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Abstract 

Particle Filtering (PF) is used in prognostics applications by reason of its capability of robustly 

predicting the future behavior of an equipment and, on this basis, its Residual Useful Life (RUL). It 

is a model-driven approach, as it resorts to analytical models of both the degradation process and 

the measurement acquisition system. This prevents its applicability to the cases, very common in 

industry, in which reliable models are lacking. In this work, we propose an original method to 

extend PF to the case in which an analytical measurement model is not available whereas, instead, a 

dataset containing pairs «state - measurement» is available. The dataset is used to train a bagged 

ensemble of Artificial Neural Networks (ANNs) which is, then, embedded in the PF as empirical  

measurement model. 

The novel PF scheme proposed is applied to a case study regarding the prediction of the RUL of a 

structure, which is degrading according to a stochastic fatigue crack growth model of literature.  

1  Introduction 

Predictive Maintenance (PM) is an innovative maintenance paradigm, founded on the assessment of 



the current health state of an equipment (i.e., state identification) and the prediction of its future 

evolution (i.e., prognostics, [1] [2]). This allows identifying problems in the equipment at the early 

stages of development and estimating the RUL (i.e., the residual time span before the degradation 

state reaches the threshold that leads to a loss of functionality). In principle, an accurate estimate of 

the RUL enables to run the equipment as long as it is healthy, thus providing additional time to 

opportunely plan and prepare the maintenance interventions for the most convenient and 

inexpensive times [2]. 

The development of prognostic systems capable of reliably predicting the occurrence of a faulty 

condition in the equipment mainly depends on the quality and quantity of the available information 

and data on its past, present and future behavior. In this respect, a typical distinction is made 

between data-driven and model-based approaches. In the former case, modeling of the evolution of 

the degradation process relies exclusively on process history data. Empirical techniques like 

Artificial Neural Network (ANN, e.g, [3], [4]), Support Vector Machine (SVM, e.g. [5]), Local 

Gaussian Regression (LGR, e.g. [6], [7]) are typical examples. In the latter case, a model of the 

degradation process is used to predict the future evolution of the equipment state and infer the RUL. 

Physic-based Markov models (e.g., [8], [9]), statistical distributions of failure times (e.g., [10], 

[11]), empirical degradation models (e.g., [12], [13]) are typical examples. If experimental or field 

degradation data are available, these can be used to calibrate the parameters of the model or to 

provide ancillary information related to the degradation state, within the state-observer formulation 

typical of a filtering problem with given state model; Kalman filtering (KF, e.g., [14], [15]) and 

Particle Filtering (e.g., [16]-[20]) are typical examples. 

This work focuses on Particle Filtering (PF) for prognostics, in recognition of its capability of 

robustly predicting the future behavior of the equipment degradation, x , which is typically a 

quantity not directly observable, without requiring the strict hypotheses of the KF ([16]) on the 

linearity of the system state evolution and noise gaussianity. From the prediction of the future 

evolution of the degradation and knowledge of the failure threshold (i.e., the degradation value 



beyond which the equipment loses its function), one can assess the equipment RUL.  

Previous works employing a PF scheme for prognostics (e.g., [16], [18], [19]) assume knowledge of 

the following information [21]: 

1) The knowledge of the degradation model describing the stochastic evolution in time of the 

equipment degradation x  (in general a multi-dimensional vector): 

( 1) = ( ( ), ( ))x t g x t t   (1) 

where g  is a possibly non-linear vector function and ( )t  is a possibly non-Gaussian noise. 

2) A set of measures (1),..., ( )z z t  of past and present values of some physical quantities z  

related to the equipment degradation x . Although z in general is a multi-dimensional vector, 

in this work it is considered as a mono-dimensional variable; then, the underline notation is 

omitted. 

3) A probabilistic measurement model which links the measure z with the equipment 

degradation x : 

( ) = ( ( ), ( ( )))z t h x t x t  (2) 

where h  is a possibly non-linear vector function and ( )x  is the measurement noise vector. 

In practical cases where the analytical measurement model  is not available, the PF scheme here 

described would not be directly applicable. To overcome this hurdle, in this work the challenge is 

notably to combine a data-driven approach for exploiting the measurement data, with a model-based 

approach, for exploiting  degradation modeling. To the authors’ best knowledge this is the first time 

that such issue is addressed in prognostics.  

