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Guaranteed characterization of exact confidence regions

for FIR models under mild assumptions on the noise

via interval analysis

Michel Kieffer and Éric Walter

Abstract— SPS is one of the two methods proposed recently
by Campi et al. to obtain exact, non-asymptotic confidence
regions for parameter estimates under mild assumptions on the
noise distribution. It does not require the measurement noise
to be Gaussian (or to have any other known distribution for
that matter). The numerical characterization of the resulting
confidence regions is far from trivial, however, and has only
be carried out so far on very low-dimensional problems via
methods that could not guarantee their results and could not
be extended to large-scale problems because of their intrinsic
complexity. The aim of the present paper is to show how interval
analysis can contribute to a guaranteed characterization of ex-
act confidence regions in large-scale problems. The application
considered is the estimation of the parameters of finite-impulse-
response (FIR) models. The structure of the problem makes it
possible to define a very efficient specific contractor, allowing
the treatement of models with a large number of parameters,
as is the rule for FIR models, and thus escaping the curse of
dimensionality that often plagues interval methods.

I. INTRODUCTION

The vector p of parameters of a model is usually estimated

by minimizing some cost function J (p), for instance

J (p) = ‖y − ym (p)‖22 , (1)

where y is a vector of data, ym (p) is the corresponding

vector of model outputs, assumed here to be a deterministic

function of p and ‖·‖2 is a (possibly weighted) l2 norm.

Then

p̂ = argmin
p

J (p) . (2)

Even when a single numerical vector p̂ is obtained and

y and ym (p̂) are reassuringly similar, it would be naive to

consider p̂ as the final answer to the estimation problem.

One should instead attempt to attach some quality tag to p̂

by assessing the reliability of the numerical values thus ob-

tained. Characterizing parameter uncertainty is at the core of

optimal experiment design for parameter estimation, where

the most informative experimental conditions are sought.

A key issue is drawing conclusions that are as little

prejudiced as possible, and this paper presents a new method

for doing so in a guaranteed way, based on the SPS method

recently presented by Campi and coworkers.
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M. Kieffer and É. Walter are with the L2S, CNRS, Supelec,
Univ Paris-Sud, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France
kieffer@lss.supelec.fr, walter@lss.supelec.fr

M. Kieffer is partly on leave at LTCI, CNRS, Telecom ParisTech, 46 rue
Barrault, 75013 Paris and at the Institut Universitaire de France, 103 bld
Saint-Michel, 75005 Paris

SPS is briefly recalled in Section II. Section III then

shows how interval analysis can be used to characterize the

exact confidence regions provided by this method in a global

and guaranteed way. Various FIR examples are treated in

Section IV, and conclusions are drawn in Section V.

II. SPS

We assume in what follows that the system generating

the data belongs to the model set, and denote its parameter

vector by p∗.

Exact or approximate, asymptotic or not, the characteri-

zation of parameter uncertainty via the classical approaches

[6], [12], [14], [16]–[19] relies on hypotheses on the noise

corrupting the data that are difficult to check from the

residuals y − ym (p̂) when there are many data points, and

this becomes downright impossible when there are only a few

data points, as is often the case in practice. This limitation

makes the new methods LSCR and SPS proposed by Campi

and coworkers particularly interesting [1], [3], [4].

We shall only consider SPS here. First results on LSCR

are presented in [13].

SPS [3] stands for sign-perturbed sums. The most striking

feature of this method (which it shares with LSCR) is that

it avoids a large number of the usual assumptions about the

noise corrupting the data. It is not, for instance, necessary

to assume that the noise is Gaussian (or that it follows any

other specific probability distribution for that matter). Nor

is it necessary to assume that a bound on the size of the

acceptable errors is known as in bounded-error estimation.

It is only assumed that the noise samples are independent,

and that each of them has a probability density function that

is symmetric with respect to zero. Arbitrary noise can even

be dealt with if the regressors are random, independently

identically and symmetrically distributed, and independent

of the noise [2], [5].

