
HAL Id: hal-00875798
https://centralesupelec.hal.science/hal-00875798v1

Submitted on 22 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DSL for Explicit Semantic Adaptation
Bart Meyers, Joachim Denil, Frédéric Boulanger, Cécile Hardebolle,

Christophe Jacquet, Hans Vangheluwe

To cite this version:
Bart Meyers, Joachim Denil, Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet, et al.. A
DSL for Explicit Semantic Adaptation. MPM 2013, Sep 2013, Miami, United States. pp.47-56.
�hal-00875798�

https://centralesupelec.hal.science/hal-00875798v1
https://hal.archives-ouvertes.fr


A DSL for Explicit Semantic Adaptation ?

Bart Meyers1, Joachim Denil3, Frédéric Boulanger2,
Cécile Hardebolle2, Christophe Jacquet2, and Hans Vangheluwe1,3

1 MSDL, Department of Mathematics and Computer Science
University of Antwerp, Belgium

2 Supélec E3S, Department of Computer Science, France
3 MSDL, School of Computer Science, McGill University, Canada

Abstract. In the domain of heterogeneous model composition, semantic
adaptation is the “glue” that is necessary to assemble heterogeneous
models so that the resulting composed model has well-defined semantics.
In this paper, we present an execution model for a semantic adaptation
interface between heterogeneous models. We introduce a Domain-Specific
Language (DSL) for specifying such an interface explicitly using rules,
and a transformation toward the ModHel’X framework. The DSL enables
the modeller to easily customise interfaces that fit the heterogeneous
model at hand in a modular way, as involved models are left untouched.
We illustrate the use of our DSL on a power window case study and
demonstrate the importance of defining semantic adaptation explicitly
by comparing with the results obtained with Ptolemy II.

1 Introduction

The growing power of modelling tools allows the design and verification of com-
plex systems. This complexity leads to Multi-Paradigm Modelling [1], because
different parts of the system belong to different technical domains, but also be-
cause different abstraction levels, different aspects of the system, and different
phases in the design require different modelling techniques and tools. It is there-
fore necessary to be able to cope with multi-paradigm, heterogeneous models,
and to give them a semantics which is precise enough for simulating the be-
haviour and validating properties of the system, and to generate as much as
possible of the realisation of the system from the model.

A major challenge in model composition is to obtain a meaningful result
from models with heterogeneous semantics. Tackling this issue requires that the
semantics of the modelling languages used in the composed models is described
in a way such that it can be processed and, more importantly, such that it can be
composed. In this article, we focus on the definition of the “composition laws”
for heterogeneous parts of a model, which have to be explicitly described. A key
point of our approach is modularity: we should be able to compose heterogeneous
models without modifying them.

To illustrate what these composition laws, which we call semantic adapta-
tion, have to deal with, we first introduce the example of a power window and

? Thanks to Dr. Thomas Feng for giving us insights into Ptolemy II’s discrete events
semantics



show how it can be modelled and simulated using existing tools for heteroge-
neous modelling. We introduce a meta-model for modelling semantic adaptation,
founded on an execution model. We then present a Domain-Specific Language
(DSL) that we designed to specify semantic adaptation in an abstract and com-
pact way. We then discuss the advantages and drawbacks of this approach and
conclude, giving some perspective for future work.

2 The Power Window Case Study

The system we model to illustrate our work is a car power window, composed of
a switch, a controller board and an electromechanical part. These components
communicate through the car’s bus. The controller receives commands from the
switch and information from the end stops of the electromechanical part, and
sends commands to switch the motor off, up or down. If the user presses the
switch for a short time (less than 500 ms), the controller fully closes or opens
the window until it reaches an end stop.

For simplicity, we don’t model the bus as a component of the system, and we
consider that the components of the model communicate through discrete events
(DE). The controller is modelled as a state machine, with timed transitions
to distinguish between short and long presses on the switch. The dynamics of
the electromechanical part could be modelled using differential equations, but
for making the example easier to understand, we discretise its behaviour and
represent it using difference equations, for which a synchronous dataflow model
(SDF) is suitable. As a result, the global model of the power window system is
a heterogeneous model involving three different modelling paradigms: discrete
events, timed finite state machines and synchronous dataflow.

In the following, we show how this system is modelled using different tools
for heterogeneous modelling and we illustrate how these different tools deal with
the necessary semantic adaptation among the heterogeneous parts of this model.