For example, piping of deep water offshore well drilling plants degrades due to a process of scale 

deposition which may cause a decrease, or even a plug, of the cross sections of the tubular. Giving 

the inaccessibility of the piping, it is usually impossible to acquire a direct, on line, measure of the 

scale deposition thickness. On the other side, research efforts are devoted to perform laboratory 



tests to investigate the relationships between the scale deposition thickness and other parameters 

which can be more easily measured during plant operation, such as pressures, temperatures and 

brine concentrations. The idea is to populate datasets with the values of the measurable parameters 

for different scale deposition thicknesses, and use the data to build data-driven models for 

predicting the scale deposition thickness [22]. 

Another example concerns the crack propagation in bearings of rotating machinery, which often 

results in damage to the bearings and consequent reduced efficiency, or even severe damage, of the 

entire motor system. In this respect, several studies have been performed for an analytical 

description of the crack propagation process in bearing (e.g., [23], [24]). However, a direct measure 

of the crack depth during online operation is usually not possible, and thus the classical PF scheme 

is not applicable. On the other hand, since the major tell-tale sign of a bad bearing is an increase in 

vibration, both in amplitude and complexity ([25], [26]), a possible approach consists in developing 

laboratory tests to relate the crack depth to the measurements of the vibrations which the crack 

induces in the assembly. From these tests, an empirical model which links the vibration 

measurement to the real crack depths may be obtained. 

In this context, the specific novelty of the work here presented is the application of PF for 

prognostics in a case in which the measurement model is not available but a dataset   containing a 

number   of pairs made by the state   and the corresponding measurement   is available for 

exploitation by a data-driven approach. To do this, a technique based on the use of an ensemble of 

ANNs [27] is here embedded in the PF scheme. Bagging is used to generate the datasets for training 

the different ANN predictors whose output are, then, combined to give the ensemble output, which 

is characterized by a lower variance than the one of the single ANN predictor [28]. The key idea of 

bagging is to treat the available dataset T  as if it were the entire population, and then create 

alternative versions of the training set, by randomly sampling from it with replacement. 

An alternative way to cope with the issue considered in this work consists in the development of a 

completely data-driven approach. For example, one may use the analytical degradation model to 



generate samples of degradation evolutions, and, then, utilize them together with the measurement 

data in a ‘traditional’ data-driven approach (e.g., a Support Vector Machine) which directly predicts 

the system future degradation evolution. However, notice that traditional data-driven approaches, 

differently from the PF approach, are typically not able to continuously update in a Bayesian 

perspective the uncertainty on the prediction. 

The remainder of the work is structured as follows: in Section 2 a brief review of the PF is reported; 

in Section 3 the problem of the substitution of the measurement model and the technique to 

overcome this problem are presented. In Section 4 the technique is applied to a case study dealing 

with the physical phenomenon of the crack growth; Section 5 concludes the work. 

2  Particle Filtering for prognostics 

Particle Filtering (PF) is a model-based method whose application in prognostics aims at inferring 

the evolution of an equipment degradation state on the basis of a sequence of noisy measurements; 

it relies on Bayesian methods to combine a prior distribution of the unknown state with the 

likelihood of the observations collected, to build a posterior distribution. This technique is widely 

used in prognostics since it allows to take into account even non-linear systems and/or non-

Gaussian noises. The prediction of the equipment degradation state, x , is performed by considering 

a set of 
s

N  weighted particles, which evolve independently on each other, according to the 

probabilistic degradation model of Equation 1. The basic idea is that such set of weighted random 

samples constitutes a discrete approximation of the true Probability Density Function (pdf) of the 

system state x  at time t . Typically, in a PF scheme, when a new measurement is collected, it is 

used to adjust the predicted pdf through the modification of the weights of the particles. Roughly 

speaking, the smaller the probability of encountering the acquired measurement value, when the 

actual component state is that of the particle, the larger the reduction of the particle's weight. On the 

contrary, a good match between the acquired measure and the particle state results in an increase of 

the particle importance. This requires the knowledge of the probabilistic law which links the state of 



the component to the gathered measure (Equation 2). From this model, the probability distribution 

( | )P z x  of observing the sensor output z  given the true degradation state x  is derived 

(measurement distribution). This distribution is then used to update the weights of the particles 

upon a new measurement collection (for further details see [16], [18], [29]). Schemes of the PF 

algorithm are presented in Figures 1 and 2. 