SPS provides a confidence region to which p∗ belongs

with a specified probability, by exploiting the symmetry of

the noise distribution and the independence between noise

samples. It is designed for linear regression, where

yt = ϕT
tp

∗ + wt, t = 1, . . . , n, (3)

with ϕt a known regression vector, which does not depend

on the unknown parameters. It computes an exact confidence

region for p∗ around the least-squares estimate p̂, which is



the solution to the normal equations

n
∑

t=1

ϕt

(

yt −ϕT
t p̂
)

= 0. (4)

For a generic p, define

s0 (p) =
n
∑

t=1

ϕt

(

yt −ϕT
tp
)

, (5)

and the sign-perturbed sums

si (p) =

n
∑

t=1

αi,tϕt

(

yt −ϕT
tp
)

, (6)

where i = 1, . . . ,m−1 and αi,t are i.i.d. random signs, i.e.,

αi,t = ±1 with equal probability, and

zi (p) = ‖si (p)‖
2
2 , i = 0, . . . ,m− 1. (7)

A confidence region Σq is obtained as the set of all values

of p such that z0 (p) is not among the q largest values of

(zi (p))
m−1
i=0 . In [3], it has been shown that p∗ belongs to

Σq with exact probability 1− q/m.

Σq may be defined more formally as

Σq =

{

p ∈ P such that

m−1
∑

i=1

τi (p) > q

}

(8)

where for i = 1, . . . ,m− 1,

τi (p) =

{

1 if zi (p)− z0 (p) > 0,

0 else.
(9)

This is justified by the fact that if
∑m−1

i=1 τi (p) > q, then

τi (p) = 1 for at least q out of the m − 1 functions τi (p).
As a consequence, there are at least q functions zi (p) such

that zi (p) > z0 (p) and z0 (p) is not among the q largest

values of (zi (p))
m−1
i=0 .

The numerical characterization of Σq is far from trivial,

however, and has only be carried out so far on very low-

dimensional problems via methods that could not guaran-

tee their results and could not be extended to large-scale

problems because of their intrinsic complexity. The aim

of the present paper is to show how interval analysis can

contribute to a guaranteed characterization of Σq in large-

scale problems.

III. GUARANTEED CHARACTERIZATION OF Σq

VIA INTERVAL ANALYSIS

A. Problem statement

Characterizing Σq may be alternatively formulated as a

set-inversion [10] problem

Σq = P ∩ τ−1 ([q,m− 1]) , (10)

with

τ (p) =

m−1
∑

i=1

τi (p) , (11)

which may be efficiently solved via interval analysis [9],

[15]. The next sections briefly recall the basic notions of

interval analysis required.

B. Inclusion functions

Interval analysis considers closed intervals [x] = [x, x]
of R and extends all arithmetic operations and elementary

functions on real numbers to these intervals.

For arithmetic operations,

[x] ◦ [y] = {x ◦ y | x ∈ [x] , y ∈ [y]} , (12)

where ◦ ∈ {+,−, ·, /}. The set (12) is easily evaluated

from the bounds of [x] and [y] for the addition, subtraction,

multiplication, and division when 0 /∈ [y].
The range of a continuous function f : D ⊂ R → R over

an interval [x] ⊂ D

f ([x]) = {f (x) | x ∈ [x]} (13)

is again easily obtained when f is monotonic from eval-

uations involving the bounds of [x]. For elementary non-

monotonic functions, such as all trigonometric functions,

simple algorithms may be put at work to evaluate (13).

In the general case, however, f ([x]) cannot be computed,

which makes the concept of inclusion function particularly

important.

An inclusion function [f ] ([x]) of a function f (x) is such

that

∀ [x] ⊂ D, f ([x]) ⊂ [f ] ([x]) , (14)

with [f ] ([x]) an interval. A minimal inclusion function pro-

vides the smallest interval containing f ([x]) for all [x] ⊂ D.

Various types of inclusion functions are available. The

simplest one is the natural inclusion function [fn] ([x]),
obtained by replacing, in the formal expression of f , all

occurrences of the real variable x by its interval counterpart

[x] and by performing all operations and elementary function

evaluations on intervals.

Inclusion functions in general provide quite coarse outer-

approximations of f ([x]) when they are many occurrences

of [x] in their formal expression. Pessimism decreases when

the width of the interval argument decreases, however.

All these notions are extended to interval vectors or boxes,

which are Cartesian product of intervals, and to vector-valued

functions. See [9] for more details.

C. SIVIA

Consider the problem of characterizing the set

X = [x] ∩ f−1 (Y) , (15)

where f : D ⊂ R
n → R

m, Y ⊂ R
m, and [x] ⊂ D is some

initial search box for X. The aim of the Set Inverter Via

Interval Analysis (SIVIA) [10] is to provide an inner approx-

imation X and an outer approximation X of X, represented

by subpavings, i.e., unions of non-overlapping boxes. The

distance between X and X is indicative of the quality of the

approximation of X. SIVIA requires an inclusion function

[f ] to be available for f .