3 Related Work and Semantic Adaptation

We chose to focus our study of the state of the art on three different tools for het-
erogeneous modelling and simulation: Ptolemy II [2], Simulink/Stateflow4 and
ModHel’X [3]. All of them support the joint use of different modelling paradigms
in a model and they all use hierarchy as a mechanism for composing the hetero-
geneous parts of a model. Other types of approaches are described in [4].

In Simulink/Stateflow, the power window system has been studied at different
levels of detail and the resulting models are available as demos in the tool5. We
have modelled the power window system using Ptolemy II and ModHel’X, and
the resulting models are available online6.

4 http://www.mathworks.fr/products/simulink/
5 See the online documentation at http://www.mathworks.fr/fr/help/simulink/

examples/simulink-power-window-controller-specification.html.
6 Ptolemy II model: http://wwwdi.supelec.fr/software/downloads/ModHelX/

power_window_fulladapt.moml

ModHel’X model: http://wwwdi.supelec.fr/software/ModHelX/PowerWindow



Fig. 1. Ptolemy II model of the power window

Using Ptolemy II for modelling the power window system, we obtain the
model shown on Figure 1. In this model, the DE Director box tells that this model
is built according to the Discrete Events model of computation, or MoC. A MoC
defines the execution rules obeyed by the components of a model. The DE MoC
considers each component as a process triggered by input events and producing
events on the output. The Input scenario block models a simulation scenario for
the output of the switch. The controller is modelled as a state machine (FSM
MoC), and the window as a data-flow block diagram (Synchronous Data Flow
MoC). Due to space constraints, these models are not shown in the paper.

Ptolemy II does not provide a default semantic adaptation between heteroge-
neous parts of a model. For instance, the Window component, which is modelled
using SDF, is considered as a DE component by the DE director. It is therefore
activated each time it receives an input event, and each data sample it produces
is considered as a DE event on its outputs. This model corresponds to what is
shown in Figure 1 without the two large rounded boxes (which deal with seman-
tic adaptation and will be presented below). The result of the simulation without
semantic adaptation (i.e., without the two large rounded boxes) is shown just
below, in the middle part of the figure. The red line on top shows the position
of the window (from 0 to 5), the green line at the bottom shows the end-stop
signal (-1 is open, 1 is closed, 0 is in between), and the middle, blue line shows
the command played by the scenario (1 is for closing the window, -1 for opening
it, and 0 for stopping it). However, the behaviour is not as expected: the window
model (using difference equations) is not sampled periodically, meaning that the
window is not going up or down with a constant speed, and the model produces
consecutive events with the same value.



The problem is that the SDF nature of the model of the window makes it
behave inconsistently in a DE environment. Semantic adaptation is needed to
sample it periodically, to provide it with correct inputs (as achieved with the
left blue box) and to filter its outputs (as achieved with the right orange box).
The lowest graph in Figure 1 shows the result with the adaptations. In this case
the behaviour is as expected. The window model is sampled at a periodic rate
and does not produce duplicate events.

The two highlighted areas were added to the DE model to specify the seman-
tic adaptation with the SDF model of the behaviour of the window. However,
their contents depends on the internals of the window model, so the global model
is not modular. Moreover, without the highlighting we put on the figure, it is
not easy to make a difference between a block which is part of the model and a
block which is there for semantic adaptation. Semantic adaptation is therefore
diffuse and difficult to specify and understand.

In Simulink/Stateflow, which is a powerful and efficient simulation tool for
heterogeneous models, semantic adaptation is even more diffuse. The global se-
mantics of a heterogeneous model (for instance a Simulink model including a
Stateflow submodel) is given by one solver which is used to compute its execu-
tion. The solver uses parameters of the blocks and their ports, in particular a
parameter called “sample time”7, to determine when to compute the value of
the different signals. The resulting execution of the model depends on the value
of these parameters and on the type and parameters of the solver itself. Even if
default values for these parameters are determined by the simulation engine, to
adapt the resulting execution semantics to his needs, the user must have a deep
understanding of the solver’s mechanisms and fine tune different simulation pa-
rameters. A part of the semantic adaptation can also be performed using blocks
like in Ptolemy II or truth tables or functions, but with the same drawbacks.