 

Figure 1: Flowchart of a PF algorithm 



 

Figure 2: Information flowchart for a PF algorithm 

 

3  Substitution of the measurement model with a bagged ensemble of 

ANN 

In this Section, we propose a method to estimate the pdf ( | )P z x  of the measurement z  in 

correspondence of a given equipment degradation state x , in the case in which the analytical form 

of the measurement model is not known. The method, derived from [27] and [30], requires the 

availability of a dataset made of training
N  couples ( , )

n n
x z . The estimated pdf ˆ( | )P z x  will be used in 

the PF scheme according to the scheme of Figure 3. 



 

Figure 3: Information flowchart for the modified PF algorithm 

Behind the method there is the hypothesis that the measurement model, which is unknown, can be 

written in the form: 

( ) ( ) ( )z x f x x   (3) 

where ( )f x  is a biunivocal mathematical function and the measurement noise ( )x  is a zero mean 

Gaussian noise. 

The method is based on the use of a bagged ensemble of ANNs, which are employed to build an 

interpolator ( )x  of the available training patterns  ( , ), 1.,...,
n n training

T x z n N  . Since the obtained 

ANNs outputs depend on the training set, ANNs may suffer from instability. To overcome this 

issue, the use of a bagged ensemble of ANNs has been proposed (e.g., [28], [31]): each base 

interpolator of the ensemble is trained on different distributions of data according to a bootstrap 

technique. The key idea is to treat the available dataset as if it were the entire population, and then 

to create a number B  of alternative versions *

=1
{ }B

b b
T  of T , by randomly sampling from it with 

replacement (i.e., every sample is returned to T  after sampling so that a pattern could appear 

multiple times in the same bagged set *

b
T ). Using these training sets, the networks *

=1
{ ( ; )}B

b b b
x T  are 

built and the output ( )
avg

x  of the bagged ensemble is obtained by averaging the single ANN output 



according to: 

*

=1

1
( ) = ( ; )

B

avg b

b

x x T
B

   (4) 

Empirical studies have established that bagging is a simple and robust method that generally 

increases the accuracy of a single learner [28], [31]. 

 

Figure 4: Scheme of a bagging ensemble of ANNs 

On the other hand, since PF requires the knowledge of the pdf ( | )P z x , the estimate of ( )f x  does 

not suffice to apply PF. In this respect, the procedure proposed in [27] allows to estimate the pdf 

( | ( ))P z f x  from which the pdf ( | )P z x can be obtained, being the function f  invertible for 

hypothesis. The procedure is based on the subtraction of the random quantity ( )
avg

x  to both sides 

of Equation 3: 

( ) ( ) = [ ( ) ( )] ( )
avg avg

z x x f x x x      (5) 

The left-hand side of Equation 5 is a random variable which represents the error of the ensemble 

output ( )
avg

x  with respect to the measurement ( )z x . This random error is made up of two 

contributions (right hand side of Equation 5):  

1. The random difference ( ) ( )
avg

f x x  between the unknown deterministic quantity ( )f x  



and the ensemble output ( )
avg

x . This quantity is a random variable, being ( )
avg

x  

dependent on the random training set 
b

T , 1,...,b B , i.e. different training sets would lead to 

different ensemble models and thus to different output ( )
avg

x . Since ( ) ( )
avg

f x x  can be 

seen as the model error, its variance will be referred as model error variance and indicated 

by 2 ( )
m

x . 

2. The intrinsic noise ( )x  of the measurement process, whose variance is indicated by 

2 ( )x . 

These two contributions are estimated by means of the procedures described in the following 

Sections 3.1 and 3.2. 

3.1  Distribution of the model error variance 

The procedure here used to estimate the distribution ( ( ) | ( ))
avg

P x f x  of the ensemble output ( )
avg

x

given the true value of ( )f x , is based on the assumption that the random variable ( ) ( )
avg

f x x  is 

gaussian with zero mean and standard deviation ( )
m

x , which entails that ( ( ) | ( ))
avg

P x f x  is 

gaussian with mean ( )f x . Notice that residual errors in the output of the ANN are usually not 

caused by variance alone; rather, there may be biases in the output of the ANN, which invalidate the 

assumption that the mean of the distribution is zero. However, it is generally accepted that the 

contribution of the variance in the residual error of the ANN dominates that of the bias (see [33] for 

further details on this). Furthermore, the bias in the output of an ensemble of NNs is expected to be 

smaller than that of the single ANN. 

