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This paper presents a new approach for guaranteed state estimation based on zonotopes for linear discrete time multivariable systems with interval multiplicative uncertainties, in the presence of bounded state perturbations and noises. At each sample time, the presented approach computes a zonotope which contains the real system state. A P-radius based criterion is minimized in order to decrease the size of the zonotope at each sample time and to obtain a more and more accurate state estimation. The proposed approach allows to efficiently handle the trade-off between the complexity of the computation and the accuracy of the estimation. An illustrative example is analyzed in order to highlight the advantages of the proposed state estimation technique.

Introduction

The state estimation is of great interest for feedback control and diagnosis of dynamical systems. This problem can be formulated as follows: given a mathematical model of a real system and allowing some state perturbations and noise corrupted measurements, the state of the real system has to be estimated. In the literature, the state estimation problem is mainly treated using stochastic approach or deterministic approach.

Stochastic procedures (e.g., the Kalman filter [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]; [START_REF] Maybeck | Stochastic models, estimation and control[END_REF]; [START_REF] Sorenson | Special issue on applications of Kalman filtering[END_REF]) have been developed since 1960s and are still a widely applied technique. These approaches are based on probabilistic assumptions on perturbations and noise. The state estimation is done by minimizing the variance of the state estimation error. However, these probabilistic assumptions are sometimes not realistic and difficult to validate (e.g., in a real application, it is not easy to know the distribution law of perturbations).

Deterministic approach or set-membership estimation assumes that the perturbations and the noises are unknown but bounded [START_REF] Schweppe | Recursive state estimation: unknown but bounded errors and system inputs[END_REF]; [START_REF] Kurzhanski | Ellipsoidal calculus for estimation and control[END_REF]; [START_REF] Walter | Exact recursive polyhedral description of the feasible parameter set for bounded-error models[END_REF]; [START_REF] Vicino | Sequential approximation of feasible parameter sets for identification with set membership uncertainty[END_REF]; [START_REF] Combastel | A state bounding observer based on zonotopes[END_REF]; [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]). Under this hypothesis, the information about the system states at each sample time is characterized as a compact set containing all possible system states that are consistent with the measurement sample, the perturbations, the uncertainties, and the noise. No other hypotheses related to the distribution of perturbations and noises are necessary.

In the set-membership approach different domain representations can be used to bound the consistent set, such as polytopes (boxes, parallelotopes) [START_REF] Walter | Exact recursive polyhedral description of the feasible parameter set for bounded-error models[END_REF]; [START_REF] Vicino | Sequential approximation of feasible parameter sets for identification with set membership uncertainty[END_REF]), ellipsoids [START_REF] Schweppe | Recursive state estimation: unknown but bounded errors and system inputs[END_REF]; Witsenhausen (1968); [START_REF] Bertsekas | Recursive state estimation for a setmembership description of uncertainty[END_REF], [START_REF] Chernous'ko | State estimation for dynamic systems[END_REF]; [START_REF] Milanese | Bounding approach to system identification[END_REF]; [START_REF] Kurzhanski | Ellipsoidal calculus for estimation and control[END_REF]; [START_REF] Durieu | Multi-input multi-output ellipsoidal state bounding[END_REF]; [START_REF] Polyak | Ellipsoidal parameter or state estimation under model uncertainty[END_REF]), zonotopes [START_REF] Puig | Worst-case estimation and simulation of uncertain discrete-time systems using zonotopes[END_REF]; [START_REF] Combastel | A state bounding observer based on zonotopes[END_REF]; [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]). When different domain representations are used, there is a trade-off between the computation load and the precision of the estimation. On the one hand, due to the simplicity of the formulation, ellipsoids have been used by different authors [START_REF] Kurzhanski | Ellipsoidal calculus for estimation and control[END_REF]; [START_REF] Durieu | Multi-input multi-output ellipsoidal state bounding[END_REF]). On the other hand, polytopes (or certain classes of polytopes, e.g., parallelotopes) are proposed to obtain a better estimation accuracy [START_REF] Vicino | Sequential approximation of feasible parameter sets for identification with set membership uncertainty[END_REF], [START_REF] Walter | Exact recursive polyhedral description of the feasible parameter set for bounded-error models[END_REF]). They can be used for an exact representation of the variation domains of the system's state in a linear formulation. However, efficient results can be obtained only for a reasonable number of vertices of polytopes [START_REF] Walter | Exact recursive polyhedral description of the feasible parameter set for bounded-error models[END_REF]).

