
Receding Horizon Flight Control for Trajectory Tracking of
Autonomous Aerial VehiclesI

Ionela Prodana,b, Sorin Olarua, Ricardo Bencatelc, João Borges de Sousac, Cristina
Stoicaa, Silviu-Iulian Niculescub

aSUPELEC Systems Sciences (E3S) - Automatic Control Department, 3 rue Joliot Curie, 91192,
Gif sur Yvette, France, {ionela.prodan,sorin.olaru,cristina.stoica}@supelec.fr

bLaboratory of Signals and Systems, SUPELEC - CNRS, 3 rue Joliot Curie, 91192, Gif sur
Yvette, France {ionela.prodan,silviu.niculescu}@lss.supelec.fr

cDepartment of Electrical and Computer Engineering, School of Engineering, University of Porto,
4200, Porto, Portugal {ricardo.bencatel,joao.sousa}@fe.up.pt

Abstract
This paper addresses the implementation of a predictive control strategy for Un-
manned Air Vehicles in the presence of bounded disturbances. The goal is to prove
the feasibility of such a real-time optimization-based control design and to demon-
strate its tracking capabilities for the nonlinear dynamics with respect to a reference
trajectory which is pre-specified via differential flatness. In order to benefit from the
computational advantages of the linear predictive control formulations, an off-line
linearization strategy of the nonlinear model of the vehicle along the flat trajectory
is employed. The proposed method exhibits effective performance validated through
software-in-the-loop simulations and real flight tests on different Unmanned Aerial
Vehicles (UAVs).

Keywords: Unmanned Aerial Vehicles (UAVs), differential flatness, constrained
Model Predictive Control (MPC)

1. Introduction

Unmanned Aerial Vehicles (UAVs) are flying devices that have received increasing
attention in recent years, particularly after the tragic events of September 11, 2001,
when the world has questioned the safety of the onboard aircrafts (Valavanis, 2007).

IThe research of Ionela Prodan is financially supported by the EADS Corporate Foundation
(091-AO09-1006).

Preprint submitted to Control Engineering Practice Tuesday 2nd July, 2013

Currently, most UAVs are used for military mission planning and for combat support
(Valenti et al., 2007), border surveillance (Hoffmann et al., 2011) and search for
survivors (Geyer, 2008). Also, the range of possible civilian applications for UAVs
is expending to traffic monitoring (Rosenbaum et al., 2009), pollution measurement
(Muttin, 2011) or hazard zone inspection (Patterson et al., 2011). Many of the
enabling technologies developed for military UAVs are becoming similar or identical
to those required for civil UAVs (Zheng et al., 2013).

One of the main research challenges is to improve and increase their autonomy,
in particular to empower the application of advanced control design methods. Their
aim is to consider the limitations of the vehicle dynamics and to permit the reconfig-
uration of the vehicle trajectory in case of unexpected events occurring in the system.
The objective of the present paper is to describe and implement a control strategy
with a combined use of Model Predictive Control (MPC) and flatness concepts. This
represents a challenging methodological combination allowing to handle the feed-
back control and the trajectory generation while cooping with the robustness issues
upon set-theoretic methods. Moreover, to the best of the authors’ knowledge, such
a strategy has not been evaluated in flight tests on actual vehicles. In this sense, the
results presented in the present paper can be considered as a validity proof for the
proposed control approach for a real UAV system, all by pointing to the sensitive
open problems.

There exist various techniques for the real-time control of UAVs. Usually low-
complexity (and robust) control methods are preferred such as, sliding mode control
(Bencatel et al., 2011), dynamic programming approach for motion control of au-
tonomous vehicles (Silva et al., 2007) or control strategies that first estimate the
speed and heading of the vehicles and then use simple feedback control laws for
stabilizing different measurement error (Soares et al., 2012). In comparison to these
solutions we will show that the presented MPC approach, meets the real-time compu-
tational constraints even if it presents a relatively important real-time computational
load.

The present results follow a recent trend in the control literature where real-time
predictive control strategies are applied to vehicles maneuvering problems. For exam-
ple, in (Keviczky and Balas, 2006), the authors use a predictive guidance controller
for an autonomous UAV and a fault detection filter for taking into account the dis-
turbances. Mixed-Integer Programming (MIP) techniques combined with receding
horizon strategy was useful to efficiently coordinate the interaction of multiple UAVs
in scenarios with many sequential tasks and tight timing constraints (How et al., 2004;
Schouwenaars et al., 2005). Furthermore, some other works investigate the capabil-
ity of Nonlinear MPC for tracking control. Among these contributions, (Kim et al.,

2

2002) formulates a nonlinear MPC algorithm combined with the gradient-descent
method for trajectory tracking, and (Fontes et al., 2009) proposes a two-layer con-
trol scheme composed by a nonlinear and a linear predictive controller for a group of
nonholonomic vehicles moving in formation. The computational load highlights the
importance of developing simpler real-time optimization problems embedded within
predictive control formulations for plants described by nonlinear models. In this
sense, the authors of (Falcone et al., 2007) consider a MPC tracking controller based
on successive on-line linearizations of the nonlinear model of the corresponding plant.
Yet, the computational complexity of the proposed MPC scheme remains significant.
The approach advocated in the present paper follows a similar linearization principle
from the prediction model point of view, but avoids its real-time computation by the
use of a precomputed Voronoi diagram of the linearized models. This novelty is used
in conjunction with an efficient trajectory generation mechanism in order to reduce
the real-time computations. The propose method can be considered to be part of the
larger class of parameter-varying MPC techniques. However, its particularity is that
it reduces to a simple positioning mechanism in the Voronoi partition with a linear
MPC for the local prediction model. This proves to be a computationally attractive
alternative to the LMI-based MPC for nonlinear or time-varying dynamics (Kothare
et al., 1997; Lakshmanan et al., 1999; Falugi at al., 2010) which are impractical for
the real-time control of UAV systems.

From the trajectory point of view, it is important to point out that the class of
nonlinear systems used in a wide range of UAV applications are differentially flat
(Fliess et al., 1995; Lévine, 2009). Flatness plays an important role in the control
of such systems, with practical design algorithms for motion planning, trajectory
generation, and stabilization (Rouchon et al., 2003). Among the applications, (Hao
and Agrawal, 2005) proposes a combination between differential flatness and a graph
search method for the on-line planning and control of multiple ground mobile robots
with trailers moving in groups. Also, the authors in (Van Nieuwstadt and Mur-
ray, 1998) apply a real-time trajectory generation algorithm based on flatness and
receding horizon without constraints to a thrust vectored flight experiment (the Cal-
tech ducted fan). Finally, the authors in (De Doná et al., 2009) develop a receding
horizon-based trajectory generator methodology for generating a reference trajectory
parameterized by splines, with the property that it satisfies performance objectives.

The paper proceeds as follows. Section 2 focuses on the description of the control
system design, the aircraft model used to test the control system and the implemen-
tation of the controller intended to run in real-time in an autonomous system. In
Section 3 a specified trajectory is generated for a vehicle using the differential flat-
ness formalism. The proposed trajectory generation mechanism takes into account

3

waypoint conditions and furthermore, allows us to obtain in Section 4 off-line lin-
earizations of the nonlinear vehicle model along the flat trajectory. Since the reference
trajectory is available beforehand, a real-time optimization problem which minimizes
the tracking error for the vehicle is solved in Section 5 based on a prediction of the fu-
ture evolution of the system, following the model-based control principles (Goodwin
et al., 2005). Furthermore, Section 6 describes the UAVs testbed hardware and soft-
ware architecture. Also, the validation procedure of the proposed method tests the
performances by software-in-the-loop simulations and subsequently with field tests of
an offboard controller of an autonomous UAV. In this section we are also addressing
all the issues concerned with the delays in communication and/or the connectivity
between the Ground Station and the autonomous flight control computer. Finally,
Section 7 completes the paper with concluding remarks and improvement directions.

The following notations will be used throughout the paper. A Voronoi region, Vi
associated to a collection of points pi is defined as Vi = {x ∈ Rn : d(x, pi) ≤ d(x, pr),
∀i 6= r}, where d(x, y) denotes the distance between the points x and y. Minkowski’s
addition of two sets X and Y is defined as X ⊕ Y =

{
x+ y : x ∈ X , y ∈ Y

}
. Let

x(k + 1|k) denote the value of x at time instant k + 1, predicted upon the informa-
tion available at time k ∈ N. We write R � (�)0 to denote that R is a positive
(semi)definite matrix. Let smax denote the maximum number of steps for which an
optimization problem is solved.

2. UAV model in view of control design

From the high level control point of view, the airplane model can be considered
to be part of the class of nonholonomic systems. It is completely controllable, but it
cannot make instantaneous turns in certain directions. This means that the vehicle
state depends on the path executed until the current moment. Further, the feasible
path depends on the aircraft’s current state, as forces cannot be imposed in all
directions concomitantly. The two main control forces of the aircraft are the lift
and the thrust. Thrust magnitude is controlled directly through the motor power.
Lift magnitude is controlled indirectly through the aircraft angle of attack and the
aircraft airspeed.

