less used in compression standards, has been shown to have similar
or even better energy compaction properties compared to the DCT in some
image compression applications [18].

Some principles related to the suitability of various orthogonal transforms
for compression are recalled in [3], in the framework of mechanical vibration
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Figure 3: Spectrogram of a typical vibration signal.

signals. The choice of the transform must be made in accordance with the
nature of the signal, and it is therefore highly dependent on the application
[12]. Every vibration component may be described by its envelope and its
instantaneous frequency. An important property of vibration signals is the
speed of variation of these parameters. In the case of slow-varying character-
istics, an harmonic basis (such as the one provided by DCT or LOT) should
be preferred for decomposition, whereas the DWT is better suited for signals
with strong non-stationary characteristics.

The signals measured by the accelerometers mounted on the plane engine
are noisy non-stationary harmonic signals. A spectrogram of a typical signal
is presented in figure 3. It may be seen in figure 3 a quite rich spectral content
of noisy time varying spectral lines. A zoom is performed on the spectrogram
to highlight one of the fastest variations of the signal parameters compared
to the size of the processing window. It may be noticed that even in this
worst case, the variation of the signal parameters is small with respect to
the frequency resolution. Therefore, one can expect that the DCT and LOT
perform better than the DWT, an empirical validation of the transform that
is better suited for this kind of vibration signals is performed in the following.
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A simple hard-thresholding procedure is used in order to evaluate the
ability of various transforms (DWT, DCT, LOT) to concentrate energy on
few coefficients. Thus, the lowest coefficients in the transform-domain are
discarded and the signal is then reconstructed using only the remaining coef-
ficients (no further quantization of the remaining coefficients is performed).
The transforms are applied to blocks of M = 2048 samples.

The reconstruction quality is evaluated in function of the percentage
of the remaining coefficients after thresholding using the Normalized Mean
Square Error (NMSE):

NMSE =

∑M−1
n=0 (x[n]− x̂[n])2

Mσ2
x

(4)

where x[n] is the original signal, and x̂[n] is the signal reconstructed after
compression.

For the DCT implementation, several forms are known, issued from dif-
ferent boundary conditions. We choose the most used in signal and image
processing which is the DCT of type II. In this case, the transform vectors
that compose the matrix W are:

wk(n) = cos

[

π

M

(

n+
1

2

)

k

]

, k, n = 0, ...,M − 1 (5)

Various implementations are available for the LOT too. In this paper, we
use a fast implementation proposed by Malvar [14], which is efficient for large
values of the transform length, M . This approach uses a linear combination
of DCT matrices of type I, II and IV in order to generate the basis vectors of
the LOT. LOT basis vectors can be seen as smooth trigonometric waveforms.
We recall that these vectors have the size L = K ·M , with K integer (K = 2
for the LOT used in this paper).

All the Daubechies’ wavelet functions have been evaluated. The best
performance for the DWT is provided by the twentieth order Daubechies’
wavelet function (db20) more suitable for stationary regular data [3]. It has
been used here.

In figure 4, the mean value as well as the standard deviation of the NMSE
(evaluated using a dataset of 54 signals) are plotted versus the percentage of
the remaining coefficients after thresholding in the transform-domain (DWT
(db20), DCT, LOT). It is obvious that, while the DCT and the LOT lead
to similar reconstruction performance, the DWT is not able to concentrate
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Figure 5: Histogram of the NMSE using DWT(db20), DCT and LOT.

signal energy and, for a fixed percentage of coefficients, the reconstruction
quality will be much lower. The figure 5 shows the histograms of the NMSE
using DWT(db20), DCT and LOT for 25% (left) and 3% (right) of remaining
coefficients. It may be seen that the dispersion of NMSE for DWT is larger
and that DWT can achieve mostly the same performance on some specific
signals but for a large part of signals, the DWT provides worst performance
especially for high compression rate with 3% of remaining coefficients.

The results shown in figures 4 and 5 clearly demonstrate that, although
the DWT is widely used in compression applications, for the test dataset
of 54 signals (see section 5 for more details on the dataset), the choice of a
harmonic decomposition basis is by far more suitable than a wavelet decom-
position. These conclusions are coherent with the analysis of the vibration
signal specificities detailed at the beginning of this section.