In recent years, zonotopes [START_REF] Vicino | Sequential approximation of feasible parameter sets for identification with set membership uncertainty[END_REF]; [START_REF] Kühn | Rigorously computed orbits of dynamical systems without the wrapping effect[END_REF]; [START_REF] Combastel | A state bounding observer based on zonotopes[END_REF]; [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]; [START_REF] Althoff | Reachability analysis of linear systems with uncertain parameters and inputs[END_REF]) have received increased attention because of their accuracy and compactness of representation compared to ellipsoids and their reduced complexity compared to polytopes. Contrary to ellipsoids, the Minkowski sum of two zonotopes is a zonotope, this property being very useful in set-membership estimation. Moreover, zonotopes can represent uncertainties due to perturbations independently in each direction of the statespace. In addition zonotopes are a suitable representation for controlling the wrapping effect [START_REF] Kühn | Rigorously computed orbits of dynamical systems without the wrapping effect[END_REF]) (the growth of the domain representation due to uncertainty at each sample time). The zonotopic domain is used for many applications: reachability analysis [START_REF] Althoff | Reachability analysis of linear systems with uncertain parameters and inputs[END_REF]), collision detection [START_REF] Guibas | Zonotopes as bounding volume[END_REF]), state estimation [START_REF] Combastel | A state bounding observer based on zonotopes[END_REF]; [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]; [START_REF] Puig | Worst-case estimation and simulation of uncertain discrete-time systems using zonotopes[END_REF]), ultimate bound [START_REF] Stoican | Zonotopic ultimate bounds for linear systems with bounded disturbances[END_REF], and fault diagnosis [START_REF] Combastel | Fault diagnosis based on the enclosure of parameters estimated with an adaptive observer[END_REF]).

In [START_REF] Puig | Worst-case estimation and simulation of uncertain discrete-time systems using zonotopes[END_REF] the measured output is utilized to estimate the state by means of a gain matrix. In [START_REF] Combastel | A state bounding observer based on zonotopes[END_REF] a singular value decomposition is used to obtain an outer approximation of the intersection between the uncertain trajectory and the region of the state-space that is consistent with the measured output vector. In [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF], interval arithmetics and zonotopic sets are used to obtain a guaranteed state estimation for single-output systems with interval parameter uncertainties. The solution is elaborated online as a family of zonotopes parameterized by a free vector. Two different criteria are used to minimize the size of this zonotope. The segment minimization offers a fast computation of the optimal parameterizing vector but the results can be conservative. The volume minimization offers a better result by solving a convex optimization problem on each iteration, sometimes leading to a very narrow zonotope, i.e., the uncertainty in one direction can remain extremely large, but at the same time the volume of the zonotope tends to zero.

Most of the works cited above solve the estimation problem when the plant model is known and the uncertainty is only related to state perturbations and measurement noises. In [START_REF] Polyak | Ellipsoidal parameter or state estimation under model uncertainty[END_REF], a conservative assumption on the relation between the state uncertainty matrix and the state perturbation is used to obtain an ellipsoidal state estimation for multi-output systems.

Based on the results in [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF], one contribution of this paper is to present a new optimization criterion that minimizes the P-radius associated to the zonotope which is an original notion to characterize the size of the zonotope in order to obtain good accuracy and reasonable computation load. Our method allows performing an off-line optimization which is a major advantage for real-time applications. The proposed method offers a trade-off between the segment and the volume minimization methods [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]). Initially developed in the case of linear discrete-time single-output systems with bounded state perturbations and measurement noise, part of this method was published in [START_REF] Le | A new approach for guaranteed state estimation by zonotopes[END_REF]. An extension for single-output uncertain systems has been proposed in [START_REF] Le | Zonotopic set-membership estimation for interval dynamic systems[END_REF]. An original contribution of the present paper is the generalization of this result to multi-output systems with interval multiplicative uncertainties, bounded state perturbations and measurement noises. A first idea is to consider the multioutput system as separate single-output systems. A second idea is to estimate the system's state based on the information from all the output sensors at the same time in order to obtain a better accuracy compared to the first idea.