The framework proposed in the present paper can be adapted to vehicles moving
in 2D or 3D. Subsequently, the airplane can be represented by the following simplified
kinematic models1 with different Degrees-of-Freedom (DOF) (Bencatel et al., 2011):

1In the present paper, we adopt a kinematic model for the airplane which is not a simple double
integrator. Instead, the model is written in terms of the vehicle’s speed, heading and the bank.

4

2D model with 3-DOF

ẋ(t) = Va(t) cos Ψ(t) +Wx, (1)
ẏ(t) = Va(t) sin Ψ(t) +Wy,

Ψ̇(t) = g tan Φ(t)
Va(t) ,

3D model with 4-DOF

ẋ(t) = Va(t) cos Ψ(t) +Wx, (2)
ẏ(t) = Va(t) sin Ψ(t) +Wy,

Ψ̇(t) = g tan Φ(t)
Va(t) ,

ḣ(t) = ḣc(t).

In the present work we explore the case of a 2D 3-DOF model (1) of an airplane in
which the autopilot forces coordinated turns (zero side-slip) at a fixed altitude. The
state variables are represented by the position (x(t), y(t)) and the heading (yaw) angle
Ψ(t) ∈ [0, 2π] rad. The input signals are the airspeed velocity Va(t) and the bank
(roll) angle Φ(t), respectively. Also, the airspeed and the bank angle are regarded as
the autopilot pseudo-controls. Furthermore, we assume a small angle of attack and
that the autopilot provides a higher bandwidth regulator for the bank angle, making
its dynamics negligible when compared to the heading dynamics. Wx and Wy are
the wind velocity components on the x and y axis. Notice that the 3D 4-DOF model
is the same as the 2D 3-DOF model of the airplane, except for the altitude variation
h(t). In this case, besides the airspeed and the bank angle, the vertical rate ḣc(t) is
regarded also as the autopilot pseudo-control.

The main objective is the design of a predictive control strategy for system (1).
In the view of this objective, a reference trajectory needs to be available beforehand
at least for a finite prediction window. Therefore, in the following, we use flatness
concepts (Fliess et al., 1995) in order to provide flat reference states and inputs for
the nonlinear system (1) at the pre-design stage (trajectory generation), which can be
updated in real-time in order to allow trajectory tracking and disturbance rejection.

3. Flat trajectory generation

Consider the compact notations:

ξ(t) =
[
xT(t) yT(t) ΨT(t)

]T
, (3)

u(t) =
[
V T

a (t) ΦT(t)
]T
, (4)

5

denoting the state vector and the input vector, respectively. Then, the general system
(1) can be described as:

ξ̇(t) = f(ξ(t), u(t)), (5)

where f(·, ·) : R3 × R2 → R3 is the dynamical system.
In the following, we require the determination of a reference trajectory (ξref(t),

uref(t)) that steers the model (1) from an initial state ξref(t0) to a final state ξref(tf),
over a fixed time interval [t0, tf]. Since the aforementioned system is controllable and
allows the existence of flat outputs (see, for instance (Van Nieuwstadt and Murray,
1998; De Doná et al., 2009)), we employ flatness properties in order to construct the
required reference trajectory.

The systems’ state and input will be represented as functions of a finite dimen-
sional mapping z(t) and a finite number of its derivatives (in this particular case it
will be shown that the second order derivative suffices):

ξref(t) = η0(z(t), ż(t)),
uref(t) = η1(z(t), ż(t), z̈(t)).

(6)

In the case of the dynamics (1), the vector z(t) =
[
z1(t) z2(t)

]T
∈ R2, called the

flat output is defined as:

z1(t) = x(t),
z2(t) = y(t).

(7)

It can be shown that, the corresponding reference state and input for the system (5)
are obtained by replacing the reference flat output (7) into equations (6):

ξref(t) =
[
z1(t) z2(t) arctan

(
ż2(t)
ż1(t)

)]T
, (8)

uref(t) =
[√
ż2

1(t) + ż2
2(t) arctan

(
1
g
z̈2(t)ż1(t)−ż2(t)z̈1(t)√

ż2
1(t)+ż2

2(t)

)]T
, (9)

where t ∈ [t0, tf].
It is important to point out that the obtained trajectories (8)–(9) are consistent

with the system dynamic equation (1). Practically, any trajectory for z(t) in (7) that

6

satisfies the boundary conditions:

ξref(t0) = η0(z(t0), ż(t0)) = ξ(t0),
uref(t0) = η1(z(t0), ż(t0), z̈(t0)) = u(t0),
ξref(tf) = η0(z(tf), ż(tf)) = ξ(tf),
uref(tf) = η1(z(tf), ż(tf), z̈(tf)) = u(tf),

(10)

will enhance references (8)–(9) as feasible trajectory for system (1), while in the same
time verifying the given initial and final conditions.

However, a significant shortcoming of the flatness construction is that constraints
on inputs and/or state cannot be introduced easily in the trajectory generation. That
is, we can impose in certain points values for state/inputs but we cannot control what
happens “in-between” these points. In the forthcoming sections this will prove to be
an important aspect towards the constraints validation within the predictive control
setup. Therefore, it becomes important to bring the trajectory into admissible limits
from its reference generation. As a solution, we propose a simplified model for the
generation of the trajectory, by considering Va(t) in (4) to be constant (chosen a
priori) and let the bank angle φ(t) as the single controllable input.

This restriction leads to a simplified form of the corresponding reference signals:

ξref(t) =
[
z1(t) z2(t) arctan

(
ż2(t)
ż1(t)

)]T
, (11)

uref(t) =
[
Va arctan

(
Va
g
z̈2(t)ż1(t)−ż2(t)z̈1(t)

ż2
1(t)+ż2

2(t)

)]T
, (12)

where t ∈ [t0, tf] and Va denotes the constant velocity.

Remark 1. Note that this simplification (i.e., Va(t) constant) provides yet another
model which has to be dealt with. The resulting flat trajectory is still feasible for
the 3-DOF model (1) since any trajectory of this restricted model is also a trajectory
of the original one. Subsequently, under the hypothesis of a constant velocity, the
obtained reference trajectories can be considered as being parameterized by the value
of Va. �

For a practical implementation, the flat output signal z(t) is seen as a weighed
sum of functions in a predefined basis. Imposing boundary constraints (or more
generic waypoints) for the evolution of the differentially flat systems (see, for instance
(De Doná et al., 2009)) a flat output z(t) can be generated by the resolution of a
linear system of equalities. Exploiting these principles, our approach is to further

7

introduce a set of waypoints through which the vehicle must pass2 in the interval
[t0, tf]:

P , {pi = (ξi, ui), i = 0, . . . , Nw}, (13)

where Nw is the number of chosen waypoints.
The list of waypoints is assumed as being provided by an operator (which can

oversee the operation) and incorporates control requirements: obstacle avoidance,
check points, etc. Note that producing waypoints in the reference trajectory gen-
eration is coherent with the existing software-hardware configuration which used
waypoints in the communication protocol (see the description of the hardware and
software architecture in Section 6.1).

It is important to point out that polynomial basis functions are a poor choice
because their dimension (degree) depends on the number of constraints imposed
upon the inputs, states and their derivatives. This means that they are sensitive to
the number of waypoints, which can lead to an increased numerical sensitivity when tf
grows. More precisely, in this case the trajectory needs to be computed on segments
(i.e., each segment taken between two consecutive waypoints). Therefore, additional
equality constraints are imposed on the flat output, leading to an increased number
of polynomial basis functions beyond reasonable computation limits. For example,
in our case, we need to go to higher order monomials in order to guarantee that there
exists a weighted combination which satisfies all the equality constraints.

To overcome these issues, B-spline functions (De Doná et al., 2009; Suryawan
et al., 2010) have been used. This is (arguably) one of the best choice in the sense
that their degree does not depend on the number of waypoints. Actually, the degree
depends only on the rank of derivative for which continuity need to be ensured, this
being in contrast with the goal of a simple polynomial basis. In our particular case,
the third degree order of the B-splines suffices to assure smooth bank and velocity
control inputs. Practically the third order degree suffices also by the fact that the
bank control is implicitly defined by the first and second derivatives (see equation
(9)). Finally, this implies that the bank control is smooth only if the second and
third order derivatives of the flat output are continuous.

Illustrative example for the generation of a flat trajectory
In order to illustrate the proposed flat trajectory mechanism let us consider the

nonlinear model (1) and Nw = 9 waypoints as in (13) through which the trajectory

2Hereafter whenever we use the subscript we refer to time and when we use the superscript we
index a point from a set of points.

8

−600 −500 −400 −300 −200 −100 0 100 200 300 400

−500

0

500

x

y

Flat trajectory

0 20 40 60 80 100 120 140 160 180

−4
−2
0
2
4

Time [s]

Ψ

Reference trajectory

Waypoints

Legend

ξref(t0) ξref(tf)

ξref(ti)

(a)

0 50 100 150
10

20

30

40

50

Time [s]

V
a
[m

/
s]

0 50 100 150
−0.2

0

0.2

0.4

0.6

Time [s]

Φ
[r

a
d
]

0 50 100 150

−2

0

2
·10−2

Time [s]

Φ̇
[r

a
d
/
s]

0 50 100 150
−6

−4

−2

0

2

Time [s]

V̇
a
[m

/
s2

]

Inputs for system (1)

Inputs for system (1) with Va constant

Legend

(b)

Figure 1: Flat trajectory which passes through a priori given waypoints.

must pass: P = {(−500,−500, 150), (−180,−650, 150), (0,−350, 150), (−350, 0, 150),
(−350, 300, 150), (−200, 500, 150), (50, 450, 150), (300, 0, 150), (0,−350, 150)}.