For sake of completeness, we also evaluate the performance for few tran-
sient signals observed in the case of fleeting events like a shock caused by a
small FOD (Foreign Object Damage, small birds ingestion for instance). An
example of this kind of signal is shown on Figure 6 (black vertical lines repre-
sent the blocks width). Figure 7 presents the performance of the transforms
for this class of signal. In this case, the NMSE is evaluated only for the block
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Figure 6: Example of signal vibration with transient phenomena due to small birds inges-
tion.

centered on the transient phenomena and the results are averaged over the
12 signals with FOD of the dataset. These numerical results show that the
wavelet provides better performances: this fact can be easily explained by
the ability of the wavelet to deal with highly non stationary signal. Never-
theless, due to the scarcity of this kind of phenomena for the signal we had
to compress, we will focus our attention on the DCT and the LOT, which
will be used in the implementation of the SBC compression system.

4. Subband Adaptive Quantization

The second key component of the SBC system shown in figure 2 is the
subband encoder. This block has several components: a buffer (required
to store successive in-time samples on each subband), a quantizer and an
encoder of the quantized values. The quantizer works adaptively, based on
an algorithm that effectively allocates the available quantization bits within
subbands.

For the quantization operation, there is a large variety of choices [11].
The most widely used approach is a scalar quantization, in which each input
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Figure 7: Normalized Means Square Error after compression using DWT(db20), DCT and
LOT for signals with transient phenomena.
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sample of the source is individually mapped to a corresponding codeword.
The simplest scalar quantization is the uniform one, but this approach is
optimal only for cases where the data source to be quantized is uniformly
distributed. The opposite approach is the non-uniform quantization, opti-
mized using the probability density function (pdf) characteristic of the data
source [19]. However, a considerable level of computational complexity is
required to obtain a close match between the theoretical pdf and the real
distribution of the data source. A mismatch of the pdf can significantly de-
grade the performance [11]. An alternative approach is ”robust quantization”
(or: companded quantization) that allows non-uniform quantization whose
distortion is independent of the probability distribution of the data source
[11].

The forward adaptive quantization [11], represents a good trade-off be-
tween the level of complexity and the performance. This approach requires
data to be buffered in blocks prior to quantization. The knowledge of the
properties of the data block (dynamic range, histogram) can be used to tune
the quantizer accordingly. Furthermore, in the method proposed in this pa-
per, the adaptability of the quantizer is not only defined on a per block basis,
but also inside each block. The latter is obtained by making a smart bit al-
location within the block, which is to adapt the uniform quantization to the
energy of the subband components.

The M components provided by the orthogonal transform are quantized
in the following way. The bit allocation is applied to blocks on N coefficients
for each of the M subbands. They are represented by the, M×N , Y matrix:

Y =











y0(0) y1(0) . . . yN−1(0)
y0(1) y1(1) . . . yN−1(1)
...

...
...

...
y0(M − 1) y1(M − 1) . . . yN−1(M − 1)











(6)

Each row of the matrix Y can be regarded as a subband component of
the input signal. The compression relies on the fact that the energy of the
signal is not equally distributed across the subbands and therefore it makes
sense to allocate more quantization bits to the most “important” subbands.
There are various ways to perform this allocation. In the reference [20], the
bits are allocated proportionally to the maximal values of the samples in each
subband. In this way, a compression of the dynamic range of the input signal
is made, while the quantization step is kept approximately constant in each
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subband. However, this method is rather empirical. Saywood [11] gives a
criterion which optimizes the bit allocation for transform coding, in order to
minimize the distortion introduced by the quantizer. The extension of this
method to the SBC case is straightforward, and the bit allocation mechanism
will be described in the following:

Step1. Let R denote the average desired number of bits used to code one
sample. In this case, Nb = M · R denotes the total number of bits initially
available for distribution to subbands. We set the initial number of bits
allocated for sample coding in each subband to 0 (Nk = 0);

Step2. Compute the variance σ2
k of each row k of the matrix Y. This

accounts for the energy of each subband (we assume that there is no DC
component);

Step3. Sort the variances σ2
k, k = 1, ...,M . Suppose that the maximum is

obtained for k = kM ;
Step4. Increment the number of bits corresponding to the subband kM

(NkM = NkM + 1). Divide σ2
kM

by 2;
Step5. Decrement the total number of available bits, Nb, by 1. If Nb = 0,

stop, otherwise go back to step 3.
Such a procedure ends up by allocating more bits to the bands with higher

energy. Its output will be a M -size column vector (“bit allocation table”),
containing the values Nk, which needs to be saved as side information. In
order to save resources, this table can be further encoded.