The paper is organized as follows. Section 2 presents useful mathematical notations and basic definitions. In Section 3, the class of dynamical systems used along this paper is defined. The next section formulates the main results of this paper presenting a new approach to compute an outer bound of the state estimation by zonotopes for multi-output systems with interval uncertainties. In Section 5, an example is proposed in order to illustrate the advantages of the developed methods. Finally, some concluding remarks and future works are discussed.

Notations, Basic Definitions and Properties

An interval A unitary box in R n denoted by B n is a box composed by n unitary intervals. An interval matrix [M] ∈ I n×m is a matrix whose elements are intervals. It means that each element M i j , with i = 1, . . . , n, j = 1, . . . , m of this matrix is defined as the set M i j = {m i j : a i j ≤ m i j ≤ b i j }. In the matrix space, the interval matrix is a hyperrectangle and, hence, a convex set. Let vert[M] denote the set of all matrices G = [g i j ], i = 1, . . . , n, j = 1, . . . , m, such that g i j = a i j or g i j = b i j . The notations mid[M] i j = a i j +b i j 2

and rad[M] i j = b i j -a i j 2

define the center and the radius of an interval matrix [M], resp. The row sum diagonal matrix of a matrix M ∈ R n×m [START_REF] Combastel | A state bounding observer based on zonotopes[END_REF]) is defined as

rs(M) = diag([. . . , mii , . . .]), with mii = m j=1 |m i j |, i = 1, . . . , n. The Minkowski sum of two sets X and Y is defined by X ⊕ Y = {x + y : x ∈ X, y ∈ Y}. A strip S is defined as the set {x ∈ R n : |c x -y| ≤ φ}, with c ∈ R n and y, φ ∈ R.
Zonotopes are a special class of convex symmetric polytopes. A m-zonotope in R n can be defined as the affine image of a mdimensional hypercube in R n . Given a vector p ∈ R n and a matrix H ∈ R n×m , a m-zonotope Z is the set Z = p⊕HB m = {p+ Hx : x ∈ B m }. This is the Minkowski sum of the m-segments defined as m columns of matrix H in R n . The P-radius of a zonotope Z = p ⊕ HB m is defined as L = max z∈Z zp 2 P , where P = P 0 is a symmetric and positive definite matrix. Property 1: The Minkowski sum of two zonotopes

Z 1 = p 1 ⊕ H 1 B m 1 ∈ R n and Z 2 = p 2 ⊕ H 2 B m 2 ∈ R n is also a zonotope defined by Z = Z 1 ⊕ Z 2 = (p 1 + p 2 ) ⊕ H 1 H 2 B m 1 +m 2 .
Property Property 6: [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]). Given a zonotope Z = p ⊕ HB r ∈ R n , a strip S = {x ∈ R n : |c x -y| ≤ φ} and a vector λ ∈ R n , define a vector p(λ) = p + λ(yc p) ∈ R n and a matrix Ĥ(λ) = (I -λc )H φλ . Then a family of zonotopes parameterized by λ that contains the intersection of a zonotope and a strip is obtained such as Z ∩ S ⊆ Ẑ(λ) = p(λ) ⊕ Ĥ(λ)B r+1 .

Problem formulation

Consider the following linear discrete-time invariant system:

x k+1 = Ax k + ω k y k = Cx k + v k (1)
where x k ∈ R n x is the state of the system, y k ∈ R n y is the measured output at sample time k and the pair (C, A) ∈ R n y ×n x × R n x ×n x is detectable [START_REF] Combastel | A state bounding observer based on zonotopes[END_REF], [START_REF] Plarre | On Kalman filtering for detectable systems with intermittent observations[END_REF]), with A a constant unknown matrix belonging to an interval matrix [A]. The vector ω k ∈ R n x represents the state perturbation and v k ∈ R n y is the measurement perturbation (noise, offset, etc.). It is assumed that the perturbations and the initial state are bounded: ω k ∈ W, v k ∈ V and x 0 ∈ X 0 , where W and X 0 are zonotopes and V is a box. To simplify the computation, V and W are assumed to be centered at the origin. Note that if this assumption is not satisfied, a change of coordinates can be used. From the definition of a zero-centered zonotope, W and V can be written as W = FB n ω and V = ΦB n y , with the matrix F ∈ R n x ×n ω and the diagonal matrix Φ ∈ R 2008)), so that this assumption is satisfied. With these notations, the exact uncertain set and the consistent state set are defined as in [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF].