Figure 1(a) illustrates the flat trajectory in blue obtained by letting both, Va
to vary as well as constant (i.e., Va = 19 m/s). The difference between the two
trajectories is only represented by the variation of the control inputs which, as it can
be observed in Figure 1(b) in the case when Va is constant (represented in solid blue)
the variations of both the bank control input and its derivative are smother.

Once the reference trajectory is available, one can concentrate on the real-time
control aspects. The predictive control needs to be able to handle the discretized
and linearized model of the vehicle along a reference trajectory. In Section 4 the
proposed linearization strategy of the nonlinear system (1) is described and further
in Section 5 the MPC design is discussed.

4. Linearization of the UAV model

For computation purposes, it is convenient to use the discretized model of the
nonlinear system (5):

ξ(k + 1) = fd(ξ(k), u(k)). (14)

9

The Euler explicit method is further used for the time discretization of system (5),
where the state of the system at a later time is precalculated based on from the state
of the system at the current time:

ξ(k + 1) = ξ(k) + h · f(ξ(t), u(t))|t=k·h, (15)

with h is the discretization step. Even if very simple, the Euler method proved to be
adequate. Of course, more complicated implementations can be adopted, in partic-
ular, it would be interesting to have a discretization which is adapted to a variable
discretization step (as it is the case for the communication delays we experienced in
the practical experiments).

In the sequel, we consider the linearization problem of the nonlinear discretized
system (14). We take here a piece-wise affine (PWA) approach3, that is, we consider
a collection of points along the reference trajectory in which we pre-compute linear
approximations of (14):

L , {lj = (ξj, uj), j = 0, . . . , Nl}, (16)

with Nl the number of chosen linearization points.
For a given point lj ∈ L we consider the following Taylor decomposition:

fd(ξ(k), u(k)) = fd(ξj, uj) + Aj(ξ(k)− ξj) +Bj(u(k)− uj) + βj(ξ(k), u(k)), (17)

where the matrices Aj ∈ R3×3 and Bj ∈ R3×2 are defined as

Aj = ∂fd

∂ξ
|ξj,uj , Bj = ∂fd

∂u
|ξj,uj (18)

and βj(ξk, uk) ∈ R3 represents the terms of the Taylor decomposition of rank greater
than 1 (i.e., the nonlinear residue of the linearization):

βj(ξ(k), u(k)) = fd(ξ(k), u(k))− fd(ξj, uj)− Aj(ξ(k)− ξj)−Bj(u(k)− uj), (19)

for all j = 0, . . . , Nl. Therefore, the system (14) can be linearized in lj ∈ L by the

3The PWA approach has received and extensive interest in the literature, representing a powerful
technique for approximating the nonlinear systems and furthermore, proving their equivalence to
other classes of hybrid systems. For a wide extent on the subject, the interested reader is referred
to the work of (Sontag, 1981; Heemels et al., 2001; Ulbig et al., 2010) and the references therein.

10

following dynamics:

ξ(k + 1) = fd
j (ξ(k), u(k)) , Ajξ(k) +Bju(k) + rj, (20)

with the affine constant terms rj ∈ R3 defined as:

rj = fd(ξj, uj)− Ajξ
j −Bju

j, (21)

for all j = 0, . . . , Nl.
In the following we consider a procedure of selecting between the predefined

linearization points (16) for the current input/state values. To this end, we partition
the state-space into a collection of Voronoi cells:

Vj =
{
ξ : ||ξ − ξj|| ≤ ||ξ − ξr||, ∀r 6= j

}
, (22)

where each cell consists of all points whose linearization error is lower with respect
to linearization around the point ξj than with respect to any other point ξr from L,
with r, j = 0, . . . , Nl, r 6= j. This allows a practical criterion for the selection of the
linearization point during runtime:

if (ξ, u) ∈ Vj then ξ(k + 1) = fd
j (ξ(k), u(k)), ∀(ξ(k), u(k)) ∈ Vj. (23)

It is worth mentioning that the Voronoi decomposition is unique (by its geometrical
properties) and, as such, it offers a generic design tool for any disposition of the
linearization points. The drawback is that this criterion is purely geometric and does
not take into account the dynamical properties of the model. This disadvantage can
be mitigated by two practical procedures:

- the increase of the number of linearization points;

- the computation of the maximal linearization error.

We point to (Fagiano et al., 2009) for a discussion on the accuracy of the linearization
and the correspondence with a stabilizing control law.

Since βj(ξ(k), u(k)) = fd(ξ, u)− fd
j (ξ, u) it follows that the linearization error is

related to the topology of its corresponding cell, Vj:

||βj(ξ(k), u(k))|| ≤ max
(ξ,u)∈Vj

||fd(ξ, u)− fd
j (ξ, u)||. (24)

Basically, a Voronoi decomposition with decreasing volume of the cells leads to an
increasing quality of the PWA approximation for the function (14).

11

−600 −500 −400 −300 −200 −100 0 100 200 300 400

−800

−600

−400

−200

0

200

400

600

x

y

Reference trajectory

Linearized trajectory

Waypoints

Linearization points

Voronoi cells

Bounds for Voronoi cells

Legend

ξref(t0)
ξref(tf)

ξref(ti)
(Aj, Bj, rj)

Figure 2: Real and linearized trajectories and the bounded Voronoi cells.

Remark 2. An a priori computation of the linearization (18), (19) and (21) in all
feasible combinations of inputs and states is difficult to handle. As such, we prefer
to select the linearization points (16) along the flat trajectory under the assumption
(to be verified along the system functioning) that the real trajectory will stay in
the corresponding validity domain (Voronoi cell) and thus, the chosen linearization
points will remain relevant to the problem at hand. �

Illustrative example for the linearization mechanism
In order to better explain the linearization strategy, we continue with the pre-

vious example and illustrate in Figure 2 the continuous trajectory of the nonlinear
system (5) (in blue) and the piecewise linearized trajectory (in red). Therefore, the
linear system (20) describes dynamics of the deviations of the real nonlinear system
trajectories (14) from the reference state trajectory ξref(t) described by (8) at the
application of an input reference signal uref(t) in the form (9). Several linearization
points (denoted as black dots)4 have been considered for the construction of the
Voronoi cells according to relationship (22).

By linearizing the reference trajectory one can dispose of the necessary modeling

4Note that the waypoints (13) can also be considered between the linearization points (16).
Moreover, the linearization points and the waypoints in the trajectory generation do not need to
be correlated.

12

framework for the feedback control part of the trajectory tracking. This problem
becomes the central objective for the remaining part of the paper and will be detailed
in the forthcoming sections.

5. Trajectory tracking control problem

Since the reference trajectory is available beforehand (through the use of flatness
procedures described in Section 3), an optimization problem, which includes the
minimization5 of the vehicle tracking error, can be formulated and included in a
predictive control framework. Practically, the vehicle will be controlled in real-time
to follow the reference trajectory using the available information over a finite time
horizon in the presence of constraints.

For the implementation we consider the recursive construction of an optimal open-
loop control sequence u = {u(k|k), u(k + 1|k), · · · , u(k +Np − 1|k)} over a finite
constrained receding horizon, which leads to a feedback control policy by the effective
application of the first control action as system input:

u∗ = arg min
u

Np−1∑
s=0

(||ξ(k + s|k)− ξref(k + s|k)||Q + ||u(k + s|k)− uref(k + s|k)||R+

+ ||∆u(k + s|k)||R∆),
(25)

subject to the set of constraints:

ξ(k + s+ 1|k) = A(k + s|k)ξ(k + s|k) +B(k + s|k)u(k + s|k) + rj,

∆u(k + s|k) = u(k + s|k)− u(k + s− 1|k),
ξ(k + s|k) ∈ X , s = 1, . . . , Np − 1,
u(k + s|k) ∈ U , s = 1, . . . , Np − 1,

∆u(k + s|k) ∈ U∆, s = 1, . . . , Np − 1,

(26)

with A(k + s|k) = Aj and B(k + s|k) = Bj, j = 1, . . . , Nl being the index selected
such that (ξ(k + s|k), u(k + s|k)) ∈ Vj as defined in (22). Here Q = QT � 0, R � 0,
R∆ � 0 are weighting matrices and Np denotes the length of the prediction horizon.

5The nominal trajectory is conceived to respect state and input constraints, but the real vehicle
state may not follow exactly the reference trajectory, although it is desirable to remain as close as
possible to it.

13

The solution of the optimization problem (25) needs to satisfy the dynamical
constraints, expressed by the equality constraints in (26). In the same time, other
security or performance specifications can be added to the system trajectory. These
physical limitations (velocity and bank control inputs) are stated in terms of hard
constraints on the internal state variables and input control action as detailed by
the set constraints in (26). Practically, the sets X and U denote in a compact
formulation the magnitude constraints on states and inputs, respectively. The set
U∆ describes the constraints on the variations of the input control signals. In the
following, all these sets are supposed to be polytopic (and by consequence bounded)
and to contain the reference value. This means that ξref(k) ∈ X , uref(k) ∈ U and
uref(k)− uref(k − 1) ∈ U∆.