In order to estimate the model error variance 2 ( )
m

x , the technique in [27] requires to divide the B  

networks of the ensemble ( )
avg

x  into M  smaller sub-ensembles, each one containing K  networks, 

and to consider the output ( )m

com
x , =1,...,m M  of each sub-ensemble as:  

=1

1
( ) = ( )

K
m

com k

k

x x
K

   (6) 



The set 
=1

={ ( )}m M

com m
x   constitutes a sampling of M  values from the distribution ( ( ) | ( ))

com avg
P x x 

and its sample variance 2ˆ ( )
m

x  could be used to approximate the unknown variance 2 ( )
m

x  of the 

ensemble output. Notice that the idea behind this procedure is that by estimating ( )f x  with ( )
avg

x , 

one can approximate ( ( ) | ( ))
avg

P x f x  by ( ( ) | ( ))
com avg

P x x  . In order to improve the reliability and 

stability of 2ˆ ( )
m

x , bagging is also performed on the values of  . Thus, P  bagging re-sampled sets 

of   are gathered:  

*

=1
={ }P

p p
  (7) 

where *

p
  is the p -th subset containing M  values of ( )

com
x , sampled with replacement from  . 

For any subset *

p
 , =1,...,p P , the corresponding variance 2*( )

p
x  is computed; then, the estimate 

2ˆ ( )
m

x  of the variance 2 ( )
m

x  is calculated as their average value:  

2 2*

=1

1
ˆ ( ) = ( )

P

m p

p

x x
P

   (8) 

Finally, the estimate of the regression distribution proposed by the method is:  

2ˆ( ( ) | ( )) ( ( ), ( ))
avg avg m

P x f x N x x    (9) 

3.2  Distribution of the measurement noise 

In this Section, the technique proposed in [30] is applied to estimate the variance 2 ( )x  of the 

Gaussian zero mean noise ( )x  affecting the measurement equation (Equation 3). 

From Equation 5, one can derive:  

2 2

[ ( )] [ ( ) ( )] [ ( )] 2 {[ ( ) ( )] ( )}

( ) ( )

avg avg avg

m

Var z x Var f x x Var x E f x x x

x x

    

 

     

 
  (10) 

The last equality is due to the independence of the error [ ( ) ( )]
avg

f x x  from the measurement noise 

( )x . To explain this, notice that [ ( ) ( )]
avg

f x x  depends on the noise values 
n

  affecting the 

measures ( ) ,
n n n

z f x    1.,..., ,
training

n N  in the training data  ( , ), 1.,...,n n training
T x z n N  , which are 

used to build the ensemble model ( )m

com
x , whereas ( )x  is the value of the noise affecting the 



measure of the test data x , not used for training the model. Thus, 
n

  1.,..., ,
training

n N  and the values 

sampled from ( )x  in the test data are different, independent realizations of the same random 

variable. Notice also that 2 ( )x  obeys a Chi-square 2 ( )x  distribution with 1 degree of freedom. 

The term 2 ( )
m

x  can be estimated according to the procedure illustrated in the previous Section 3.1, 

whereas, being ( ) ( )
avg

z x x  a zero mean random variable, its variance is given by:  

2[ ( ) ( )] = [( ( ) ( )) ]
avg avg

Var z x x E z x x    

Notice that in correspondence of the training couples ( , )
n n

x z , 1,...,
training

n N , one can approximate 

 
2

( ) ( )
avg

E z x x 
  

 by  
2

( ) ( )
avg

z x x  and thus, according to Equation 10, a dataset can be 

obtained, which is made up of the couples 2ˆ( , )
n n

x  , 1,...,
training

n N , where:  

2 2 2ˆ ˆ= {( ( )) ( ),0}n nn n avg
max z x x      (11) 

Finally, in order to estimate 2 ( )x  for a generic x , a single ANN is trained using the dataset 

2ˆ( , )
n n

x  , 1,...,
training

n N . 