SIVIA iteratively partitions the box [x] into subboxes

on which the following tests are applied. Consider a given

subbox [x̃] of [x]. If [f ] ([x̃]) ⊂ Y then (14) implies that

f ([x̃]) ⊂ Y and thus that [x̃] ⊂ X. In this case, [x̃] is stored



in X and in X. If [f ] ([x̃]) ∩ Y = ∅ then (14) implies that

f ([x̃]) ∩ Y = ∅ and thus that [x̃] ∩ X = ∅. In this case, [x̃]
is not considered any further. If none of the two previous

tests is true, [x̃] is undetermined. In this case, if [x̃] is large

enough, i.e., if the largest width of its component intervals is

larger than some precision parameter ε, [x̃] is bisected into

[x̃1] and [x̃2] on which the previous tests are applied again.

If [x̃] is too small to be bisected, it is stored in X.

The efficiency of SIVIA is conditioned by the accuracy of

the inclusion function available for f .

To address the set inversion problem introduced in Sec-

tion III-A with SIVIA, an inclusion function for τ is neces-

sary, which is based on inclusion functions for the τi’s.

D. Contractors for guaranteed characterization

Large enough undetermined boxes need to be bisected

by SIVIA. Indetermination often results from range over-

estimation by inclusion functions. As a consequence, boxes

have to be bisected many times to allow one to conclude on

the position of the resulting boxes with respect to X. This

may entail intractable computational complexity, even for a

moderate dimension of p.

Contractors [9] partly address this issue. A contractor Cf ,Y
associated with the generic set-inversion problem (15) is a

function taking a box [x] as input and returning a box

Cf ,Y ([x]) ⊂ [x] (16)

such that

[x] ∩ X = Cf ,Y ([x]) ∩ X, (17)

so no part of X in [x] is lost. It allows parts of the candidate

box [x] that do not belong to X to be eliminated, without the

need to perform any bisection. Various types of contractors

have been proposed in the literature, e.g., the contractors by

interval constraint propagation, by parallel linearization, the

Newton contractor, the Krawczyk contractor, etc.

Here, the role of x is taken by p. The fact that the

function τ introduced in (11) is not differentiable forbids

the use of most classic contractors, so specific contractors

are needed. The new contractor proposed in this paper is

implemented in two steps. It assumes that the functions

zi − z0 involved in (8) and (9) are differentiable. First, a set

of m possibly overlapping subboxes of [p] are built, trying to

remove all values of p from [p] such that zi (p)−z0 (p) < 0,

i = 1, . . . ,m− 1, see Section III-D.1. Second, the union of

all non-empty intersections of at least q of these boxes is

computed to get a possibly contracted box, see Section III-

D.2.

1) Box contraction using the (zi − z0)’s: To build a

contractor Czi−z0,[0,∞[ for the set of all values of p ∈ [p]
such that zi (p)− z0 (p) > 0 , we take advantage of the fact

that the functions si (p), i = 0, . . . ,m − 1 are affine in p

to reduce the number of occurrences of p in their formal

expression, and thus the pessimism of the corresponding

inclusion functions. Equation (5) can be rewritten as

s0 (p) =

n
∑

t=1

ytϕt −

(

n
∑

t=1

ϕtϕ
T
t

)

p (18)

= b0 −A0p (19)

with b0 =
∑n

t=1 ytϕt and A0 =
∑n

t=1 ϕtϕ
T
t . Similarly, (6)

may be rewritten as

si (p) = bi −Aip (20)

with bi =
∑n

t=1 αi,tytϕt and Ai =
∑n

t=1 αi,tϕtϕ
T
t .

Using (19), (20), and the fact that the Ai’s are symmetric,

one gets

zi (p)− z0 (p) = (bi −Aip)
T
(bi −Aip)

− (b0 −A0p)
T
(b0 −A0p) (21)

= pT
(

A2
i −A2

0

)

p− 2
(

bT
iAi − bT

0A0

)

p

+
(

bT
i bi − bT

0b0

)

. (22)

The matrices A2
i −A2

0 are symmetric and they may thus

be diagonalized as A2
i − A2

0 = UT
iDiUi, where Ui is an

orthonormal matrix (i.e., such that UT
i = U−1

i ), and Di =
diag

(

di,1, . . . , di,np

)

is a diagonal matrix. Using the change

of variables π = Uip, (22) becomes

zi (p)− z0 (p) = πTDiπ − 2βT
iπ + γi, (23)

with βT
i =

(

bT
iAi − bT

0A0

)

UT
i and γi = bT

i bi − bT
0b0.