Note that the cost function is designed to minimize the difference between the
nominal and the ideal trajectory, whereas the constraints are imposed on the real
trajectory. Additionally, at each step of prediction, the current values have to be
superposed over the Voronoi decomposition and the best linearization has to be
selected.

The trajectory obtained by applying the optimal control u∗ computed in (25)–
(26) is “nominal”, in the sense that it does not consider either exogenous noises (i.e.,
the wind) or the state-dependent linearization error (i.e., the term βj(ξ(k), u(k))
from (17)). There are different approaches in the literature which deal with the
reference trajectory tracking problem for dynamical systems affected by disturbances.
A classical method is based on the tube MPC approach (for details, the reader is
referred to (Rakovic et al., 2011; Mayne et al., 2011)) where a nominal trajectory is
controlled and the real trajectory is kept into a tube around the nominal one through
a suitable control action.

The “real” trajectory takes into account all the possible perturbations:

ξ◦(k + 1) = Ajξ
◦(k) +Bju

◦(k) + rj + βj(ξ◦(k), u◦(k)) + w(k), (27)

where the bounded perturbation w(k) denotes the wind.
Subsequently, subtracting (20) from (27) we obtain the tracking error z(k) =

ξ◦(k)−ξ(k) measuring the difference between real ξ◦(k) and nominal ξ(k) trajectories:

z(k + 1) = Ajz(k) +Bju
δ(k) + βj(ξ◦(k), u◦(k)) + w(k), (ξ◦(k), u◦(k)) ∈ Vj, (28)

where uδ(k) = u◦(k) − u(k) denotes the difference between “real” and “nominal”
control actions.

14

Considering that the perturbations are bounded,6 as long as a stabilizable control
action:

uδ(k) = K(ξ(k), ξ◦(k)), (29)

exists, we can guarantee that the real trajectory (27) remains in a bounded neigh-
borhood of the nominal one (20). Actually, there will exist a sequence of bounded
sets which describes the tube:

z(k) ∈ Sk ↔ ξ◦(k) ∈ {ξ(k)} ⊕ Sk, ∀k ≥ 0. (30)

For LTI dynamics, the choice of (29) is simply a gain matrix which makes the closed-
loop dynamics stable. Here, due to the switched nature of (20) we need also to switch
between the gain matrices:

K(ξ(k), ξ◦(k)) = Kj(ξ◦(k)− ξ(k)), j = 0, . . . , Nl, (31)

with each gain Kj stabilizing the pair (Aj, Bj) in (20). Then, we obtain the switched
system:

z(k + 1) = (Aj +BjKj)z(k) + βj(ξ◦(k), u◦(k)) + w(k), (ξ◦(k), u◦(k)) ∈ Vj, (32)

which, under the assumption of existence of a common Lyapunov function (via a
piecewise Lyapunov function (Hovd et al., 2010) or alternatively by imposing con-
straints on the dwell time between switches (Colaneri, 2009)) is stable.

Of theoretical interest is the computation of the “tube” defined by the sets Sj(k).
For LTI dynamics, the set Sj(k) is constructed to be robust positively invariant in
order to minimize the on-line computations. Here the dynamics of the vehicle change
whenever the linearization point changes and it may not be possible to find a common
robust positively invariant set. In this case, a hybrid structure can be proposed.
That is, we compute robust invariant sets for each of the linearized dynamics and
change between them (or scaled versions of them, i.e., S̃j(k) λ(k) Sj(k)) whenever the
linearization point impose it. To summarize, the practical procedure is the following:

- as long as the system use the linearization point (ξref(k), uref(k)), the set Sj(k)
is defined by the same invariant shape and the scalar λ(k) = 1,

- if the index at step k − 1 is j(k − 1) and j(k − 1) 6= j(k), then the shape of
Sj(k) changes as a consequence of the fact that the linearization index changes.

6If the cell Vj is bounded, then the nonlinear residue βj(ξ(k), u(k)) is also bounded.

15

The scalar λ(k) is computed via the LP problem:

λ(k) = min λ
s.t. λSj(k) ⊃ Sj(k-1).

The danger, from the stability point of view, is to have a monotonic increase of the
coefficients λ along the switches. This remark provides a simple and efficient criterion
for detecting the misfunctioning of the predictive feedback loop: the violation of a
pre-imposed bound on the scaling factor. Practically, as long as the change between
different dynamics is slow enough, the overall stability of the tracking error, and thus
of the boundedness of the tube are preserved due to local contractive properties of
each LTI mode (32).

Although, the generic robust predictive control strategy would be feasible for
the UAV application, we do not pursue here the invariant set manipulation in the
implemented control scheme. We will test the nominal predictive control scheme and
show that the inherent robustness of this control law covers in a satisfactory manner
the tested maneuvers. We mention however, that whenever the control law needs to
pass by certification procedures for covering important wind variations, the robust
version of the design needs to be adopted. Moreover, it needs to include the tube
description together with a watchdog mechanism for the invariant set scaling factor,
which can commute the UAV functioning towards a “safe mode”.

Algorithm 1: Trajectory tracking optimization-based control problem
Input: Consider model (1) and give the collection of waypoints P as in (13).

1 -construct the flat trajectory as in (8)–(9), passing through pi ∈ P ;
2 -choose a collection of linearization points L as in (16);
3 -construct the PWA function as in (20) with (Aj, Bj, rj) defined as in (18);
4 -partition the state-space into Voronoi cells as in (22);
5 for s = 1 : smax do
6 -select the linearization point lj ∈ L by testing (23);
7 -select the pair (Aj, Bj, rj) by testing (24);
8 -find the optimal control action u∗ by solving (25);
9 -compute the next value of the state:

ξ(k + s+ 1) = Ajξ(k + s) +Bju(k + s) + rj.

10 end

16

Finally, Algorithm 1 recapitualtes the mechanism implemented based on the the-
oretical elements previously presented.

In the sequel, we provide first the UAVs testbed hardware and software archi-
tecture description and then, software-in-the-loop simulations in comparison to the
actual experimental results on real UAVs, which validate our proposed approach.

6. Practical implementation of the receding horizon flight controller on a
UAV

In the current paper we present software-in-the-loop simulations and real flight
tests results for the predictive control of Unmanned Aerial Vehicles (UAVs). The
flight experiments took place at the Portuguese Air Force OTA airfield in May 2012
on small platforms (Figure 3, Figure 4) owned by the Air Force Academy and Under-
water Systems and Technologies Laboratory (Laboratório de Sistemas e Tecnologias
Subaquáticas - LSTS), University of Porto.

The control objective is to force the UAV to track some given waypoints. The
control inputs are the velocity and the bank angle of the UAV. One real-world sit-
uation that matches this scenario is that of an autonomous aircraft equipped with
GPS, radio communications and a camera. The mission of the aircraft is to take some
snapshots at a certain time of a certain area and then, to transmit the information
to the ground.

Figure 3: “Cularis-05” UAV of the LSTS laboratory from University of Porto.

In the sequel, we present first a summary of the control setup used onboard the
UAV.

17

Figure 4: “Pilatos-03” UAV (in the right side) of the LSTS laboratory from University of Porto
and “Alfa-06” UAV (in the left side) of the Portuguese Air Force Academy.

6.1. UAVs testbed hardware and software architecture description
The testbed implements a ground (off-board) control, that is, the controller runs

on Matlab on a ground station computer that receives telemetry and sends flight
commands through a Ground Station. The autopilot system is a Piccolo II (Vaglienti
et al., 2011), which receives airspeed and bank commands from DUNE, a control
software developed by the LSTS lab from University of Porto (Pinto et al., 2012).

The LSTS lab testbed software and hardware architectures enabled us to integrate
and to test the proposed predictive control algorithm in a real-time environment. One
fundamental control issue we deal with in this paper is the problem of tracking a
given reference trajectory in the presence of constraints (see (Aguiar and Hespanha,
2007) and the references therein). This problem is even more challenging because
the UAVs dynamical systems are nonlinear, underactuated and exhibit nonholonomic
constraints (Li and Canny, 1993; Reyhanoglu et al., 1999).

The operation of an UAV platform is based on the existence of a hardware in-
frastructure and a software architecture which enable the real-time control. For the
present study the Piccolo system will be used7. The Piccolo control system setup,
shown in Figure 5, consists of four main parts (Vaglienti et al., 2011): an Avionics
control system located onboard the UAV, a Ground Station, a Pilot Manual Console
and the Piccolo Command Center (operator interface).

As shown in Figure 6, the controller setup has two control loops, that is, a faster

7The Piccolo system is manufactured by Cloud Cap Technologies (http://www.cloudcaptech.
com/piccolo_system.shtm).

18

(http://www.cloudcaptech.com/piccolo_system.shtm)
(http://www.cloudcaptech.com/piccolo_system.shtm)

Operator interface

Pilot Manual Control

Piccolo protocol over serial

serial link

Piccolo Ground Station

Piccolo protocol
over

wireless link Piccolo avionics

Figure 5: Operational control system setup of the UAV.

inner loop on board the UAV and a slower outer loop, which is implemented on the
Ground Station control computers. The outer loop provides the path to be followed
by the vehicle whereas, the inner loop controls the UAV dynamics. Furthermore,
Piccolo autopilot relies on a mathematical model parameterized by the aircraft geo-
metric data and has a built-in wind estimator. A slightly more detailed description
of the main components of the Piccolo autopilot is given in the following.