ModHel’X is a framework for modelling and executing heterogeneous mod-
els [3] which we developed in previous works. ModHel’X allows for modular
semantic adaptation by explicitly defining an interface block between the parent
model and the embedded model. This block adapts the data, control and time
between the different models [5]. In the power window example, we saw examples
of the adaptation of data with the filtering of the output signals of the window
model, and of control with the periodic sampling. The adaptation of time is
necessary when two models use different time scales. Interface blocks are simi-
lar to tag conversion actors as presented in [9], but can perform more complex
operations. In ModHel’X, control and time adaptation rely on a model of time
which is inspired from the MARTE UML profile [6, 7], and can be considered
as a restriction of the Clock Constraints Specification Language [7], extended
with time tags [8]. An issue with ModHel’X is that the semantic adaptation is
specified using calls to a Java API in different methods of an interface block.
Therefore, constructing an interface block is a tedious and error prone process.
To aid developers in defining interface blocks, we propose a Domain Specific
Language for modelling explicitly the adaptation of data, time and control.

7 http://www.mathworks.fr/fr/help/simulink/ug/types-of-sample-time.html



Rule

RuleSchedule OrSchedule

AndSchedule

InterfaceBlock

Clock

Model
1

parent
1

embedded

MoC

Block

Pin

Store

Relation

InputOutput

Token

source target TagRelation

SimpleDataRule
AggregateDataRule

SameTagRelation

AffineTagRelation

5

LHS: Condition
RHS: Expression

DataRule ControlRule
0..11

2 *

0..1

0..*

0..*

1 1
1

1
1

111

0..* 0..*

Period:String
Offset:String

PeriodicRule

LHS:Condition
StoreTriggeredRule
Clock:Clock
ImpliedByRule

Fig. 2. Partial meta-model of ModHel’X with a focus on the interface block

4 A DSL and Execution Semantics for Semantic Adaptation

The DSL for semantic adaptation provides the modeller with the concepts that
are necessary for specifying the glue between heterogeneous models. By insu-
lating the modeller from platform specific issues, it allows him to focus on the
problem at stake, and it also reduces the semantic gap between what should be
specified and how it is realised. However, the current implementation of the DSL
generates code for ModHel’X, so we have to give some background about it.

4.1 The Interface Block Meta-Model

Figure 2 shows a simplified, partial meta-model of ModHel’X with a focus on the
interface block. The structure of models in ModHel’X is similar to Ptolemy II’s:
Models contain Blocks with input and output Pins that can be connected. During
execution, values flow through models as Tokens on Pins. A Model has a model of
computation (MoC) which defines its execution semantics, similar to a director
in Ptolemy II. In ModHel’X a Block can be an InterfaceBlock, containing an
embedded Model with any MoC, thus allowing heterogeneous modelling. In an
InterfaceBlock, there can be adaptation Relations between input Pins of the
InterfaceBlock and input Pins of the embedded Model, and between output Pins
of the embedded Model and output Pins of the InterfaceBlock. An InterfaceBlock
and a MoC can have a Clock, with its own time scale. An InterfaceBlock has a
Store that can hold data, thus adding the concept of state.

Our DSL for describing the behaviour of an interface block is based on rules,
which are evaluated and return true when they match. DataRules and Control-
Rules are used to match conditions for the semantic adaptation of data and
control. The order in which rules are evaluated is controlled by a RuleSchedule.
Two different scheduling policies (which are hierarchical) are defined: the And-
Schedule evaluates the rules in order as long as they return true, and it returns
true if all rules returned true; the OrSchedule evaluates the rules in order until
one returns true, in which case true is returned.

Data rules are responsible for the adaptation of the data from the parent
model to the embedded model and vice versa. Data rules have a left-hand side
(LHS), denoting pre-condition for the applicability of the rule and a right-hand
side (RHS) providing the needed action when the LHS is matched. Data rules



InterfaceBlock::update

Data-In

Data-Update-In

Control-rules

Control?

Model::update

Data-Update-Out

Data-Out

no

yes

InterfaceBlock::Data-In

InterfaceBlock::Control-
Rules

Data-In::data-InRule

ControlRules::store 
TriggeredRule

data-InRule
data-InRule2
...

ControlRules:: 
onPeriodicRule

storeTriggeredRule
onPeriodicRule
...

O
R

AN
D Condition

Condition Expr

Period
Offset

Fig. 3. Execution of an interface block

have access to pins and a store of the interface block which serves as a map of
variables (variable name - value pairs). Control rules are responsible for executing
the embedded model (also called giving control) at the current time instant.
Control rules have access to the store to create complex trigger events but they
also access the interface block clock to create an observation request in the future.
For the semantic adaptation of time, an interface block can contain TagRelations
between clocks, which allows to convert dates between their time scales.