Once the number of bits which can be utilized in each subband has been
determined, the uniform quantization can be implemented by a simple nor-
malization. Thus, if we denote by L(k) = 2Nk the number of quantization
levels in each subband, the codewords that are associated to the samples of
the matrix Y can be determined by:

Cm(k) =

⌊

L(k)

2
·
ym(k)

ymax(k)

⌋

, k = 0, ...,M − 1; m = 0, ..., N − 1 (7)

where ymax(k) are the maximum absolute values on each row of the matrix
Y. The codewords given by equation (7) are a set of integers in the interval
[

−L(k)
2
, ..., L(k)

2
− 1

]

. The quantized values, ŷm(k), are obtained by inverting

equation (7). This inversion leads to a distorted value of the coefficients
from the matrix Y, due to the integer part operator used in this equation.
Because this operation uses the values ymax(k), k = 0, ...,M − 1, they need
to be stored as side information. Finally, reconstruction is carried out by
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Figure 8: Example of signal measured during the deceleration phase: the full capture (up),
zoom in on one processing block (down).

successively applying the inverse orthogonal transform on each column of
the matrix of quantized values.

The compression ratio (CR) of a block of M ·N samples can be computed
as:

CR =
M ·N · nb

N
∑M

k=1 Nk + nSIDE

(8)

where nb is the number of quantization bits of the original signal, Nk stands
for the number of bits allocated for the quantification of each sample from the
k-th band and nSIDE is the number of bits used to encode the side information.

5. Experiments and results

For testing purposes, a large number of vibration signals were acquired
using vibration sensors mounted on the engine. One example of signal, col-
lected in the deceleration stage (after landing) is presented in figure 8. We
show, in the upper part, the full capture, and in the lower part a zoom in
one processing block.

We deal with non stationary signals, whose envelope and instantaneous
frequency vary in time. Since we apply a block-based processing to non-
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stationary signals, a particular interest must be taken in the choice of the
block size. The degree of non-stationarity of the test signals is closely related
to the engine’s speed variation. The measures collected by two tachometers
mounted on the engine allow straightforward computation of the rotation
speed of the shaft. Therefore, the size of the data block can be tuned so
as to meet a “quasi-stationarity” constraint. Thus, we have used a time
window of S = M · N = 256 · 64 = 16384 samples, which corresponds to
a time duration of 327 ms. An example of waveform for such a window
is shown in the lower part of figure 8. By computing the variation of the
rotation speed over the time window used, we conclude that the variation
speed does not exceed 60 rpm, which corresponds to a “coherence time” of
1 s, during which signal characteristics do not change fundamentally.

Our objective is twofold: while in this section we assess reconstruction
quality by using RSNR (9) versus CR plots, in the next section we evaluate
compression impact on the fault detection algorithms.

RSNR =

∑M−1
n=0 x[n]2

∑M−1
n=0 (x[n]− x̂[n])2

(9)

The SAQ system described in section 4 is implemented using two orthogonal
transforms, LOT and DCT. The two methods will be referred to as SAQ-
LOT and SAQ-DCT respectively. In order to assess the feasibility of the
compression algorithm, we apply this algorithm on 44 vibration signals ac-
quired by three accelerometers, during different stages of the flight (start-up,
take-off, landing, stop). All signals were sampled at fs = 50 KHz, with a
resolution of nb = 16 bits/sample and their duration depends on the working
regime during which they were collected.