Piccolo autopilot description
The Piccolo Avionics system is an autopilot designed to track the controlled

path transmitted by the Ground Station. It relies on a group of sensors which
includes: three rate gyroscopes and two axis accelerometers (represented by the
Inertial Measurement Unit - IMU), a radio, a Global Positioning System (GPS) to
determine its geodetic position, and a set of dynamic and static pressure sensors
coupled with a thermometer to determine the airplane’s true airspeed and altitude.

A Kalman filter approach is used to gather the information provided by the IMU

19

Autopilot
(Piccolo Avionics)

UAV patform

Disturbances

UAV
(Flight Dynamics)

Path Specification
(Gound Station)

Desired Route
(Piccolo Command Center)

Figure 6: Piccolo closed-loop control system.

block (accelerations and angle-rates) and the GPS block (positions and velocities)
in order to estimate the UAV full state. An embedded Power PC receives the state
information from all sensors and runs the autopilot loops commanding the control
surfaces actuators of the airplane (ailerons, elevator and rudder), the engine’s thrust
as well as playload ports. Telemetry data is transmitted to the Ground Station
through 2.4 GHz radio modem with a telemetry rate up to 25Hz. With omni-
directional antennas the signal strength is enough for a 3 km communication radius.
On the other hand, with directional antennas, the communication range extends to
more than 40 km.

The Piccolo Ground Station provides the communication link between the
Piccolo Command Center, the Pilot Manual Control and the Piccolo Avionics and
converts the intentions of the end user captured through the operator interface,
into meaningful commands for the autopilot. The ground station can concurrently
monitor up to 10 UAVs. Moreover, it performs differential GPS corrections, and
updates the flight plan, which is a sequence of three dimensional waypoints connected
by straight lines.

The Piccolo Command Center (operator interface) consists of a portable com-
puter and a custom developed software which allows the end user to monitor the flight
progress, to program a desired route for the UAV via waypoints, to send velocity,
bank or altitude references and finally, to configure the desired gains of the control
system in the autopilot.

20

Matlab interface with
DUNE and IMC Commands

Ground station Radio modem

UAV

Figure 7: Software architecture.

The Pilot Manual Control, which is mainly used for take-off and landing,
provides the end user with a way to override the commands generated by the Ground
Station and allows a qualified UAV Pilot to take control of the UAV.

Software architecture
The UAV operational system block diagram, including the software architecture

is depicted in Figure 7.
LSTS lab interfaced Piccolo software with MATLAB using DUNE and IMC

messaging system (Pinto et al., 2012). DUNE (DUNE Unified Navigational En-
vironment) it is a generic embedded software used to run tasks for vehicle control,
navigation, communication, sensor and actuator access.

DUNE can run in simulation mode, which disables all the sensor and actuator
drivers and replaces them with simulating tasks. It may also run in hardware-in-the-
loop mode, which allows for some sensor or actuator drivers to be enabled, together
with simulating tasks (Pinto et al., 2012).

The Inter-Module Communication (IMC) is a publish-subscribe messaging pro-
tocol designed and implemented for communication among heterogeneous vehicles
(for example, aerial and marine vehicles), sensors, human operators, etc.

It is noteworthy that the core control algorithm can run in MATLAB. Both, the
input to the control algorithm and the output of the control algorithm are com-
municated through IMC messages. The DUNE interprets the IMC messages to the
corresponding commands in Piccolo software which controls the UAV (Martins et al.,
2009; Dias et al., 2010).

6.2. Simulation and experimental flight tests results
For pre-flight validation of the proposed trajectory tracking method an extended

model of (1) (for low-level control of an Unmanned Aerial Vehicle (UAV)) with 12-

21

states has been used in a 6-DOF simulation (Vaglienti et al., 2011). More precisely,
the 12-states model includes the positions (x [m], y [m], z [m]), the velocities (vx
[m/s], vy [m/s], vz [m/s]), the roll, pitch and yaw angles (φ [rad], θ [rad], ψ [rad]),
and the angular rates (p [rad/s], q [rad/s], and r [rad/s]), all measured along body
X, Y, and Z axes. For the real tests the same model has been used for the different
UAV platforms that have been operated, but with different parameter values.

The predictive control algorithm was implemented in MATLAB 2011a over a
Windows 7x32 bit, a portable Dell machine with Intel(R) Core(TM)2 Duo CPU and
4 GB of RAM. For solving the optimization problem, which is actually a quadratic
programming problem we used our own routines and also standard functions provided
by the Optimization Toolbox8. Furthermore, for interfacing MATLAB with Piccolo
we used DUNE and the IMC messaging system. Therefore, the code was running in
MATLAB and then, both input to the control algorithm and the output of the control
algorithm were communicated in terms of IMC messages. Furthermore, DUNE was
interpreting the IMC messages and translating them to the corresponding commands
in Piccolo software which was communicating with the UAV.

The UAVs were restricted to a speed range between 18 and 25 meters per second
(i.e., Va ∈ [18, 25] m/s) and to a maximum bank angle of 0.43 radians (i.e., φ ∈
[−0.43, 0.43] rad). Also, there were restrictions on the variation of the input signals:

- the variation of Va is limited to 0.1 ∼ 0.2 m/s2;

- the variation of φ is limited to 0.5 ∼ 1.1 rad/s.

In addition, the simulations and the flight tests took place under various wind
conditions. We assumed that the intensity of the wind is bounded for some reasonable
values, e.g., a maximum speed of 10m/s (for safety reasons the tests are not performed
on UAVs if the wind exceeds 11 ∼ 12 m/s).

Let us summarize in Algorithm 2 the mechanism we used during the flight tests.
Note that it includes the trajectory tracking optimization-based control problem
presented in Algorithm 1. The workflow, as sketched in Algorithm 2 is as follows.
We assume that the UAV is in flight under the control of Piccolo. Then, we take
control and disable Piccolo input (step 4) and provide the control action as designed
by our own control strategies (steps 5–8). Note that when we take control we need to

8A mitigating factor is that the most significant is the computation of the reference trajectory
which is done off-line and thus, has no influence on the runtime. Also, solving the quadratic
optimization problem (via the Optimization Toolbox of MATLAB) was well under the 0.02 seconds
of the discretization step.

22

Algorithm 2: Real-time control of the UAV
Input: Give the collection of waypoints P as in (13)

1 - determine the functions for the reference state and input signals using
(8)–(9) and passing through the waypoints pi ∈ P ;

2 while the UAV is flying and is controlled by Piccolo do
3 -Piccolo data acquisition;
4 if TRACK==1 (the predictive controller takes command) then
5 -take the current time as the starting point for the reference trajectory

(t = 0);
6 -compute references and linearization matrices for the interval

t : t+Np;
7 -use this information to compute the optimal control action u∗ by

solving (25);
8 -compute the next value of the state

ξ(k + s+ 1) = Ajξ(k + s) +Bju(k + s) + rj;

9 else
10 -the UAV is controlled by Piccolo
11 end
12 end

compute the reference trajectory and that the control design is no longer done on the
UAV but rather on the Ground station which has to send/receive data. This means
that when communication is lost, the UAV losses its input and starts to function in
“open-loop”, hence the tracking errors we will see in the experimental tests results.

In the sequel, we present first software-in-the-loop simulations, that is, we im-
plement the algorithm in DUNE which runs in simulation mode, the UAV being
simulated by the previously mentioned 12-state model.

A. Software-in-the-loop simulations
We continue with the control part of the example presented along the paper

(see Section 3 and Section 4). The numerical data used for the simulated vehicle
trajectory tracking are showed in Table 1.

In a first stage, using the results in Section 3 we generated a flat trajectory
(depicted in blue in Figure 8) starting from the current position of the vehicle and
passing through the given waypoints. In a second stage, we used the linearized model

23

UAV platform simulated

Waypoint list P = {(−500,−500, 150), (−180,−650, 150), (0,−350, 150),
(−350, 0, 150), (−350, 300, 150), (−200, 500, 150), (50, 450, 150),
(300, 0, 150), (0,−350, 150)}

Sampling time 100 ms

Tuning parameters Q = [10e1 0 0; 0 10e1 0; 0 0 0.1], P = [10e2 0 0; 0 10e2 0; 0 0 0.1],

R = 10e4 · [10 0; 0 1], R∆ = 10e4 · [10 0; 0 1], Np = 7

Wind 5 m/s

Table 1: Simulation results: numerical data specifications.

0 20 40 60 80 100 120 140 160
−0.2

0

0.2

0.4

0.6

Time [s]

Φ
[r

a
d
]

−600 −500 −400 −300 −200 −100 0 100 200 300 400
−800

−600

−400

−200

0

200

400

600

x [m]

y
[m

]

Flat trajectory and UAV motion

0 20 40 60 80 100 120 140 160

18.6

18.8

19

19.2

19.4

Time [s]

V
a
[m

/
s]

Reference trajectory

UAV actual motion

Waypoints

Legend

Figure 8: Reference trajectory and actual UAV motion (simulation).