Definition 1: Given the system (1) and a measured output vector y k , the consistent state set at time k (the state set which is consistent with the measured output vector y k ) is defined as

X y k = {x ∈ R n : (y k -Cx) ∈ V}.
Definition 2: Consider the system (1). The exact uncertain set X k = (AX k-1 ⊕ W) ∩ X y k , with k ≥ 1, is equal to the set of states that are consistent with the measured output vectors and the initial state set X 0 .

The computation of the exact uncertain state set is difficult. In practice, this set is approximated by conservative outer bounds to reduce the complexity. This paper presents a new method to compute an outer approximation using a zonotopebased procedure. Let us consider that an outer bound of the exact uncertain state set denoted Xk-1 is available at time instant k -1. Suppose that a measured output vector y k is obtained at time instant k. Under these assumptions, an outer bound of the exact uncertain state set can be estimated using the following algorithm (similar to the Kalman filter which is based on a prediction step and an update step [START_REF] Brown | Introduction to random signals and applied Kalman filtering[END_REF]).

Algorithm 1 Step 1. (Prediction) Given the system (1), compute a predicted state set Xk = A Xk-1 ⊕ W bounding the uncertain trajectory.

Step 2. (Update) For i = 1, . . . , n y : -Measurement: Compute the consistent state set X y k/i using the output measurement y k/i ; -Correction: Compute an outer approximation Xk/i of the intersection between X y k/i and Xk/i-1 , with Xk/0 = Xk .

The guaranteed state estimation obtained at time instant k is Xk/n y . This algorithm will be detailed in the next section.

Main results

At each time, the system (1) has n y available measurements, i.e., strips represented by

y k/i = c i x k + v k/i , i = 1, . . . , n y , with c i ∈ R n x .
Here c i is the i-th row of matrix C and the noise v k/i is bounded by the interval

V i = φ i B 1 , with φ i = Φ ii .
Supposing an outer approximation of the state set Xk-1 = pk-1 ⊕ Ĥk-1 B r at the time instant k -1, then the predicted state set at the next instant Xk can be computed as follows:

Xk = A pk-1 ⊕ A Ĥk-1 F B r+n ω (2)
The exact estimation set at time instant k will be obtained after intersecting the predicted state set with the consistent state set given by the measured output vector y k . In the general case, an outer approximation of this set can be found by intersecting the predicted zonotopic state set with the first measurement strip, using Property 6. Then this intersection is outer approximated by a new zonotope which is further intersected with the second measurement strip. The procedure is repeated until the last measurement strip (i.e., for 1 ≤ i ≤ n y ), leading to:

Xk/i (λ 1 , . . . , λ i ) = pk/i (λ 1 , . . . , λ i ) ⊕ Ĥk/i (λ 1 , . . . , λ i )B r+n ω +i (3)
with pk/i (λ 1 , . . . , λ i ) = pk/i-1 (λ 1 , . . . , λ i-1 ) + λ i (y k/ic i pk/i-1 (λ 1 , . . . , λ i-1 )), pk/0 = A pk-1 , Ĥk/i (λ 1 , . . . , λ

i ) = κ i Ĥk/i-1 (λ 1 , . . . , λ i-1 ) φ i λ i , κ i = I -λ i c i , Ĥk/0 = [A Ĥk-1 F].
The zonotopic guaranteed state estimation set at instant k is denoted by Xk = Xk/n y . This procedure is illustrated in Fig. 1 for a two-output system. At time instant k the predicted state set is represented by the zonotope Xk . Firstly, this set is intersected with the strip obtained by the first element of the measured output |c 1 x-y k/1 | ≤ φ 1 . Secondly, this intersection is approximated by the zonotope Xk/1 (dash line) using Property 6. The procedure is repeated with Xk/1 and the strip obtained by the second element of the measured output |c 2 xy k/2 | ≤ φ 2 , leading to the outer approximation Xk/2 of this intersection. The guaranteed state estimation set is then the zonotope Xk/2 (dash-dot line). Note that the order of the considered measurement strips can influence the accuracy of the estimation.