Then, assuming that di,j 6= 0 for j = 1, . . . , np, (23) can be

rewritten as

zi (p)− z0 (p) =

np
∑

j=1

di,j

(

πj −
βi,j

di,j

)2

+ γi −

np
∑

j=1

β2
i,j

di,j
.

(24)

Consider [π] = Ui [p]. A contractor for [πj ] is obtained

from (24) as follows

[

π′
j

]

= [πj ] ∩

(

±

(

((

([zi] ([p])− [z0] ([p])) ∩ [0,∞[
)

−

np
∑

k=1
k 6=j

di,k
(

[πk]−
βi,k

di,k

)2
− γj +

np
∑

k=1

β2
i,k

di,k

)

/di,j

)
1

2

+
βi,j

di,j

)

.

(25)

From (25), the contractor Czi−z0,[0,∞[ for [p] is obtained as

[p′
i] = Czi−z0,[0,∞[ ([p]) = [p] ∩

(

UT
i [π

′]
)

. (26)

When n is large enough and provided that the ϕts have

been well designed, it is very unlikely that A2
i −A2

0 is rank

deficient. May this occur, (24) and (25) would have to be

rewritten distinguishing the zero and nonzero di,js.

Proposition 1: Assuming that di,j 6= 0 for j = 1, . . . , np,

for all [p′
i], i = 1, . . . ,m− 1, built using (25) and (26), one

has [p′
i] ⊂ [p] and

[p′
i] ∩ (zi − z0)

−1
([0,∞[) = [p] ∩ (zi − z0)

−1
([0,∞[) .

(27)

Proof: [p′
i] ⊂ [p] is true by construction. To prove

(27), it remains to prove that [p] ∩ (zi − z0)
−1

([0,∞[) ⊂



[p′
i] ∩ (zi − z0)

−1
([0,∞[). Consider p0 ∈ [p] ∩

(zi − z0)
−1

([0,∞[) and π0 = Uip
0 ∈ [π]. To prove that

p0 ∈ [p′
i] ∩ (zi − z0)

−1
([0,∞[), it suffices to prove that

π0 ∈ [π′]. By definition of p0, one has

np
∑

j=1

di,j

(

π0
j −

βi,j

di,j

)2

+ γi −

np
∑

j=1

β2
i,j

di,j
= zi

(

p0
)

− z0
(

p0
)

> 0. (28)

Thus, since π0 ∈ [π], after some manipulations of (28), one

gets

π0
j ∈ [πj ] ∩

(

±

(

((

([zi] ([p])− [z0] ([p])) ∩ [0,∞[
)

−

np
∑

k=1
k 6=j

di,k
(

[πk]−
βi,k

di,k

)2
− γj +

np
∑

k=1

β2
i,k

di,k

)

/di,j

)
1

2

+
βi,j

di,j

)

∈
[

π′
j

]

,

which completes the proof.

2) Building a q-relaxed intersection: During the second

step, the contractor builds a box [p′] enclosing the q-

relaxed intersection P [7], [8], [11] of the boxes in L =
{

[p′
1] , . . . ,

[

p′
m−1

]}

, i.e., the union of all intersections of at

least q boxes in L

P =

q
⋂

j∈{1,...,m−1}

[

p′
j

]

=
⋃

J⊂[1,...,m−1]
card(J)>q

⋂

j∈J

[

p′
j

]

(29)

and satisfying

P ⊂ [p′] ⊂ [p] . (30)

Proposition 2: For any box [p′], satisfying (30), one has

Σq ∩ [p′] = Σq ∩ [p] , (31)

with Σq as defined in (8).

Proof: Assume that there exists p0 ∈ [p] such that p0 ∈
Σq ∩ [p] but p0 /∈ Σq ∩ [p′]. Since p0 ∈ Σq ∩ [p], p0 ∈
Σq . According to (8),

∑m−1
i=1 τi (p0) > q. There are thus at

least q functions τi such that τi (p0) > 1. Assume, without

loss of generality, that τ1 (p0) > 1, . . . , τq (p0) > 1. Since

τi (p0) > 1, i = 1, . . . , q, by definition of Czi−z0,[0,∞[, one

has p0 ∈ [p′
i], i = 1, . . . , q and p0 ∈

⋂

i=1,...,q [p
′
i]. By

definition of P and [p′], p0 ∈
⋂

i=1,...,q [p
′
i] ⊂ P ⊂ [p′],

which contradicts the initial assumption.

a) Evaluating the q-relaxed intersection: Algorithm 1

formalizes a computation carried out on an example in [8].