(see the linearization procedure in Section 4) for the control part of the trajectory
tracking problem.

Figure 8 shows simulated tracking performance in the x-y coordinate frame (i.e.,
north-east coordinate frame). In this case, the simulations were performed in MAT-

24

LAB. The vehicle tracking performances for the given reference trajectory (depicted
in blue in Figure 8) are depicted in green in Figure 8. As illustrated in green in the
same figure, the constraints on the velocity and bank commands are satisfied.

We have chosen to construct the reference trajectory as in (11)–(12), that is, with
a constant value of Va. Note that even for (8)–(9) where Va is variable, the bounds
for inputs (as seen in Figure 8) are respected. The problem for the latter case was
the speed of variation for Va (as seen in Figure 1). For the software-in-the-loop
simulations and also in the real flight tests the UAVs model have stringent bounds
for Va variation (0.1 ∼ 0.2 m/s2). Consequently, we have used the former reference
design, where by construction, the variation of Va is zero (see also the illustrative
simulation example in Section 3).

0 20 40 60 80 100 120 140 160
−1,000
−500

0
500

1,000

Time [s]

y
[m

]

0 20 40 60 80 100 120 140 160
−1,000
−500

0
500

1,000

Time [s]

x
[m

]

0 20 40 60 80 100 120 140 160

−4
−2
0
2
4

Time [s]

Ψ
[r

a
d
]

Reference trajectory

UAV actual motion (no wind)

UAV actual motion (with wind)

Legend

Figure 9: Comparison between actual and reference UAV motion (simulation).

The predictive tracking controller was also tested in simulations with different
wind conditions and a maximum speed of 8 m/s. Figure 9 presents for exemplifica-
tion the simulated reference trajectory in solid blue and the tracking performance

25

of the UAV with and without wind disturbances. In addition, the figure illustrates
the time when the UAV passes through the waypoints. The main limitations against
superior performance are the wind magnitude and the numerical issues (density of
linearization points, prediction horizon length, etc.). Next, we presents the experi-
mental results.

B. Real tests results
The numerical data used for the real-time vehicle trajectory tracking are showed

in Table 2.

UAV platform “Alfa-06”, combustion motor, 2.4 m span, Piccolo II, PC104,
2h30 endurance

Waypoint list P = {(0, 600, 150), (300, 0, 150), (0,−600, 150), (−300,−600, 150),
(−600,−300, 150), (−300, 0, 150)}

Sampling time 100 ms

Tuning parameters Q = [10e1 0 0; 0 10e1 0; 0 0 0.1], P = [10e2 0 0; 0 10e2 0; 0 0 0.1],

R = 10e4 · [10 0; 0 1], R∆ = 10e4 · [10 0; 0 1], Np = 7

Wind 5 ∼ 7 m/s to 180 degrees (from South 6.3 m/s, from West
5.83 m/s), the airplane was flying with the wind

Table 2: “Alfa-06” platform: numerical data specifications for the experimental results.

The procedure is the same, that is, in a first stage, a basic flat trajectory gen-
eration mechanism is used (see Section 3). We underline again here the lack of
constraints feasibility guarantees in-between the waypoints. More precisely, even
if we impose admissible values in the waypoints, we had no guarantees about the
behavior in the rest of the trajectory. This represent a problem for the real-time
experiments, especially for the velocity component of the control input. We had to
take into account that the rate of change of the velocity is limited to the maximum
acceleration the aircraft can produce, i.e., 0.1 ∼ 0.2 m/s2. The MPC will enforce
the constraints satisfaction and thus, we can use any curve provided by the reference
trajectory generation mechanism (see the illustrative simulation results in Figure 8).

In practice, it was clear that this bounds were difficult to respect by the MPC
controller whenever the generated reference trajectory hit the aggressive limits on
the velocity and the bank. Moreover, the system being nonlinear and the model
mismatch too large, the closed loop dynamics lead to instability in these situations.

26

We highlight again the importance of bringing the trajectory into admissible
limits from its reference generation. Hence, the equations (11)–(12) (see Section 3)
were used for the trajectory generation.

This explains the fact that, in the same time, the generated trajectory is allowing
a degree of freedom to the variables Va(t) and φ(t) from the constraints activation
point of view. As a consequence, these signals can be used in real time by the
predictive controller to contract the tracking errors.

Figure 10 depicts in blue the reference trajectory the initial position (−202,−7,
2.86) to the final position (221, 269, 1.57), the waypoints (the red dots) and the con-
trol input signals. Observe that the velocity control input of the reference trajectory
is constant and the bank control input varies between acceptable limits. Addition-
ally, Figure 10 shows the derivatives of the control input components of the reference
trajectory which vary between acceptable limits.

0 23.9 47.7 87.2 126.6144.2 169.1 194 233.5
17

17.5

18

18.5

19

19.5

Time [s]

[m
/
s]

Velocity control input [m/s]

−800 −600 −400 −200 0 200 400
−800

−700

−600

−500

−400

−300

−200

−100

0

100

200

300

400

500

600

East [m]

N
o
rt
h
[m

]

Flat trajectory

0 23.9 47.7 87.2 126.6144.2 169.1 194 233.5
−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

[r
a
d
]

Bank angle control input [rad]

0 23.9 47.7 87.2 126.6144.2 169.1 194 233.5
−1

−0.5

0

0.5

1

1.5
·10−2

Time [s]

[r
a
d
/
s]

Derivative of the bank angle [rad/s]

0 23.9 47.7 87.2 126.6144.2 169.1 194 233.5
−1

−0.5

0

0.5

1

Time [s2]

[m
/
s2
]

Derivative of the velocity [m/s2]

Figure 10: Reference trajectory, control input signals and their derivatives (flight experiments with
Alfa06 UAV).

For the control action we have implemented the MPC mechanism using the model
described in (20), where both, the bank angle and the velocity are variable. As
previously mentioned, we have used this construction in DUNE where, the control
action applies to a more realistic 12-states model.

Figure 11 illustrates the actual UAV motion (depicted in dashed green) in North-

27

0 23.9 47.7 87.2 126.6 144.2 169.1 194 233.5
−1,000
−500

0
500

1,000

Time [s]

N
o
rt

h
[m

]

0 23.9 47.7 87.2 126.6 144.2 169.1 194 233.5
−1,000
−500

0
500

1,000

Time [s]

E
a
st

[m
]

0 23.9 47.7 87.2 126.6 144.2 169.1 194 233.5
−200
−100

0
100
200

Time [s]

Ψ
[◦
]

UAV actual motion
Reference

Figure 11: Reference trajectory and actual UAV motion (flight experiments with Alfa06 UAV).

East coordinate frame of the real flight test. Acceptable tracking performances for
the given reference trajectory (depicted in blue in Figure 11) are obtained for the
UAV. A 3D illustration of the test scenario together with the actual motion of the
UAV is depicted in Figure 12, while the tracking error is depicted in Figure 13.
Remark 3. It is worth to be noted that a hierarchy of models for the UAV dynamics
has been used. Firstly, we use model (1), with Va a constant, in order to generate the
flat trajectory along (11)–(12). Secondly, the MPC uses the complete model (1) to
derive a control action, which is ultimately applied to a 12-states model of the UAV
(or to the Piccolo control UAV dynamics during the experiments). Nonetheless, this
model mismatches may represent one of the reasons for the tracking error. However,
the predictive controller proves to be robust, in the sense that the error presented
in real flight tests remains bounded over the time window and the real trajectory
remains in a tube centered around the reference. �

In experimental settings we observe that there are losses of communication hence,
the discretization step itself is not constant (see Figure 14 where the nominal and

28

−1,000

−500

0
500

−1,000−800−600−400−20002004006008001,000

0

50

100

150

East [m]
North [m]

A
lt
it
u
d
e
[m

]

Figure 12: Actual UAV motion and its projection on the x-y space (flight experiments with Alfa06).

0 20 40 60 80 100 120 140 160 180 200 220
0

100

200

300

Time [s]

T
ra
ck

er
ro
r
[m

]

Tracking error

Figure 13: Tracking error (flight experiments with Alfa06).

actual UAV control motion are illustrated). Figure 15 shows the length of the dis-
cretization step, depicted in blue. Also, in the same figure, the red line denotes the
average length of the discretization step, thus showing that there are values signifi-
cantly above this average (i.e., there are significant losses of communication during
the UAV real-time test). Observe that the values can lead up to 10 ∼ 20 steps more
then the normal size (i.e., 0.1 s ∼ 1 s). Some of the negative effects can be mitigated.
First, the flat trajectory is generated by continuous functions subsequently it’s simply

29

−800 −600 −400 −200 0 200 400
−800

−700

−600

−500

−400

−300

−200

−100

0

100

200

300

400

500

600

East [m]

N
o
rt
h

[m
]

Flat trajectory and UAV motion.