3.3  Estimate of the measurement distribution P(z|x) 

Being ( )
avg

x  an estimate of ( )f x , the measurement distribution ( | ( ))P z f x  can be approximated 

by the distribution ( | ( ))
avg

P z x  which can be derived from the distribution ( ( ) | ( ))
avg

P x f x  and the 

distribution of the measurement noise ( )x , according to Equation 5. Since these two distributions 

are both Gaussian, with means and variances estimated as shown in Sections 3.1 and 3.2, 

( | ( ))P z f x  is approximated by a Gaussian distribution with mean ( )
avg

x  and variance 

2 2ˆˆ ( ) ( )
m

x x  . Finally, being ( )f x  invertible, the distribution ( | )P z x  of the measurement z  in 

correspondence of a given state x , is given by:  

2 2ˆˆ( | ) ( | ( )) ( ( ), ( ) ( ))
avg m

P z x P z f x N x x x      (12) 

 



4  Case study 

4.1  Description of the case study 

In this Section, we apply the technique described in Section 3 for estimating the measurement 

distribution ( | )P z x  to a case study dealing with the crack propagation phenomenon in a component 

subject to fatigue load. The system state is described by the vector 
1 2

( ) = ( ( ), ( ))x t x t x t , whose first 

element, 
1
( )x t , indicates the crack depth whereas the second element, 

2
( )x t , represents a time-

varying model parameter that directly affects the crack growth rate. The evolution of this 

degradation process is described by the following two equations, which form a markovian system of 

order one:  

4 3

1 1 2 1
( 1) = ( ) 3 10 (0.05 0.1 ( )) ( )x t x t x t t       (13) 

2 2 2
( 1) = ( ) ( )x t x t t   (14) 

where 
1
( )t  is a Gaussian noise with mean 0.045 and standard deviation 0.116, and 

2
( )t  is a zero 

mean Gaussian noise with standard deviation 0.010. 

In the present case study, it is assumed that a measurement equation is unavailable whereas a 

dataset formed by the trainingN  pairs 
1,( , )n nx z  1,..., trainingn N , is available, where the subscript 1 

refers to the first element of vector x(t). With the purpose of showing the feasibility of the proposed 

approach, the dataset  1,( , ), 1,...,n n trainingT x z n N   has been artificially generated by simulating 

the degradation process ( ),x t  and sampling the date from the probabilistic measurement model  

 
1 1 1 1

( ) = ( ) ( ) ( ) 0.25 ( )z t f x x x t x      (15) 

where 
1

( )x  is a zero mean Gaussian noise, whose standard deviation depends on 
1

x :  

 2

1 1 1

1 1 1
[ ( )] =

120 10 2
Std x x x     (16) 

According to Equation 15, the function ( )f x  is given by 
1

0.25x  , which is, as required by the 

method, an invertible function. These degradation and measurement models have been derived from 



[18]. 

Notice that the probabilistic measurement model of Equation 15 has been intentionally taken 

simple, as the main interest of our work is the quantification of the uncertainty in the RUL 

prediction and not the ability of the ensemble in reproducing the measurement model. In this 

respect, the knowledge of the variance of the measurement noise is fundamental, as it determines 

the amplitude of the prediction intervals of the RUL estimates. Thus, it is the capability of correctly 

reconstructing the variance that plays a key role in the assessment of the potential of the proposed 

technique. 

4.2  Estimate of the measurement distribution 

According to the technique illustrated in Section 3, an ensemble of = 200B  ANNs has been built 

using the available dataset  1,
( , ), 1,..., ,

n n training
T x z n N   where 1000

training
N  . Every ANN has 5 tan-

sigmoidal hidden neurons and one linear output neuron. To estimate 2 2

1
( ) ( )

m m
x x  , the ensemble 

has been divided into = 20M  sub-ensembles, and =1000P  bagging resamples of the sub-ensemble 

outputs 
1

( ) ( )m m

com com
x x   have been considered, 1,...,m M . 

The ANN used to estimate the noise variance 2 ( )x  is characterized by 5 tansigmoidal hidden 

neurons and one linear output neuron. 

The results are evaluated in terms of the following performance indicators, which are computed by 

considering a set of =1000
test

N  couples 
1,

( , )
i i

x z , 1,...,
test

i N  obtained from Equations 15 and 16:  



 

Figure 5: Scheme of the proposed cross-validation 

1. The square bias 2b ; i.e., the average quadratic difference between the true value of 
1

( )f x  

and the ensemble estimate of this quantity 1
( )

avg
x :  

2 2

1, 1,

=1

1
= ( ( ) ( ))

Ntest

i avg i

itest

b f x x
N

  (17) 

This value gives information on the accuracy of the estimate of 
1

( ) ( )f x f x  provided by the 

ensemble. Notice that the computation of this indicator requires the knowledge of the 

function 
1

( )f x , which is not available if the measurement equation (Equation 15) is not 

known. Thus, in general one can only compute: 

2

1,

1

1
( ( ) )

testN

i i

itest

MSE x z
N




   (18) 

Small values of MSE indicate satisfactory performance of the ensemble. 