In figure 9 (up), we show an example of signal reconstruction, after com-
pression with both SAQ versions described in this paper. Both reconstructed
signals were compressed using an average rate of R = 2 bits/sample, which
means that the amount of data needed to represent the signal was reduced
nearly 8 times. One can notice the good quality of the reconstruction, despite
the strong compression that was performed. However, while the SAQ-LOT
approach leads to a reconstruction which is perceptually identical to the
original, for the DCT-based method, some small deviations from the origi-
nal waveform can be observed. In objective terms, the LOT-based method
provides a gain of 3 dB over the DCT approach (RSNR of 30.5 dB and 27.3
dB respectively).
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Figure 9: Signal reconstructed after compression (up) and absolute value of the recon-
struction error (down).
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One important part of this gain is produced by the reduction of the block-
edge errors when using the LOT. In order to highlight this effect, we show
in the lower part of figure 9 the absolute values of the reconstruction error
for both methods. For the DCT-based method, we can clearly distinguish
some peaks in the error signal around the block edge (the 100-th sample from
figure 9). There are methods to reduce these kinds of errors, such as local
filtering around the block edge or the use of overlapped blocks. While the
first approach increases the complexity of the compression system, the second
one reduces compression efficiency. It should be noted that the LOT already
incorporates the later solution, in an efficient manner, with no impact on the
CR, since L input samples are transformed into M LOT coefficients.

In figure 10, the compression results of both SBC methods are compared
with other classical compression approaches. Several reference methods are
considered: DWT thresholding (as applied in [3] for mechanical vibration
signals), Robust Non-Uniform Quantization (RNUQ) and Adaptive Quanti-
zation of the Adjacent Frequency Components (AQAFC). RNUQ (also re-
ferred to as companded quantization) is one of the “classical” quantization
approaches, presented, for example by Saywood [11]. The AQAFC is pro-
posed by the authors in [21] for speech compression, but it has been shown
to provide good results for vibration compression too [20]. Both methods are
applied in the DCT domain.

Compression results, obtained by averaging RSNR values over the whole
dataset are shown in figure 10. It can be noted that the best result is reached
by using the proposed SAQ-LOT. For CR = 5, the reconstruction gain pro-
vided by SAQ-LOT, in terms of RSNR, is approximately 4 dB over the
alternative DCT-based approach, 8 dB over AQAFC and 14 dB over the the
non-uniform quantization. The latter pays tribute to the constant codeword
length that is used to encode all the quantization values. The method pro-
posed in [3] has the poorest results, because, as shown in section 3, DWT is
not able to concentrate the energy of the signals from the test dataset, and
because of the non-adaptive nature of the method (a fixed quantization at 6
bits/sample is applied in all subbands). It can also be noted that, using the
SAQ methods, we are able to reach a compression ratio of 20, while keeping,
on average, the reconstruction quality over 10 dB.
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Figure 10: Global compression performance results.

6. Compression and fault detection

Although the RSNR provides an objective criterion to evaluate the com-
pression performance, this measure does not fully prove the feasibility of the
compression method, when used as a pre-processing step in mechanical health
monitoring systems. Indeed, more meaningful information can be obtained
by evaluating the influence of the compression on fault detection. In the
following, we will focus our attention on the detection of two common issues
that can be encountered in plane engines. Two particular faults are consid-
ered in the following: rolling element wear and rotor-stator rubbing. Our
main interest is to assess the influence that compression has on the capacity
of detecting such faults, commonly encountered in plane engines. With this
aim, we will compare detection results of the original signal with those ob-
tained from the signal compressed at various rates. Due to its advantages,
previously presented, we will keep SAQ-LOT as the compression method for
the results that will be presented in what follows.

6.1. Rolling elements wear

This kind of problem is caused by the degradation over time of the rolling
element bearing, which can rapidly turn into phenomena that can severely
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damage the engine. This is why the preventive detection of such an issue
is critical. The “signature” of this kind of fault consists in a series of ener-
getic peaks grouped around central harmonics that occur at multiples of a
fundamental frequency (fo − fi), where fo (respectively fi) is the rotation
frequency of the outer race (respectively the inner race). The frequency of
energy peaks can be expressed as [22]:

fBSR = (fo − fi) ·
D

2d
·

[

1−

(

d

D
· cosα

)2
]

(10)

where the geometrical bearing parameters are: D, the pitch diameter, d, the
ball diameter and α, the angle of contact between the ball and the race.
According to equation (10), fBSR and all its harmonics are multiples of the
difference fo − fi, referred to as “orders” of this difference.