0 23.9 47.7 87.2 126.6 144.2 169.1 194 233.5
10

15

20

25

30

Time [s]

[m
/
s]

Velocity control input and response

0 23.9 47.7 87.2 126.6 144.2 169.1 194 233.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

[r
a
d
]

Bank angle control input and response

Reference
UAV actual motion
Response
Way-points

Legend

Figure 14: Nominal and UAV actual motion (flight experiments with Alfa−06).

a matter of “keeping the time” in order to provide a correct sequence of references for
the MPC block. Thus, the reference signal is independent of the sampling delays. In
what regards the MPC block, we consider a prediction horizon which is sampled at
the nominal sampling time, but this sampling is done exclusively for the internal use
in order to compute an optimal input. Therefore, the fact that we have a constant
sampling time inside the MPC can coexist with the fact that the real sampling time
is variable. There will be issues caused by this loss of communication9 but, due to
the fact that the UAV evolves in open-loop for a long period and not because the

9Note that the tracking error is mostly due to the complex dynamics involved, with significant
delays in communications, and does not occur in simulation, see the illustrative figures from the
simulation results.

30

0 100 200 300 400 500 600 700 800 900 1,0001,1001,2001,3001,400
0

0.5

1
V
al
u
e
of

th
e
sa
m
p
li
n
g
ti
m
e
[s
] Communication time

Figure 15: Value of the sampling time (flight experiments with Alfa−06).

control action is improper.
During this flight experiment, the wind amplitude was less than 5 ∼ 7 m/s. In

practice, to model the influence of the wind, we considered the returned velocities
and compared them with the nominal ones in order to extract the wind value. Con-
sequently, we use this value in the cost function (25). This ad-hoc procedure is just a
first step in the disturbance handling and points for the future work to an adequate
use of an estimation of the wind based on a Kalman filter approach (Østergaard
et al., 2007; Achour et al., 2010).

Without entering into extensive details we present next the tests results obtained
on a second flight experiment. The illustrative figures show the improvements of the
real-time trajectory tracking, due to the small delay in communications and better
choice of the tuning parameters. The numerical data used for the real-time vehicle
trajectory tracking are shown in Table 3.

Figure 16 depicts the waypoints (red dots) and the reference trajectory (blue line)
that Pilatos−03 UAV needs to follow. Furthermore, in Figure 17 we illustrate, in
the North-East coordinate frame, the actual motion of the UAV (in dashed green).
The view of the flight scenario and the UAV motion is represented in a North-East-
Altitude coordinate frame in Figure 18. Figure 20 shows the tracking error which
is under 110 m, while Figure 14 illustrates the nominal and actual UAV control
motion. It can be observed that the tracking performance is better than in the
previous scenario and is mostly due to the small delay in communications during the
flight test. This can be observed in Figure 21 which depicts in blue the length of the
discretization step. In the same figure, the average length of the discretization step
is represented by the red line, showing acceptable deviations above the average (i.e.,
the are acceptable losses of communication during the UAV testing).

31

UAV platform “Pilatos-03”, combustion motor, 2.82 m span, Piccolo II, PC104,
1h30 endurance

Waypoint list P = {(−100,−350, 150), (300, 0, 150), (0, 500, 150),
(−300, 500, 150), (−500, 300, 150), (−300, 0, 150)}

Sampling time 100 ms

Tuning parameters Q = [10e1 0 0; 0 10e1 0; 0 0 1], P = [10e2 0 0; 0 10e2 0; 0 0 10],

R = 10e4 · [10 0; 0 1], R∆ = 10e4 · [10 0; 0 1], Np = 7

Wind 4 ∼ 6 m/s to 90 degrees (from West to East), the airplane was
flying against the wind

Table 3: “Pilatos-03” platform: numerical data specifications for the experimental results.

Remark 4. Note that there are small differences between the control algorithm imple-
mentation for the practical experiments. In the first experimental result the design
of the control action considers the heading, whereas in the second experiment con-
siders the course. The difference between them is that in the second case, a more
realistic value of the heading has been used, that is, the course takes implicitly into
account the wind. We believe that, besides the small delay in communications, this
is another reason for obtaining superior tracking performances. �

7. Concluding remarks and improvement directions

The present paper presented a Model Predictive Control (MPC) strategy for
Unmanned Aerial Vehicles (UAVs). The complete design approach covering the
prediction model description, the trajectory generation and the optimization-based
design have been presented. The results of software-in-the-loop simulations and
real flight tests confirmed the viability of the proposed approach. Moreover, the
reference generation proved to be a valuable tool in the adaptation of the predictive
control setup, the flat trajectory being an important element towards the constraints
validation. Also, the proposed trajectory generation mechanism takes into account
waypoint conditions and furthermore, allows to obtain linearizations of the nonlinear
vehicle model along the flat trajectory.

As mentioned, we have encountered difficulties, both theoretical and in the prac-
tical implementation. During the presentation we gave solutions to some of them
and point to possible improvements.

32

18.6 45.3 74.4 89.5 104 122 142
19.5

20

20.5

21

21.5

22

Time [s]
[m

/
s]

Velocity control input [m/s]

−600−500−400−300−200−100 0 100 200 300 400
−400

−350

−300

−250

−200

−150

−100

−50

0

50

100

150

200

250

300

350

400

450

500

550

600

East [m]

N
o
rt
h

[m
]

Flat trajectory

18.6 45.3 74.4 89.5 104 122 142
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time [s]

[r
a
d
]

Bank angle control input [rad]

18.6 45.3 74.4 89.5 104 122 142
−5

−4

−3

−2

−1

0

1

2

3

4

5
·10−2

Time [s]
[r
a
d
/
s]

Derivative of the bank angle [rad/s]

18.6 45.3 74.4 89.5 104 122 142
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s2]

[m
/
s2
]

Derivative of the velocity [m/s2]

Figure 16: Reference trajectory, control input signals and their derivatives (flight experiments with
Pilatos−03).

Due to the difficulties of the schema (nonlinear dynamics and the associated
computational load) we pointed to the tube MPC as a theoretical framework for
the robust design. In practice, the computational constraints restricted the MPC
implementation to the nominal but time-varying prediction model.

Another conclusion of the present work is the need for a better mechanism for
wind estimation in order to decrease the uncertainty in the prediction model (e.g.,
a Kalman filter implementation). Nonetheless, with all these shortcomings and with
various (and usually unfavorable) wind conditions the flight tests exhibited an ac-
ceptable tracking performance. The implicit robustness of the MPC approach proved
its capabilities and the results were satisfactory.

Another sensitive point revealed by practice is the discretization and the inter-
sample variations. For now, we assumed a fixed length of the discretization step and
computed the control action accordingly. A future improvement of the control mech-

33

18.6 45.3 74.4 89.5 104 122 142
−1,000
−500

0
500

1,000

Time [s]

N
o
rt
h
[m

]

18.6 45.3 74.4 89.5 104 122 142
−1,000
−500

0
500

1,000

Time [s]

E
a
st

[m
]

18.6 45.3 74.4 89.5 104 122 142
−200
−100

0
100
200

Time [s]

ψ
[◦
]

UAV actual motion
Reference

Figure 17: Reference trajectory and actual UAV motion (flight experiments with Pilatos−03).

−1,000

−500

0
500

−800−600−400−20002004006008001,000

0

50

100

150

East [m]
North [m]

A
lt
it
u
d
e
[m

]

Figure 18: Actual UAV motion and its projection on the x-y space (flight experiments with
Pilatos−03).

34

−600−500−400−300−200−100 0 100 200 300 400
−600

−500

−400

−300

−200

−100

0

100

200

300

400

500

600

East [m]

N
o
rt
h

[m
]

Flat trajectory and UAV motion.

0 18.6 45.3 74.4 89.5 104 122 142

20.6

20.8

21

21.2

21.4

21.6

21.8

22

22.2

22.4

Time [s]

[m
/
s]

Velocity control input and response [m/s].

0 18.6 45.3 74.4 89.5 104 122 142
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time [s]

[r
a
d
]

Bank control input and response [rad].

Reference
UAV actual motion
Response
Way-points

Legend

Figure 19: Nominal and actual UAV motion (flight experiments with Pilatos−03).

anism needs to include these communication delays in the design of the predictive
controller.

Acknowledgments

We are grateful for the support we enjoyed from SUPELEC Systems Sciences
(E3S) - Automatic Control Department, specially Patrick Boucher for the support
and the interest has shown to this work.

The authors would like to thank the members of Pitvant project for for their
support during this work. The authors also thank the Portuguese Air Force Academy
for the wonderful support during the field tests at the OTA airfield.

35

0 20 40 60 80 100 120 140
0

100

200

300

Time [s]

T
ra
ck

er
ro
r
[m

]

Tracking error

Figure 20: Tracking error (flight experiments with Pilatos−03).

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

0.1

0.2

0.3

V
al
u
e
of

th
e
sa
m
p
li
n
g
ti
m
e
[s
] Communication time

Figure 21: Value of the sampling time (flight experiments with Pilatos−03).

References

Achour W., Piet-Lahanier H., Siguerdidjane H. (2010): Wind field bounded error
identification and robust guidance law design for a small-scaled helicopter Auto-
matic Control in Aerospace, vol. 18(1):43–48.

Aguiar A., Hespanha J. (2007): Trajectory-tracking and path-following of underac-
tuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans-
actions on Automatic Control, vol. 52(8):1362–1379.

Bencatel R., Faied M., Sousa J., Girard A. (2011): Formation control with collision
avoidance. In Proceedings of the 50th IEEE Conference on Decision and Control
and European Control Conference, Orlando, Florida, USA, pp. 591–596.