2. The coverage of the Prediction Interval (PI) with confidence 0.68. This indicator is used to 

verify the accuracy of the estimate of the distribution ( | )P z x . A PI with a confidence level 

p
  is defined as a random interval in which the observation 

1
( ) ( )z x z x  falls with probability 



p
 ([27], [32], [34]): 

1 1
( ( ) ( ))

p p
P z x PI x    (19) 

The PI with 0.68
p

   is given by:  

2 2 2 2

1 1 1 1 1 1 1
垐垐( ) ( ) ( ) ( ) ( ) ( ) ( )

avg m avg m
x x x z x x x x            (20) 

In order to verify whether the estimate of 
1

( | )P z x  provides a satisfactory approximation of 

the true pdf, we will consider how many times the measurement 
i

z  falls within the 

0.68 1,
( )

p i
PI x 

. The closer to 
p is the portion of data inside the 

p -confidence interval, the 

more accurate is the estimation of the parameters of the Gaussian pdf. A graphical 

representation for the verification procedure is shown in Figure 6. 

 

Figure 6: Verification of the coverage for PI 

In order to avoid over/under estimating the performance indicators 2b  and coverage, cross-

validation of the results has been done by repeating the computations with 25
set

N   different, 

randomly generated training and test sets. Moreover, to verify the sensibility of the methodology to 

the cardinality training
N  of the training set, two cases have been considered: case 1 considers 

1000
training

N  couples 
1,

( , )
n n

x z , 1,...,
training

n N  to build the ensemble, whereas there are only 

50
training

N  couples for case 2. Table 1 reports means and standard deviations of the performance 

indicators over the 25 cross-validations in the two cases. 



training data 1000 1000 50 50 

model Ensemble 1 ANN Ensemble 1 ANN 

2b   0.0040 ± 0.0015 0.0097 ± 0.0060  0.0793 ± 0.0395  0.3877 ± 0.3441 

PI coverage  0.6758 ± 0.0366 - 0.5488 ± 0.1031 - 

Table 1 Performance indicators in case of 1000 and 50 training data over 25 cross-validations; the mean  std is reported 

Notice that when 1000 training couples 
1,

( , )
n n

x z , 1,...,
training

n N  are available, the ensemble output 

1
( )

avg
x  is very accurate in the prediction of the function f(x), the bias being very small. 

Furthermore, notice that the ensemble outperforms a single ANN trained with all the 1000 training 

patterns. With respect to the estimate of the distribution 
1

( | )P z x , the proposed method provides a 

satisfactory approximation, being the coverage very close to 0.68. 

Using the smaller training set made by 50 training patterns, the accuracy of the 
1

( | )P z x  estimate 

decreases. Notice, however, that the prediction of the ( )f x  value provided by the ensemble is still 

more satisfactory than that of one single ANN. 

Table 2 reports the estimates of the two contributions 2  and 2 of the variance of the estimated 

measurement distribution 
1

ˆ( | )P z x . Notice that in this case study, 2  is negligible with respect to 

the variance 2  of the measurement noise. Thus, the accuracy of the estimate of the PI is more 

sensible to the estimate of 2 . 

   1000 training data 50 training data Real value 

Var (P(z|x))=
2 +

2  0.4489±0.1359 0.4955±0.0621 - 

2  0.0243±0.0317  0.0005±0.0001 - 
2  0.4886±0.0276  0.4095±0.1642 0.4900 

Table 2: Contributions to the ( | )P z x  variance 

In this respect, Figures 7 and 8 show the estimate of 2

1
( )x  in the two cases of training sets formed 

by 1000
training

N   and 50
training

N   
1,

( , )
n n

x z , 1,...,
training

n N , pairs, respectively. The estimated values 

are compared with the true 2  value provided by Equation 16. Notice that this comparison, which 

is done in this work to assess the performance of the methodology, is not possible in real industrial 

applications if the measurement model (Equations 15 and 16) is not available. 



Finally, the larger the cardinality of the training dataset, the better the approximation of 2

1
( )x . 

This is due to the fact that the ANN built to interpolate 
1

( )x  (reported with dots in Figures 7 and 8) 

is trained with much more patterns in the first case. 