To obtain the guaranteed state estimation, the free vectors λ i , with i = 1, . . . , n y , must be computed. In the next part, two procedures are proposed to compute these vectors.

First approach

The vectors λ 1 ,. . . ,λ n y are computed by considering n y separate single-output systems. The computation of λ 1 is detailed in the following and the computation of the vectors λ 2 , . . . , λ n y x k+1 = Ax k + ω k y k/1 = c 1 x k + v k/1 Suppose the guaranteed state estimation at time instant k -1 is the zonotope Xk-1 and its P-radius is L k-1 . Thus, the guaranteed state estimation at time instant k is obtained similar to (3). The main idea consists in computing a matrix P = P 0 and a vector λ 1 such that at each sample time the P-radius of the zonotopic state estimation set (i.e., L k ) and, hence, the zonotopic state estimation set are not increased. The non-increasing condition on the P-radius can be expressed in a mathematical formulation as follows. The decrease of the P-radius (i.e., L k ) is ensured by the expression L k ≤ βL k-1 , with β ∈ (0, 1]. Due to the presence of state perturbations and measurement noise, this condition is difficult to verify. A relaxation of this condition can be L k ≤ βL k-1 + , with a positive constant which permits to bound the influence of perturbations and measurement noises. For = max γ∈B nω Fγ 2 2 + φ 2 1 > 0, this leads to:

L k ≤ βL k-1 + max γ∈B nω Fγ 2 2 + φ 2 1 , with β ∈ (0, 1] (4) 
or in an equivalent form: ( Ĥk (λ 1 )ẑ 2 P -β Ĥk-1 z 2 P -Fγ 2 2 -φ 2 1 ) ≤ 0. For all ẑ, z, γ, this inequality is implied by the following:

max ẑ∈B r+nω+1 Ĥk (λ 1 )ẑ 2 P ≤ max z∈B r β Ĥk-1 z 2 P + max γ∈B nω Fγ 2 2 + φ 2 1 (5) with ẑ = z γ η ∈ B r+n ω +1 , z ∈ B r , γ ∈ B n ω , η ∈ B 1 ,
ẑ Ĥ k (λ 1 )P Ĥk (λ 1 )ẑ -βz Ĥ k-1 P Ĥk-1 z -γ F Fγ -φ 2 1 ≤ 0 (6)
Because η ∈ B 1 , i.e., η ≤ 1, the following expression is obtained φ 2 1 (1 -η 2 ) ≥ 0. Adding this term to the left-side of (6) leads to the following sufficient condition for (6):

ẑ Ĥ k (λ 1 )P Ĥk (λ 1 )ẑ -βz Ĥ k-1 P Ĥk-1 z -γ F Fγ -φ 2 1 + +φ 2 1 (1 -η 2 ) ≤ 0, ∀ẑ, z, γ (7) 
Multiplying the expression of Ĥk in (3) with the explicit form of ẑ leads to Ĥk (λ 1 )ẑ = (I -λ 1 c 1 )A Ĥk-1 z + Fγ + φ 1 λ 1 η = κ 1 A Ĥk-1 z + Fγ + φ 1 λ 1 η. Denote θ = Ĥk-1 z, then the inequality (7) can be written in the matrix formulation:

          θ γ η                     A 11 A 12 A 13 * A 22 A 23 * * A 33           J           θ γ η           ≤ 0, ∀θ, γ, η (8) 
with ' * ' denoting the terms required for the symmetry of the matrix and

A 11 = A κ 1 Pκ 1 A -βP, A 12 = A κ 1 Pκ 1 F, A 13 = A κ 1 Pφ 1 λ 1 , A 22 = F κ 1 Pκ 1 F -F F, A 23 = F κ 1 Pφ 1 λ 1 , and 
A 33 = φ 2 1 λ 1 Pλ 1 -φ 2 1 .
Using the definition of positive definite matrix allows to rewrite (8) as J 0, ∀θ, γ, η 0. Using the explicit notations of J and doing some manipulations, a matrix inequality is derived as:

          βP 0 0 0 F F 0 0 0 φ 2 1           -ΞP -1 Ξ 0, with Ξ =           A κ 1 P F κ 1 P λ 1 Pφ 1          
.