It aims at building an outer approximating interval of the q-

relaxed intersection of m scalar intervals. The extension to

boxes is obtained by applying Algorithm 1 componentwise.

Consider a list L = {[p1] , . . . , [pm−1]} of m − 1 scalar

intervals. Algorithm 1 builds the smallest interval containing

the union of all intersections of q intervals with a complexity

O (m logm). This is the smallest interval containing P as

defined by (29) in the scalar case. At Steps 4 and 8 of

Algorithm 1, (p ∈ [pj ]) = 1 if p ∈ [pj ] and (p ∈ [pj ]) = 0
otherwise.

Algorithm 1 [p] = q-relaxed intersection ([p1] , . . . , [pm−1])

1 [p] = ∅;

2 Reindex the boxes [pi] in such a way that

p
1
6 p

2
6 · · · 6 p

m−1
;

3 For i = q to m− 1

4 if
∑m−1

j=1

(

p
i
∈ [pj ]

)

> q

5 p = p
i
; break;

6 Reindex the boxes [pi] in such a way that

p1 > p2 > · · · > pm−1

7 For i = q to m− 1

8 if
∑m−1

j=1 (pi ∈ [pj ]) > q

9 p = pi; break;

When L is a list of boxes of the same dimensions, one

may simply apply Algorithm 1 component by component.

IV. EXAMPLES

Consider the system

yt = ym
t (p) + wt, (32)

with the FIR model

ym
t (p) =

na−1
∑

i=0

aiut−i, (33)

where p = (a0, . . . , ana−1)
T

and un = 0 for n 6 0. For t =
1, . . . , n, the wts are independent and identically distributed

(iid) noise samples. In linear regression form, (32) becomes

yt = ϕT
tp

∗ + wt (34)

with ϕt = (ut, . . . , ut−na+1)
T

and p∗ =
(

a∗0, . . . , a
∗
na−1

)T
.

A. Lower-dimensional model

When the dimension of p is small, the characterization

of Σq introduced in (8) can be addressed using SIVIA. For

that purpose, the following inclusion functions for the τi’s
are introduced

[τi] ([p]) =











1 if inf ([zi − z0] ([p])) > 0,

0 if sup ([zi − z0] ([p])) < 0,

[0, 1] else,

(35)

where [zi − z0] ([p]) is an inclusion function for the differ-

ence between zi and z0.

1) Laplacian noise: Data are generated for the actual

system parameters a∗0 = 0.2, a∗1 = 0.3, and a∗2 = 0.4
considering: (a) a filtered Gaussian input

ut = αut−1 + vt, (36)

with α = 0.2 and vt iid zero-mean Gaussian with variance

σ2
v = 0.65 and (b) a random iid sequence of ±1, which is

the D-optimal input under the constraint that the input has

to remain in [−1, 1]. In both cases, the noise samples wt are

zero-mean Laplacian with standard deviation σw tuned to get

a signal-to-noise ratio (SNR) of 15 dB. We choose n = 1024,

m = 255, and q = 13. Our aim is thus to characterize a 95%
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Fig. 1. Projections on the (a0, a1)-plane (left) and (a1, a2)-plane (right)
of the subpavings of the search space obtained using SPS in the FIR case,
with a filtered Gaussian input; the 95% confidence region is contained in
the union of yellow and green boxes; the box containing the subpavings is
obtained after a single application of the contractor of Section III-D

confidence region. Undetermined boxes are bisected when

their maximum width is larger than ε = 2.5× 10−3.

Figures 1 and 2 show projections of the subpavings of

the search box P =
[

−104, 104
]3

. The green boxes are

contained in Σq and the union of yellow and green boxes

form an outer approximation of Σq . The box containing the

subpavings results from a single application of the contractor

of Section III-D taking P as input. This box is very close

to the outer-approximation of Σq , showing the efficiency

of the contractor of Section III-D. It does not correspond

to the smallest box containing Σq due to the fact that for

each τi, a reduced-size box [πi] is evaluated in a specific

coordinate system. The inverse change of variable involves a

rotation of [πi] and the resulting box [pi] is the smallest box

containing the rotated [πi]. The wrapping effect introduces

some pessimism, which propagates to the result of the q-

relaxed intersection.