 

Figure 7: True and approximated measurement noise variance 
2

1
( )x  (1000 training data) 

 

Figure 8: True and approximated measurement noise variance 
2

1
( )x  (50 training data)   

4.3  Crack depth prediction 

The objective of this Section is to evaluate the performance of the overall PF scheme in the 

prediction of the crack depth evolution when the ensemble of ANNs is used to estimate the 

measurement distribution 
1

( | )P z x . To this purpose, the problem tackled consists in predicting the 

future crack propagation starting from time 80t   in arbitrary units, on the basis of eight 

measurements of the crack depth taken at time 10
m

t m  , 1,...,8m  . The PF has been run and the 

particles' weights after the collection of the last measurement ( = 4.6087z  in arbitrary units at = 80t



) have been recorded; the particles' weights have been updated by using the estimate of the 

distribution 
1

( | )P z x  obtained in the previous Section in the two different cases of = 50
training

N  and 

=1000
training

N  training data available. Figure 9 compares the estimates of the pdf 
1

( | )P z x  at time 

80t   provided by the two ensembles with the distribution which would be obtained by using the 

true measurement equation for the particle with the highest difference between the weights 

computed through the analytical measurement model and through the considered technique (with 

1000 training data). Table 3 reports the most significant numerical values for the comparison: the 

means and the standard deviations of the distributions and the weight w  assigned to the particle 

upon the Bayesian update (before this, the weight w  is the same in the three cases, since the 

resampling algorithm has been adopted, see [16]). Notice that the ensemble trained with 50 data 

provides a distribution characterized by variance lower than the analytical, and thus the weight 

assigned to the particle (
1

5.93x  ) is higher. This result confirms that the size of the training set 

impacts on the accuracy of the estimate of 
1

( | )P z x . 

 

Figure 9: Comparison of the distributions ( | )P z x  for the three cases under analysis 

    analytical   1000 

training data  

 50 training 

data  

mean   6.1800   6.1864   6.2484  

std. dev.   0.7997   0.7398   0.6103  

w    0.0725   0.0555   0.0177  

Table 3: Comparison of the parameters of the distributions 
1

( | )P z x  and of the corresponding weights for the three cases 



under analysis 

Figure 10 shows the prediction of the crack depth evolution performed at 80t  , after the last 

measurement has been acquired, by using the two ensemble models to estimate 
1

( | )P z x . These 

predictions have been compared to that which would be obtained by directly using the measurement 

equation in the PF. Since PF provides the estimate of the pdf of the crack depth on the basis of the 

available measurements, the expected values of the obtained distributions are reported. Notice that, 

due to the stochastic behavior of the crack, even if the measurement equation were known, the 

prediction of the crack depth would be different from its true evolution. Furthermore, the accuracy 

of the PF prediction using the ensemble of ANNs is influenced by the number of available training 

patterns. 

Notice also that the linearity of the prediction of the expected value of x1 can be explained by 

averaging Equations 13 and 14: 

2 2 2 2
[ ( 1)}= [ ( )] [ ( )] [ ( )] constantE x t E x t E t E x t     

4 3

1 1 2 1

1 1

[ ( 1)] [ ( )] 3 10 (0.05 0.1 [ ( )]) [ ( )]

[ ( 1)] [ ( )] constant

E x t E x t E x t E t

E x t E x t

      

  
 

 

Figure 10: Comparison of the PF predictions with the true state evolution considering different cardinalities of the training 

set. 

To evaluate the impact of replacing the measurement equation with the ensemble of ANNs, 

100
run

N   different degradation trajectories have been simulated and the PF predictions of the crack 



depth have been performed. Also in this case, three different PF predictions have been performed: 

by considering for the estimate 
1

( | )P z x  the ensemble of ANNs trained with 1000
training

N   patterns, 

50
training

N   patterns and the measurement equation. Each PF run is characterized by the same true 

trajectory, the same acquired measures and the same state noise vector. The following performance 

indicators have been computed: 

1. The coverage of the PI, with confidence 0.68. In particular, the predictions, provided by the 

PF, of the crack depth at 100t   and 120t   have been considered. At each run the 

boundaries of the PI are computed by considering the 16
th

 and 84
th

 percentiles of the 

estimate of the pdf of the crack depth. A counter is set to 1 or 0 if the true trajectory belongs 

or not to the corresponding interval, in analogy with the coverage verification explained in 

Section 4.2. 

2. The average width over the 100
run

N   runs of the PI at 100t   and 120t  .  