Using the Schur complement [START_REF] Boyd | Linear Matrix Inequalities in system and control theory[END_REF]), this expression is equivalent to the following matrix inequality:

              βP 0 0 A P -A c 1 Y * F F 0 F P -F c 1 Y * * φ 2 1 Y φ 1 * * * P               0 with the change of variable Y = Pλ 1 .
To verify (8) for ∀A ∈ [A], with [A] a convex set, we need to verify this inequality on each vertex G i of [A], with i = 1, . . . , 2 q and q the number of interval elements of matrix [A].

As the 2-norm is a convex function and W is a convex set, the constant term ψ = max γ∈B nω Fγ 2 2 , where γ ∈ B n ω , can be easily computed. Then the condition (4) can be written as

L k ≤ βL k-1 + ψ + φ 2 1 . At infinity, this expression is equiva- lent to L ∞ = βL ∞ + ψ + φ 2 1 , leading to L ∞ = φ 2 1 +ψ
1-β , with the additional hypothesis on the convergence of the {L k } sequence.

Let us consider an ellipsoid

E = {x : x Px ≤ φ 2 1 +ψ 1-β } which can be normalized to E = {x : x (1-β)P φ 2 1 +ψ x ≤ 1}.
To minimize the P-radius (i.e., L ∞ ) of the zonotope, the ellipsoid of the smallest diameter must be found [START_REF] Boyd | Linear Matrix Inequalities in system and control theory[END_REF]). This leads to solving the following eigenvalue problem (EVP), i.e., to finding the values of P = P 0, P ∈ R n x ×n x and λ 1 ∈ R n x : max τ,β,P τ subject to (1-β)P φ 2 1 +ψ τI n x with τ ∈ R + , β ∈ (0, 1] and the identity matrix

I n x ∈ R n x ×n x .
Then, the diameter of the obtained ellipsoid is given by 2 √ τ * [START_REF] Boyd | Linear Matrix Inequalities in system and control theory[END_REF]), with τ * the optimal value of τ.

Finally, to find the values of P = P T 0, P ∈ R n x ×n x and λ 1 ∈ R n x , the following optimization problem must be solved:

max τ,β,P,Y τ subject to τ > 0, (1-β)P φ 2 1 +ψ τI n x               βP 0 0 G i P -G i c 1 Y * F F 0 F P -F c 1 Y * * φ 2 1 Y φ 1 * * * P               0 (9)
where G i are the vertices of the interval matrix [A], with i = 1, . . . , 2 q . As β is a scalar variable, this optimization problem can be efficiently solved by using a BMI (Bilinear Matrix Inequality) solver (e.g., Penbmi [START_REF] Kocvara | PENNON -a code for convex nonlinear and semidefinite programming[END_REF]) or by executing a simple search-loop on β. In the optimization problem (9), the decision variables are:

P = P ∈ R n x ×n x , Y ∈ R n x ,
β ∈ (0, 1] and τ ∈ R + . Thus, the total number of the scalar decision variables is n x (n x +1)

2

+ n x + 2. The dimensions of inequalities ( 9) are 1, n x × n x , (2n x + n ω + 1) × (2n x + n ω + 1), resp.

When A is unknown but belongs to the interval matrix [A], the predicted state set Xk can not be directly computed by the expression (2) at each iteration. This set is replaced by the following outer approximation. The starting point is given by equation (2). As A is bounded by the interval matrix [A], an outer approximation of Xk can be obtained by

[A] pk-1 ⊕ [A] Ĥk-1 F B r+n ω . Using Property 4, the following expres- sion is true [A] pk-1 ∈ (mid[A]) pk-1 ⊕ rs((rad[A])| pk-1 |)B n x .
In addition, Properties 4 and 5 imply that

[A] Ĥk-1 B r ⊆ (mid[A]) Ĥk-1 rs((rad[A])| Ĥk-1 |) B r+n x .
The Minkowski sum of the last two expressions leads to