Detection of rolling elements wear is done by looking for energy peaks
around the even orders of fo − fi. Since the position in frequency of the
peaks is known with a good accuracy, detecting this kind of fault is theoret-
ically a straightforward procedure. However, due to signal non-stationarity,
a simple Fourier analysis of the signal is not meaningful and time-frequency
approaches must be used instead. Furthermore, since there is a direct link
between the signature of the damage and the ball spin rotation, it is useful
to re-sample the signal at a constant angle, instead of a constant time step.
The spectrogram of such a signal then leads to a “time-order” representation.
Figure 11, shows a zoom of the spectrogram of a signal corresponding to an
engine affected by rolling element bearing damage, as well as the marginal
energetic contribution of various frequencies. Note that the signal was mea-
sured during the deceleration stage (e.g. after landing), to obtain “the clean-
est” vibration signal which can be used for fault detection purposes. The
energetic signature of the fault can be identified on the spectrogram by some
horizontal lines of high energy, occurring near the “expected frequencies”,
given by equation (10). The marginal energy distribution shown to the right
of figure 11 clearly exhibits the faulty behavior of the engine. The impact of
the compression is assessed by analyzing the peaks of the marginal energy
distribution (X(k)).

In figure 12, we the influence of compression on the value of the first peak
that occurs near 2fBSR is highlighted. This example shows that there is no
visible compression impact on the amplitude of the peak until CR = 25.
Besides, the peak remains clearly distinguishable from the “baseline” even
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Figure 11: Spectrogram of the vibration signal issued by an engine under the wear of the
rolling element bearing and the marginal sum of frequency components.

for very strong compressions (CR = 50).
In order to highlight the compression impact on the whole harmonics, we

introduce a measure of the Relative Peak Attenuation (RPA):

RPA(CR, pk) =
(Do(pk)−Dr(CR, pk))

2

Do(pk)2
(11)

where pk is the location of the peak, D(pk) = X(pk) − µ(pk), and µ(pk)
is the average value of X(k) around the peak. We use the subscript o for
the original signal and r for the signal reconstructed after compression. An
average measure of this criterion for the Np detectable peaks is given by:

RPA(CR) =

∑Np

k=1 RPA(pk, CR)

Np

(12)

The dataset analysis has shown that the signature of the rolling element
bearing wear is detectable for approximately 60 peaks. Average RPA results,
obtained for the test signal compressed at various rates are shown in figure
13. They demonstrate that even for very strong compression (CR = 50), the
impact on the energetic peaks remains within tolerable boundaries. Thus,
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Figure 12: Example of compression influence on the first energetic peak caused by the
wear of the rolling element bearing.

the RPA value of 0.04 (the highest in figure 13) corresponds to an average
amplitude attenuation of 20%, which means that the peaks remain easily
detectable.

As illustrated in figure 11, the energetic signature of the searched fault
significantly varies across frequency. Since energetic peaks tend to decrease
with the orders of fo − fi, the average results presented in figure 13 are
subject to an important standard deviation around the mean. In order to
have a more complete image on the way that the compression impacts the
signature of the fault, we show in figure 14 the experimental Cumulative
Density Functions (CDF) of the RPA parameter, at several compression
ratios. Considering that an attenuation of 1% has little to no impact on
the fault detection procedure, we may see in figure 14, that even for very
strong compression (CR = 50), over 60% of the peaks carrying the energetic
signature of the fault can be easily identified. This value exceeds 80% for
CR = 25 and reaches 100% with a fairly good compression (CR = 8).

The results presented in this subsection prove that the SAQ-LOT com-
pression method has little impact on the energetic signature of the particular
fault investigated here. Visual detection of the rolling element bearing wear
can be successfully performed by the expert, even for signals subjected to
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Figure 14: CDF of the RPA parameter at various compression rates.
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very strong compression.