3. The Mean Square Error (MSE) over the 100
run

N   runs between the prediction of the crack 

depth provided by the PF and its true value at 100t   and 120t  . Considering for example 

100t  , the 
100

MSE  is given by: 

  
2

100

1

1 run

run run

run

N

n n

nrun

MSE X o
N 

   (21) 

where 
runn

X is the true crack depth in the test trajectory at 100t   and 
runn

o is the expected 

value of the crack depth pdf estimated by the PF. 

A scheme of the method used for the computation of these performance indicators is shown in 

Figure 11; the obtained values are reported in Tables 4 and 5. 



 

Figure 11: Scheme for the evaluation of the prognostics performance 

 

 
traditional 

1000 training 
data 

50 training 
data 

coverage 0.6600 0.6200 0.5900 

PI width 1.0812 1.0862 0.9605 

MSE 0.3125 0.3167 0.3245 
Table 4: Performance indicators at t=100 

 

 
traditional 

1000 training 
data 

50 training 
data 

coverage 0.6500 0.7000 0.6000 

PI width 1.3058 1.3226 1.2088 

MSE 0.3421 0.3464 0.3641 
Table 5: Performance indicators at t=120 

It can be noticed that the coverage of the ensemble trained with 1000 training data is very close to 

0.68; furthermore, even the other performance indicators are very close to those which would be 

obtained by considering the measurement equation. This result confirms that when the size of the 

training set is sufficiently large, the approximation of the distribution 
1

( | )P z x  is accurate and 

therefore it does not remarkably alter the outcome of the PF. On the contrary, the performance 



indicators obtained by considering the ensemble trained with 50 data are less satisfactory; this is 

due to the worse estimate of the 
1

( | )P z x  provided by the ensemble. In particular, the reduction of 

the PI width is due to the underestimate of the variance of 
1

( | )P z x  which results in a more peaked 

particles’ distribution when a measurement is collected. 

In conclusion, the size of the training dataset has an influence both on the approximation of the 

measure distribution 
1

( | )P z x  and on the prognostics performance of the PF. 

Finally, the performance evaluator proposed in [35] has been computed to evaluate the prediction 

performance: 

1

2

1

1

1  0

1

i

i

dn
a

i

i

dn
a

i
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s

e otherwise
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where a1= 10, a2=13, n=100 is the number of simulated histories and d is the difference between the 

estimated RUL and its true value. To compute the value of this performance metric, the following 

procedure has been adopted: 

1. Set the failure threshold to ST=7. 

2. Simulate the evolution of the degradation process; this allows calculating the true value of 

the true RUL tRUL at t=80 as the difference between the time instant at which the component 

achieves ST and 80. Moreover, the set of measures sampled according to the measurement 

model are collected. 

3. Use the PF to estimate the component degradation state at t=80 and predict the RUL 
R̂UL

t . 

4. Calculate the difference 
R̂UL RUL

d t t  . 

5. Perform n-1 times the steps 2-4 and compute s. 

The values of the performance indicators obtained in the case in which the RUL is predicted by 

using the ‘traditional’ PF approach (s=10.30) and the ‘data–driven’ approach (s=10.65) turn out to 

be very close to each other. 



5  Conclusions 

PF is often proposed as prognostic technique for estimating the evolution of the degradation state x  

of a system; it resorts to analytical models of both degradation state evolution and measurement. 

This latter is a probabilistic relation between the true degradation state and the corresponding output 

z  of the measurement sensor, and is used to update, within a Bayesian framework, the prediction of 

the evolution of the degradation state, upon the acquisition of a measure. In practice, the 

measurement model may not be available in an analytical form; rather, there may be available a set 

of data which allows, through data-mining techniques, to build the measurement model. In this 

work, a technique based on an ensemble of ANNs has been investigated to this aim and applied to a 

case study derived from the literature. The verification conducted on the results shows that, when 

the training set is sufficiently large, a good approximation of the model may be obtained and its 

substitution in the PF does not significantly affect its performance. 

Additional effort will be dedicated in future works to improve the accuracy of the estimate when 

only a  small training set is available and to extend the applicability of the technique also in those 

cases in which ( )f x  is not biunivocal. Moreover, one more future objective is the substitution also 

of the model of the evolution of the system state for a data-driven model, like an ensemble of ANNs 

trained on the basis of an available dataset, with a procedure which may be inspired by the one 

presented in this work, in order to allow the usage of the PF in those cases where also an analytical 

model of the evolution of the system is unavailable. 
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