[A] pk-1 ⊕ [A] Ĥk-1 B r ⊆ (mid[A]) pk-1 ⊕ rs((rad[A])| pk-1 |)B n ⊕ ⊕ (mid[A]) Ĥk-1 rs((rad[A])| Ĥk-1 |)) B r+n .
Therefore, the zonotope representing the outer approximation of Xk is (mid

[A])p k-1 ⊕ QB l , with l = r + 2n x + n ω and Q = (mid[A]) Ĥk-1 rs((rad[A])| Ĥk-1 |) rs((rad[A])| pk-1 |) F .
This zonotope is formed by generators which depend on Ĥk-1 and pk-1 . From the quadratic stability assumption on A ∈ [A] matrix and considering that rad[A] is small enough, these allow to bound the effect of the considered interval uncertainties (i.e., the generator (rad[A])| pk-1 | is bounded) and, thus, the states of the system converge to a region containing the origin. Moreover, the computation of vector λ depends only on the vertices of the interval matrix [A] and not Xk and this outer approximation is done at each time instant. This implies that the approximation has a limited effect on the P-radius of the obtained state outer bound. Moreover, since the P-radius has a shrinking nature when rad[A] is zero, it follows that for small enough values of rad[A] the P-radius will also be shrinking with each iteration of the algorithm.

Second Approach

As the coupling effect of multi-output systems is not considered, the first proposed method can be conservative. To reduce the conservatism of the previous method, the following procedure is proposed. Using y k/1 , the predicted state set Xk , expressions (3) and ( 9) allow us to compute λ 1 and a smaller zonotope Xk/1 . Intersecting this new zonotope with the strip corresponding to y k/2 (supposing λ 1 known from the previous step) leads to λ 2 and another zonotope Xk/2 . This procedure is repeated until the last component of the output vector y k/n y (supposing all the previous vectors λ 1 ,..., λ n y -1 to be known). The following algorithm describes this off-line procedure.

Algorithm 2 Step 1. Using the measurement y k/1 and (9), compute λ 1 . For j = 2, . . . , n y :

Step j: Using the measurement information of y j and the previous vectors λ 1 , . . . , λ j-1 , compute λ j .

The guaranteed state estimation set at Step j is computed by replacing i by j in the expression (3). A similar condition on the P-radius of the zonotopic estimation set is applied, leading to max ẑ∈B r+nω+ j Ĥk/ j ẑ 2 P ≤ max z∈B r β Ĥk-1

z 2 P + max γ∈B nω Fγ 2 2 + φ 2 1 + . . . + φ 2 j , with ẑ = z γ η 1 . . . η j ∈ B r+n ω + j , z ∈ B r , γ ∈ B n ω , η j ∈ B 1 , and β ∈ (0, 1].
At Step j, similar to the first approach the following optimization problem is obtained for i = 1, . . . , 2 q : max τ,β,P,Y τ subject to τ > 0,

(1-β)P ψ+φ 2 1 +φ 2 2 +...+φ 2 j τI nx                                                           βP 0 0 • • • 0 0 (( j l=1 κ j+1-l )G i ) P * F F 0 • • • 0 0 (( j l=1 κ j+1-l )F) P * * φ 2 1 • • • 0 0 (( j-1 l=1 κ j+1-l )φ 1 λ 1 ) P . . . . . . . . . . . . . . . . . . . . . * * * • • • φ 2 j-1 0 (κ j φ j-1 λ j-1 ) P * * * • • • * φ 2 j φ j Y * * * • • • * * P                                                           0
with G i the vertices of the interval matrix [A], q the number of interval elements of [A] and the decision variables Y = Pλ j , P = P 0, τ ∈ R + and β ∈ (0, 1]. The order used to take into account the different measurements can influence on the precision of the estimation (the size of the guaranteed state estimation), thus, to obtain the best performance, n y ! combinations of the order can be tried.