4.2 Execution Semantics in Five Phases

As shown in Figure 3, the interface block adapts data and control in five different
phases. Each phase has its own schedule (containing a set of rules), and each
phase is provided with a set of pins as parameters so that, besides the store, token
values on pins become accessible in the rules. In case of the Data-in, Control-rules
and Data-update-in phases, parameter pins are the input pins of the interface
block. In case of the Data-update-out or Data-out phases the parameter pins
are the output pins of the embedded model. The phases are executed in the
following order when control has been given to the interface block:

Data-in: (data rules) when the interface block receives control, rules are exe-
cuted to update the store of the block according to the incoming data tokens.
Complex operations can transform the data for further processing;

Control: (control rules) Control rules decide if control should be passed to the
embedded model at the current instant according to the store of the block
and the data on the input pins. Control rules can also create new observation
request on the clock of the interface block so that it receives control later;

Data-update-in: (data rules) if the control rules give control to the embedded
model, the Data-update-in schedule is executed before control is passed to
the embedded model. These rules provide the internal model with correct
inputs according to the values in the store and the data on the input pins of
the interface block;



Data-update-out: (data rules) after the execution of the embedded model, the
Data-update-out rules are used to update the store with the data available
on the output pins of the embedded model;

Data-out: (data rules) finally, the Data-out rules are in charge of producing
the outputs of the interface block from the data available in the store. This
phase is executed even when control is not given to the embedded model
because the interface block may have to produce some outputs any way.

To ease the creation of rules, we identified some common rule patterns, shown
as subclasses of DataRule and ControlRule in Figure 2:
– SimpleDataRule: this data rule is evaluated for every parameter pin. If its

LHS evaluates to true, its RHS is executed;
– AggregateDataRule: this data rule allows for more complex patterns over

multiple parameter pins, and will only be evaluated once. If its LHS evaluates
to true, its RHS is executed;

– Periodic: this control rule periodically gives control to the interface block,
and variable names are given for period and offset so that they can be set
when the interface block is used in a model. The clock calculus in ModHel’X
will make sure that the interface block is updated at the specified moments;

– StoreTriggeredRule: this control rule gives control to the embedded model if
its LHS (with access to the store) evaluates to true;

– ImpliedByRule: this control rule gives control to the embedded model when-
ever a given clock is triggered.
A DSL implementing this meta-model, the presented semantics and a con-

crete textual syntax are defined in metaDepth [10]. The solution includes an
ANTLR-based parser, an EOL script for generating code for the rules, and an
EGL script [11] for generating Java code for ModHel’X. These steps ensure that
the transformation from DSL code to Java code is entirely automated. Due
to space constraints, the meta-model, models or scripts in metaDepth are not
shown.8 The concrete syntax of the DSL will be illustrated in the next section.

5 A Semantic Adaptation DSL in Practice

In this section, we reconstruct the two different semantic adaptations between
DE and SDF for the power window system presented in section 3, and of which
traces are shown in Figure 1. The models presented in this section are trans-
formed using the metaDepth framework into ModHel’X models in Java code.

Listing 1 and 2 show interface blocks for both behaviours as a DSL model.
The first 8 lines state the structural properties of the interface block and are
the same for both behaviours. Line 1 presents the model name. On line 2-3, the
Java class and package are specified for the code generator. Line 4 presents the
clock of the interface. In this case the interface has a timed clock, meaning that
events occur at specific dates on a time scale (as opposed to an untimed clock,
where events have no date). Line 5-6 and 7-8 respectively present the external
(parent) model and internal (embedded) model. The parent model is called de

8 The fully operational solution presented in this paper can however be downloaded
from http://msdl.cs.mcgill.ca/people/bart/PowerWindow.zip



and adheres the ModHel’X AbstractDEMoC with a timed clock named deClock.
Similarly, the embedded model uses SDF, which is by nature untimed.