36

Colaneri, P (2009): Dwell time analysis of deterministic and stochastic switched
systems. In Proceedings of the 10th IEEE European Control Conference, Budapest,
Hungary, pp. 15-31.

De Doná J., Suryawan F., Seron M., Lévine, J. (2009): A flatness-based iterative
method for reference trajectory generation in constrained NMPC. International
Workshop on Assessment and Future Direction of Nonlinear Model Predictive Con-
trol, Pavia, Italy, pp. 325–333.

Dias P., Pinto J., Gonçalves R., Sousa J. (2010): Enabling a dialog–a c2i infrastruc-
ture for unmanned vehicles and sensors. In Proceedings of the IEEE International
Conference on Autonomous and Intelligent Systems, Povoa de Varzim, Portugal,
pp. 1–6.

Fagiano L., Canale M., Milanese M. (2009): Set membership approximation of dis-
continuous nmpc laws. In Proceedings of Joint 48th IEEE Conference on Decision
and Control and 28th Chinese Control Conference, Shanghai, P.R. China, pp.
8636–8641.

Falcone P., Tufo M., Borrelli F., Asgari J., Tseng H. (2007): A linear time vary-
ing model predictive control approach to the integrated vehicle dynamics control
problem in autonomous systems. In Proceedings of the 46th IEEE Conference on
Decision and Control, New Orleans, Los Angeles, USA, pp. 2980–2985.

Falugi, P. and Olaru, S. and Dumur, D. (2010): Multi-model predictive control based
on LMI: from the adaptation of the state-space model to the analytic description
of the control law. International Journal of Control, vol. 83(8):1548–1563.

Fliess M., Lévine J., Martin P., Rouchon P. (1995): Flatness and defect of non-linear
systems: introductory theory and examples. International Journal of Control, vol.
61(6):1327–1361.

Fontes F., Fontes D., Caldeira A. (2009): Model predictive control of vehicle forma-
tions. Optimization and Cooperative Control Strategies, Springer, pp. 371–384.

Geyer C. (2008): Active target search from uavs in urban environments. In Proceeding
of the IEEE International Conference on Robotics and Automation, Pasadena,
California, USA, pp. 2366–2371.

Goodwin G., Seron M., De Dona J. (2004). Constrained control and estimation: an
optimisation approach. Springer.

37

Hao Y., Agrawal S. (2005): Formation planning and control of ugvs with trailers.
Autonomous Robots, vol.19(3):257–270.

Heemels W., De Schutter B., Bemporad A. (2001): Equivalence of hybrid dynamical
models. Automatica, vol. 37(7):1085–1091.

Hoffmann G., Huang H., Waslander S., Tomlin C. (2011): Precision flight control for
a multi-vehicle quadrotor helicopter testbed. Control Engineering Practice, vol.
19(9):1023–1036.

Hovd, M. and Olaru, S.(2010): Piecewise quadratic Lyapunov functions for stability
verification of approximate explicit MPC. Modeling, Identification and Control,
vol. 31(2):45–53.

How J., King E., Kuwata Y. (2004): Flight demonstrations of cooperative control for
uav teams. In AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop
and Exhibit, Chicago, Illinois, USA, pp. 20–23.

Keviczky T., Balas G. (2006): Software-enabled receding horizon control for au-
tonomous unmanned aerial vehicle guidance. Journal of Guidance Control and
Dynamics, vol. 29(3):680–694.

Kim H., Shi, D., Sastr, S. (2002): Nonlinear model predictive tracking control for
rotorcraft-based unmanned aerial vehicles. In Proceedings of the 21st IEEE Amer-
ican Control Conference, Anchorage, Alaska, USA, pp. 3576–3581.

Kothare, M.V. and Mettler, B. and Morari, M. and Bendotti, P. and Falinower, C.-
M. (1997): Linear parameter varying model predictive contr for steam generator
level control. Computers & Chemical Engineering, vol. 21:S861–S866.

Lakshmanan, N.M. and Arkun, Y. (1999): Estimation and model predictive control
of non-linear batch processes using linear parameter varying models. International
Journal of Control, vol. 72(7–8):659–675.

Lévine J. (2009): Analysis and control of nonlinear systems: A flatness-based ap-
proach. Springer.

Li Z., Canny J. (1993): Nonholonomic motion planning. Kluwer Academic Pub. Vol.
192.

Martins R., Dias P., Marques E., Pinto J., Sousa J., Pereira F. (2009): IMC: A com-
munication protocol for networked vehicles and sensors. In IEEE Oceans Europe,
pp. 1–6.

38

Mayne D., Kerrigan E., Falugi P. (2011): Robust model predictive control: advan-
tages and disadvantages of tube-based methods. In Proceeding of the 18th IFAC
World Congress, Milan, Italy, pp. 148–153.

Muttin F. (2011): Umbilical deployment modeling for tethered uav detecting oil
pollution from ship. Applied Ocean Research, vol. 33(4):332–343.

Østergaard K., Brath P., Stoustrup J. (2007): Estimation of effective wind speed.
Journal of Physics: Conference Series, vol. 75:12–82.

Patterson T., McClean S., Parr G., Morrow P., Teacy L., Nie J. (2011): Integration
of terrain image sensing with UAV safety management protocols. Sensor Systems
and Software, pp.36–51.

Pinto J., Calado P., Braga J., Dias P., Martins R., Marques E. (2012): Implemen-
tation of a control architecture for networked vehicle systems. In Proceedings of
the IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles,
Porto, Portugal, pp. 23–28.

Prodan I., Olaru S., Stoica C., Niculescu S.-I. (2011): Predictive control for tight
group formation of multi-agent systems. In Proceeding of the 18th IFAC World
Congress, Milano, Italy, pp. 138–143.

Rakovic S., Kouvaritakis B., Cannon M., Panos C., Findeisen R. (2011): Fully pa-
rameterized tube mpc. In Proceedings of the 18th IFAC World Congress, Milano,
Italy, pp. 197–202.

Reyhanoglu M., van der Schaft A., McClamroch N., Kolmanovsky, I. (1999): Dynam-
ics and control of a class of underactuated mechanical systems. IEEE Transactions
on Automatic Control, vol. 44(9):1663–1671.

Rosenbaum D., Kurz F., Thomas U., Suri S., Reinartz P. (2009): Towards automatic
near real-time traffic monitoring with an airborne wide angle camera system. Eu-
ropean Transport Research Review, vol. 1(1):11–21.

Rouchon P., Martin P., Murray R. (2003): Flat systems, equivalence and trajectory
generation. Technical report, California Institute of Technology, Pasadena, Calif,
USA.

Schouwenaars T., Valenti M., Feron E., How J. (2005): Implementation and flight
test results of milp-based uav guidance. In Proceedings of the IEEE Aerospace
Conference, USA, pp. 1–13.

39

Silva J., Terra B., Martins R., de Sousa J. (2007): Modeling and simulation of
the lauv autonomous underwater vehicle. In Proceedings of the 13th IEEE IFAC
International Conference on Methods and Models in Automation and Robotics,
Szczecin, Poland, pp. 51–55.

Soares J., Aguiar A., Pascoal A., Gallieri M. (2012): Triangular formation control
using range measurements: An application to marine robotic vehicles. In Proceed-
ings of the IFAC Workshop on Navigation, Guidance and Control of Underwater
Vehicles, Porto, Portugal, pp.15–20.

Sontag E. (1981): Nonlinear regulation: The piecewise linear approach. IEEE Trans-
actions on Automatic Control, vol. 26(2):346–358.

Suryawan F., De Dona J., Seron M. (2010): Methods for trajectory generation in a
magnetic-levitation system under constraints. In Proceedings of the 18th Mediter-
ranean Conference on Control and Automation, Marrakech, Morocco, pp. 945–950.

Ulbig A., Olaru S., Dumur D., Boucher P. (2010): Explicit nonlinear predictive
control for a magnetic levitation system. Asian Journal of Control, vol. 12(3):434–
442.

Vaglienti B., Niculescu M., Becker J., Miley D. (2011): Piccolo system user’s guide.
Cloud Cap Technology (www.cloudcaptech.com).

Valavanis K., (2007): Advances in unmanned aerial vehicles: state of the art and the
road to autonomy. Springer, vol. 33.

Valenti M., Bethke B., How J., de Farias D., Vian J. (2007): Embedding health man-
agement into mission tasking for uav teams. In Proceedings of the 26th American
Control Conference, New York, USA, pp. 5777–5783.

Van Nieuwstadt M., Murray R. (1998): Real-time trajectory generation for differ-
entially flat systems. International Journal of Robust and Nonlinear Control, vol.
8(11):995–1020.

Zheng Z., Huo, W., Wu Z. (2013): Autonomous airship path following control: The-
ory and experiments. Control Engineering Practice, vol. 21(6):769–788.

40

	1 Introduction
	2 UAV model in view of control design
	3 Flat trajectory generation
	4 Linearization of the UAV model
	5 Trajectory tracking control problem
	6 Practical implementation of the receding horizon flight controller on a UAV
	6.1 UAVs testbed hardware and software architecture description
	6.2 Simulation and experimental flight tests results

	7 Concluding remarks and improvement directions