6.2. Rotor-stator rubbing

The rubbing between rotor and stator surfaces is a common fault for
rotating machineries [22]. This fault can quickly have catastrophic effects
for the rotating machinery. Cepstrum computation represents one of the
strategies that can be used for defect detection in high speed machineries.
The real Cepstrum of a signal, x(t), which is used in our analysis for rubbing
detection purposes is defined as:

C(τ) = FT−1(ln(FT(|x(t)|)) (13)

where FT stands for the Fourier Transform. The variable τ , is usually referred
to as “quefrency”, while its magnitude is also anagrammed into “gamnitude”.
The rotor-stator rubbing determines a particular signature to appear in the
vibration signal with the periodicity of one revolution. The Cepstrum is a
useful tool to highlight physical phenomena that cause periodic frequency
components to occur in the spectrum. In order to analyze the compression
effect on the vibration signals affected by rubbing we dispose of 6 signals
measured for an engine where the rubbing phenomenon was induced for a
short period of time.

In figure 15 we show the Cepstrum of a part of the signal when no rubbing
exists, compared to the Cepstrum computed, for the same measured signal,
during a rubbing episode. Experience has shown that the contact is well
retrieved on the five first “rahmonics” of the cepstrum. Thus, a good criterion
of detection would be obtained by comparing the sum of these rahmonics
during the contact with that obtained for a healthy engine, or when no
contact exists. The ability to distinguish a peak caused by rubbing can
be formalized, for example by the parameter Rubbing Detection Criterion
(RDC):

RDC =

∑5
n=1 C(τn)

5
− C (14)

where τn are the quefrencies corresponding to the five first rahmonics and C
is the average of the cepstrum samples computed for τ 6= τn. In figure 16,
we show the value of the RDC parameter versus the revolution index, for
the original signal, as well as for the signal reconstructed after compression
at various rates. Although a strong compression significantly impacts the
computation of the RDC parameter (whose maximum is attenuated by 25%
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Figure 15: Example of Cepstrum representation during normal functioning (up) and during
rotor-stator contact respectively (down).
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Figure 16: Rubbing detection example for strong and moderate compression.
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for CR = 25), the impulse caused by the occurrence of rubbing remains
clearly distinguishable. Furthermore, there is no meaningful compression
influence, in this example, for moderate compression (CR = 7). While a
binary decision regarding the existence of rubbing is straightforward even for
strong compression, a finer analysis (e.g. regarding the number of revolutions
for which the rubbing persisted) can be influenced by the compression. A
solution could be to use an on-line detection of the rubbing phenomenon
(e.g. when the criterion exceeds a given threshold) in order to adapt the
compression rate when such a fault is detected for an accurate analysis after
compression. It should, finally,be noted that all test signals we used in our
study check the aforementioned conclusions, the rubbing signature remaining
detectable even at strong compression.

7. Conclusions

In this paper we introduce a novel compression method for mechanical
vibration signals. The method consists in a particular form of SBC imple-
mentation, based on the Lapped Orthogonal Transform. The selection of this
transform is validated by the experiments carried out on our dataset. While
the concept of SBC is well suited to the nature of the vibration signal, its
transform-based implementation brings simplicity and flexibility. An adap-
tive uniform quantization is applied to the subbands, which provides results
that are comparable with more sophisticated quantization approaches, while
keeping the system simple enough.

The method proposed in this paper is tested on a large number of vibra-
tion signals collected by accelerometers mounted on plane engines. We show
that, due to the properties of this transform, the LOT-based method provides
better results compared to the DCT-based method, as well as to some other
classical compression approaches. Strong compression can be performed with
a reasonable amount of signal distortion: using LOT-SAQ the signals can be
compressed 25 times with an average RSNR of 10 dB.

Furthermore, we investigate the compression effect on the detection of
two commonly encountered issues of the plane engine: rolling element bear-
ing wear and rotor-stator rubbing. We show that even for strong compression,
the impact on the energetic signatures of these misbehaviors remains mod-
erate and allows straightforward fault detection on the compressed signal.
Thus, at a CR of 25, 80% of the peaks carrying the energetic signature of
the first defect are attenuated by less than 1%. For the same compression
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ratio, the energetic signature of the rubbing phenomenon, while attenuated
by approximately 25% in amplitude, remains clearly distinguishable for all
the test signals.