Listing 1. Model of the default
Ptolemy II behaviour

1 InterfaceBlock {
2 IMPLEMENTS "DE_SDF_InterfaceBlock"
3 IN "tests.powerwindow"
4 TIMED CLOCK ibClock
5 EXTERNAL MODEL de (
6 "AbstractDEMoC" WITH TIMED CLOCK deClock)
7 INTERNAL MODEL sdf (
8 "SDFMoC" WITH UNTIMED CLOCK sdfClock)
9 RULES:

10 IN
11 CONTROL
12 UPDATEIN
13 FORALLPINS ALWAYS ->
14 FORWARD VALUE TO SUCCESSORS;
15 UPDATEOUT
16 FORALLPINS ALWAYS ->
17 FORWARD VALUE TO SUCCESSORS;
18 OUT
19 }

Listing 2. Model of the interface
block with semantic adaptation

1 InterfaceBlock {
2 IMPLEMENTS "DE_SDF_InterfaceBlock"
3 IN "tests.powerwindow"
4 TIMED CLOCK ibClock
5 EXTERNAL MODEL de (
6 "AbstractDEMoC" WITH TIMED CLOCK deClock)
7 INTERNAL MODEL sdf (
8 "SDFMoC" WITH UNTIMED CLOCK sdfClock)
9 RULES:

10 IN
11 FORALLPINS ON DATA: ALWAYS -> TOSTORE(VALUE);
12 CONTROL
13 PERIODIC AT "init_time" EVERY "period"
14 UPDATEIN
15 FORALLPINS ALWAYS ->
16 FORWARD FROMSTORE TO SUCCESSORS;
17 UPDATEOUT
18 FORALLPINS ON DATA:
19 VALUE != FROMSTORE ->
20 TOSTORE(VALUE);
21 FORWARD VALUE TO SUCCESSORS;
22 OUT
23 TAG RELATION deClock = ibClock
24 }

From line 9 onward, the rules that model the execution semantics are speci-
fied. These differ in both models. The five rule phases, in their execution order,
can be recognised from line 10 onward.

The default Ptolemy II behaviour that results in the upper trace of Figure 1
does little semantic adaptation. This behaviour is defined in Listing 1. No par-
ticular Data-in rules are given, since the store is not used. There is no Control
rule, because whenever the interface block receives control, it will immediately
give control to the embedded model. On Data-update-in, the tokens on the input
ports are forwarded with no adaptation to the embedded model. This is mod-
elled as the data rule on line 13-14, which should be read as LHS → RHS. As
a SimpleDataRule (denoted by FORALLPINS), it is executed for every input pin
of the interface block. The LHS is ALWAYS, as there are no restrictions on when
to forward data. The RHS specifies that the current token value (VALUE) should
be forwarded to the embedded model’s input pins to which the interface input
pins are connected to (SUCCESSORS). In the Data-update-out phase on line 16-17,
the tokens generated by the embedded model are similarly forwarded in another
SimpleDataRule. As mentioned before, in this phase VALUE and SUCCESSORS –
which depend on the parameter pins – refer to the token values and the suc-
cessors of the embedded model’s output pins. In summary, the basic Ptolemy
model forwards all data instantaneously.

The intended behaviour of the power window’s interface that results in the
bottom trace of Figure 1 is shown in Listing 2. The interface block periodically
samples the SDF model. Data is provided to the embedded model by applying
zero-order hold (ZOH) from the input pins of the parent model to the input



pins of the embedded model, meaning that the last known value should be used.
The Data-in rule on line 11 saves the data from the input pins in the store, each
time a token is received (ON DATA). The Periodic Control rule on line 13 specifies
the periodic sampling of the embedded model, starting at time “init time”, with
a step of “period”, which can be set in the instance model. The Data-update-
in rule on line 15-16 implements the ZOH functionality by providing the input
pins of the embedded model with data from the store. Note that first-order hold
(linear extrapolation) could also be modelled by calculating new values based on
the previous ones (stored the store) every time the interface block is updated.
A Data-update-out rule (line 18-21) checks for every pin whether the embedded
model’s output value changed, by comparing it to the previous one, which was
stored. Initially the value in the store is null making sure the LHS evaluates
to true. So only when the output of the embedded model changes, tokens are
forwarded to the parent model. No event is consequently produced when the
window is inactive, as seen in the trace. Finally a SameTagRelation on line 23
specifies that time is measured the same way in the interface block and in the
embedding model. Note that in both models we never had to explicitly schedule
rules, as every phase contained at most a single rule.

6 Discussion

Our DSL for semantic adaptation allows one to explicitly specify the adaptation
behaviour intended at the boundary between two heterogeneous parts of a model.
This is an improvement in two respects. First, compared to the implicit adap-
tation mechanisms embedded in Ptolemy or Simulink, the semantics is clearly
stated. Second, compared to the solution introduced in Section 3 that relies on
the modification of the models to introduce new blocks devoted to adaptation,
our approach leaves the models unchanged. This improves modularity, as a given
model may be embedded as is in different contexts; what needs to be changed
each time is just the adaptation layer defined using our DSL.