Illustrative example

The example considered here is inspired from [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]) in order to compare the performance of the proposed algorithm to the existing approaches:

                   x k+1 = 0 -0.5 1 1 + 0.3δ x k + 0.02 -6 1 ω k y k = -2 1 1 1 x k + 0.2 0 0 0.2 v k
with parameter uncertainty |δ| ≤ 1, measurement noise v k ∞ ≤ 1 and state perturbation ω k ∞ ≤ 1. The values of δ, v k , ω k are generated by random functions of Matlab R . The initial state belongs to the box 3B 2 and is randomly generated. The order of the m-zonotopes is limited to m ≤ 20 for the Figure 2 shows the evolution of the predicted state set and the outer approximation of the exact uncertain state set at time instant k = 1, 2, 3 using the second proposed approach. The intersection between the predicted state set and the strip obtained from y k/1 (dash line) is approximated by a zonotope (grey), then this zonotope is intersected with the strip obtained from y k/2 . Finally, the guaranteed state estimation at time instant k (black) is the outer approximation (which is rapidly reduced at each iteration due to condition (5)) of this intersection.

Figures 3,4, 5, 6 compare the obtained bound on x k/1 , x k/2 and the volume of the guaranteed bound of the state obtained with different methods: the segment minimization method [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]), the volume minimization method [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]), and the proposed P-radius minimization methods. In Figure 3, the real system states are found between the upper bound and the lower bound of x k/1 , which confirms that these bounds are well estimated. As the bounds obtained by different methods are similar, the Figures 4 and5 compare the width of the bounds for x k/1 and x k/2 computed by different methods, considering the segment minimization algorithm as reference. The bound on x k/1 , x k/2 and the volume of the zonotope obtained by the proposed methods are smaller than the one obtained by the segment minimization method. The accuracy is almost the same in the second proposed method and the volume minimization method.

The results obtained by the first approach and the second approach are also compared. We can see the accuracy of the second approach is better than the one of the first approach which confirms a less conservative result of the second approach. 1 compares the computation time of different methods. These results are obtained with an Intel Core 2 Duo E8500 3.16 GHz. The BMI optimization is solved with Penbmi solver, the volume minimization problem is dealt with the fmincon function of Matlab R and the segment minimization problem is solved with a simple computation. The online computation time is the same in the proposed methods and the segment minimization method. The computation time of the proposed methods is 20 times faster than the one of the volume minimization method. This can be explained by the fact that in the volume minimization method an optimization problem must be solved online at each sample time but in the proposed methods almost all the computation is dealt off-line.

To conclude, the proposed methods combine the lowcomplexity of the segment minimization and the good accuracy of the volume minimization.

Conclusion

A new approach based on the P-radius minimization allows the guaranteed state estimation for stable multi-output systems with bounded state perturbations and bounded noises. The procedure computes a zonotopic set of all the possible states that are consistent with the measured output vector and the given noise. The size of this zonotope is non-increasing at each sample time leading to a better estimation accuracy. Using the Pradius minimization offers a good trade-off between the complexity reflected by the computation time and the accuracy of the estimation. With the additional assumption on the quadratic stability of interval systems and based on bounded outer approximations, this approach still guarantees the convergence of the estimation in the presence of interval uncertainties.

Firstly, future works are related to the zonotopic guaranteed state estimation for uncertain multivariable systems. Considering all the measurements at the same time (i.e., all the vectors λ 1 ,. . . , λ n y must be computed at the same time) leads to a Polynomial Matrix Inequality (PMI). A sub-optimal solution for PMI problems can be found using different relaxation techniques (e.g., [START_REF] Henrion | Inner approximations for polynomial matrix inequalities and robust stability regions[END_REF]); this can be investigated in the future. A more interesting and not trivial direction is to investigate: the consistent state set computed by all the strips of measurement at the same time (leading to a polytope), and then, the intersection of the obtained polytope with the zonotopic predicted state set. Secondly, further developments will focus on combining this estimation technique together with Tube-based Model Predictive Control. Finally, the proposed zonotopic set-membership estimation technique can be applied to fault detection and fault tolerant control purposes.
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  and β ∈ (0, 1]. In addition, the next inequality is a sufficient condition of the expression (5): max ẑ∈B r+nω +1
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 456 Figure 4: Comparison of the bound's width of x 1
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 1 Total computation time after 50 samples

	Algorithm	Time (second)
	Segment minimization	0.0780
	First approach and second approach (without off-line BMI)	0.0780
	First approach and second approach (off-line BMI included)	1.2636
	Volume minimization	22.2457
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