[1] Y. Zhang, J. Li, Vibration sensor data compression and its effect on
structural system identification, Smart structures and materials (Pro-
ceedings of SPIE) 6174 (2006) 61743E1–61473E11.

[2] M. Tanaka, M. Sakawa, K. Kato, Application of wavelet transform to
compression of mechanical vibration data, Cybernetics and Systems: an
International Journal 28 (1997) 225–244.

[3] W. Staszewski, Wavelet based compression and feature selection for vi-
bration analysis, Journal of Sound and Vibration 211 (1998) 735–760.

[4] Z. Peng, F. Chu, Application of the wavelet transform in machine con-
dition monitoring and fault diagnostics: a review with bibliography,
Mechanical Systems and Signal Processing (18) (2004) 199–221.

[5] B. Liu, Adaptive harmonic wavelet transform with applications in vi-
bration analysis, Journal of Sound and Vibration 262 (2003) 45–64.

[6] W. Wang, P. McFadden, Application of wavelets to gearbox vibration
signals for fault detection, Journal of Sound and Vibration 192 (1996)
927–939.

[7] Y. Zhang, J. Li, DPCM-based vibration sensor data compression and its
effect on structural system identification, Earthquake Engineering and
Engineering Vibration 4 (1) (2005) 154–163.

[8] Z. He, L. Wu, H. Xu, Periodic prediction and switched adaptation in
vibration signal compression, in: Proceedings of IEEE Pacific Rim Con-
ference on Communications, Computers and Signal Processing, Victoria,
Canada, 1991.

[9] W. Bao, W. Wang, R. Zhou, N. Li, J. Yang, D. Yu, Application of
a two-dimensional lifting wavelet transform to rotating mechanical vi-
bration data compression, Journal of Mechanical Engineering Science,
Proceedings of IMechE 223 (2009) 2443–2449.

28



[10] Z. Peng, P. Tseb, F. Chua, An improved Hilbert-Huang transform and
its application in vibration signal analysis, Journal of Sound and Vibra-
tion 286 (2005) 186–205.

[11] K. Saywood, Introduction to data compression -third edition, Elsevier,
2006.

[12] M. Feldman, Hilbert transform applications in mechanical vibrations,
Wiley, 2011.

[13] P. Vaidyanathan, Quadrature mirror filter banks, M-band extensions
and perfect-reconstruction techniques, ASSP Magazine, IEEE 4 (3)
(1987) 4 –20. doi:10.1109/MASSP.1987.1165589.

[14] H. Malvar, Lapped transforms for efficient transform/subband coding,
IEEE Transactions on Acoustics Speech and Signal Processing 38 (6)
(1990) 969–978.

[15] H. Malvar, Extended lapped transforms: properties, applications, and
fast algorithms, IEEE Transactions on Signal Processing 40 (11) (1992)
2703–2714.

[16] Z. Doganata, P. Vaidyanathan, T. Q. Nguyen, General synthesis proce-
dures for FIR lossless transfer matrices for perfect-reconstruction mul-
tirate filter bank applications, IEEE Transactions on Acoustics Speech
and Signal Processing 36 (1987) 1561–1574.

[17] R. de Queiroz, On lapped transforms, Ph.D. thesis, The University of
Texas at Arlington (1999).

[18] X. Zou, W. Pearlman, Lapped orthogonal transform coding by ampli-
tude and group partitioning, Applications of Digital Image Processing
XXII, Proceedings of SPIE 3808 (1999) 293–304.

[19] J. Max, Quantizing for minimum distortion, IRE Transactions on Infor-
mation Theory 6 (1960) 7–12.

[20] M. Oltean, J. Picheral, E. Lahalle, H. Hamdan, Vibration signals com-
pression with time-frequency adaptive quantization, in: Proceedings of
the International Symposium on Intelligent Signal processing, WISP,
Floriana, Malta, 2011.

29



[21] D. Isar, A. Isar, Speech adaptive compression using cosine packets, in:
Proceedings of the 4th International Conference on Communications
COMM02, Bucharest, Technical Military Academy, 2002.

[22] I. Howard, A review of rolling element bearing vibration: ”Detection,
diagnosis and prognosis”, Tech. rep., DSTO Aeronautical and Maritime
Research Laboratory (1994).

30