The D-optimal input provides better results in terms of

size of uncertainty. The total volume of the green boxes and

of the green and yellow boxes is respectively 2.0 × 10−6

and 6.6 × 10−6 for the filtered Gaussian input, where it is

1.25× 10−6 and 3.6× 10−6 for the D-optimal input.

2) Laplacian-Bernoulli-Laplacian noise: A third set of

data is generated with the same parameters as before, except

for the measurement noise: 5% of the noise samples were

replaced by Laplacian noise samples with a standard devia-

tion equal to 10σw. This reduces the SNR to 9.5 dB. SIVIA

is used again to perform the characterization of Σq . The

resulting subpavings of P =
[

−104, 104
]3

are represented in

Figure 3. Their volume has significantly increased: 1.5 ×
10−5 for the green boxes and 2.4 × 10−5 for the green

and yellow boxes. Nevertheless, even with such an impulsive

noise, one is able to characterize an exact confidence region
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Fig. 2. Projections on the (a0, a1)-plane (left) and (a1, a2)-plane (right)
of the subpaving of the search space obtained using SPS in the FIR case,
with a D-optimal input; the 95% confidence region is contained in the union
of yellow and green boxes; the box containing the subpaving is obtained
after a single application of the contractor of Section III-D

in a guaranteed way, considering only the measurements, and

not taking into account the noise distribution.

B. Higher-dimensional model

For models with a large number of parameters (typically

more than 5 parameters), the computationnal complexity to

get subpavings providing inner and outer-approximations of

the confidence region is prohibitive. Nevertheless, it is still

possible to obtain a box containing Σq in a guaranteed way

via the contractor introduced in Section III-D.

To evaluate the performance of the proposed technique

for a larger number of parameters, FIR models (33) with

na = 20 random parameters in [−2, 2]
na are generated. Then,

n = 512, 1024, 2048, 4096, and 8192 noise-free data points

are first generated applying to (33) sequences with the same

characteristics as in Section IV-A.1. White Laplacian noise

is then added to these data. The standard deviation of the

noise is set up to get an SNR of 5 dB to 40 dB.

We choose m = 255 and q = 13. Our aim is thus again

to characterize à 95% confidence region. The initial search

box in the parameter space is taken as P =
[

−104, 104
]20

.

The contractor of Section III-D is applied once to P (iterated

applications are useless). Figures 4 and 5 represent the width

of the largest component of the resulting box as a function

of the SNR and of the number of data points for the filtered

Gaussian input (dotted line) and for the D-optimal input

(solid line).

As for the previous examples, the D-optimal input pro-

vides a better estimation accuracy. On a log-log scale,

maximum width seems linear in the SNR (see Figure 4) and

in the number of samples (see Figure 5). In the latter case, the

slope is about −1/2, consistent with what is observed when

maximum-likelihood estimation is carried out assuming an
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Fig. 3. Projections on the (a0, a1)-plane (left) and (a1, a2)-plane (right)
of the subpaving of the search space obtained using SPS in the FIR
case, D-optimal input signal, Laplacian-Bernoulli-Laplacian noise; the 95%
confidence region is contained in the union of yellow and green boxes; the
box containing the subpaving is obtained after a single application of the
contractor of Section III-D

additive Gaussian noise, although this hypothesis on the

noise is neither true nor assumed here.

V. CONCLUSIONS AND PERSPECTIVES

Interval analysis provides tools for evaluating guaranteed

approximations of the exact confidence regions defined by

SPS. Interval methods that rely on bisections, such as SIVIA,

are limited to problems with a small number of parameters.

The contractor proposed in this paper, on the other hand

makes it possible to deal with FIR models with a large

number of parameters, which is the rule for FIR model

but usually a nightmare for interval methods. The results

are spectacular, as the methods previously employed to

characterize the confidence regions provided by SPS would

have been completely unable to deal with a FIR model with
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Fig. 4. Width of the largest component of the box resulting from a single
application of the contractor of Section III-D as a function of the SNR and
of the number of data points for the filtered Gaussian input (dotted) and for
the D-optimal input (plain).

20 parameters, let alone to provide any guarantee as to their

results. Research on efficient contractors is also the key to

dealing with large-scale models with the LSCR method.
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