When embedding a timed finite state machine (TFSM) into a DE model in
Ptolemy, one has to weave adaptation mechanisms in the guards and actions of
the state machine in order to translate between TFSM events and DE values.
Even if this does not introduce new blocks, this is indeed a variant of the second
issue outlined above: one has to modify the model to include adaptation, which
hinders modularity. We used the proposed DSL to model the adaptation of the
DE model to the TFSM model of the power window system. The DSL is able to
model all the needed constructs for the interface block and generate Java code.
Due to space constraints, the model is not included in the paper. Still, some
constructs necessary for the adaptation of a wide variety of MoCs may not be
available in the DSL yet. Future enhancements of our DSL will remedy this.

The improvements mentioned here (specifying adaptation between models
explicitly while keeping the modularity of models) have been available in Mod-
Hel’X for a few years. However in ModHel’X adaptation is coded in Java, so
there is a semantic gap between high-level adaptation mechanisms and the way
it is actually written as low-level code that makes minute manipulations of data
structures. Moreover, an adapter in ModHel’X is scattered in several methods,



which makes its behavior hard to follow. The five phased execution semantics
and the DSL are focused and concise: they bridge this semantic gap. More than
300 lines of Java code are reduced to less than 25 lines of DSL code.

7 Conclusion
In the domain of Multi-Paradigm Modelling, semantic adaptation is the “glue”
that gives well-defined semantics to the composition of heterogeneous models. In
this paper we proposed a DSL with execution semantics to bridge the cognitive
gap between the implementation and specification of a semantic interface block.
The model of an interface block explicitly specifies the adaptation of data, con-
trol and time using a set of rules. Furthermore, a model-to-text transformation
is defined to generate the interface block code for the ModHel’X framework.
The DSL enables the modeller to easily customise interface blocks that fit the
heterogeneous models in a modular way, as involved models are left untouched.

The approach was illustrated on the power window case study by recon-
structing in ModHel’X both the implicit Ptolemy II adaptation and the specific
one needed between DE and SDF to obtain the expected behaviour. We be-
lieve that the DSL and the execution semantics are, as a principle, expressive
enough to model different semantic adaptations of heterogeneous models, though
additional constructs might be needed for additional behaviours.

References
1. P. J. Mosterman and H. Vangheluwe. Computer Automated Multi-Paradigm Mod-

eling: An Introduction. SIMULATION, 80(9):433–450, 2004.
2. J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer,

S. Sachs, and Yuhong Xiong. Taming Heterogeneity - The Ptolemy Approach.
Proceedings of the IEEE, 91(1):127–144, Jan 2003.

3. Frédéric Boulanger and Cécile Hardebolle. Simulation of Multi-Formalism Models
with ModHel’X. In ICST 2008, pages 318–327, 2008.

4. Cécile Hardebolle and Frédéric Boulanger. Exploring multi-paradigm modeling
techniques. SIMULATION , 85(11/12):688–708, 2009.

5. F. Boulanger, C. Hardebolle, C. Jacquet, and D. Marcadet. Semantic Adaptation
for Models of Computation. In ACSD’11, pages 153–162, 2011.

6. Charles André, Frédéric Mallet, and Robert De Simone. Modeling Time(s). In
MoDELS’07, volume LNCS 4735, pages pp. 559–573. Springer, 2007.

7. R. Gascon, F. Mallet, and J. Deantoni. Logical time and temporal logics: comparing
UML MARTE/CCSL and PSL. In TIME’11, pages 141–148, Lubeck, Germany,
2011.

8. F. Boulanger, C. Hardebolle, C. Jacquet, and I. Prodan. Modeling time for the
execution of heterogeneous models. Technical report 2013-09-03-DI-FBO, Supélec
E3S, 2012.

9. P. Caspi, A. Benveniste, R. Lublinerman, and S. Tripakis. Actors without directors:
A kahnian view of heterogeneous systems. In R. Majumdar and P. Tabuada,
editors, Hybrid Systems: Computation and Control, volume 5469 of LNCS, pages
46–60. Springer Berlin Heidelberg, 2009.

10. Juan de Lara and Esther Guerra. Deep meta-modelling with metadepth. In TOOLS
(48), volume 6141 of LNCS. Springer Berlin Heidelberg, 2010.

11. Juan de Lara and Esther Guerra. Domain-specific textual meta-modelling lan-
guages for model driven engineering. In ECMFA’12, pages 259–274, 2012.


