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The smart electricity meter (SEM) is one of the most critical elements of smart grids. The billing function of SEM is one of its most important functions to its operators and end-users. Because the SEM devices need to be highly reliable, in this study we conduct accelerated degradation tests (ADTs) for the prediction of SEM reliability with respect to the billing function. For designing the ADTs, we have identified five key modules and their components, two performance indicators, and three possible degradation stressors. Six ADTs are conducted under different configurations of the stressors. The test data are then used to fit degradation paths by linear regression models. Extrapolation to the failure threshold allows the prediction of the Time-to-Failure of SEM. Finally, the reliable lifetime of the SEM is predicted by an accelerated degradation function which is obtained by fitting a Weibull failure time distribution.

I. INTRODUCTION

A subject of interest today is the evolution of the networks for electrical energy supply and their conception/renovation as "smart" grids [START_REF] Heckel | Smart substation and feeder automation for a smart distribution grid[END_REF] with distributed generation, as opposed to the centralized power generation structure of the existing electric power grids. The concepts and configurations of smart grids vary sensibly with respect to the implementation at the different levels of the electrical infrastructure, i.e. the transmission and distribution systems (the level of the individual customer, and the related pricing issues, lie beyond the scope of the study presented in this paper). The smart grid is an auto-balancing, self-monitoring power grid that has the ability to sense when a part of its system is overloaded and reroute power to reduce 2 / 30

the overload and prevent a potential outage situation [START_REF] Granger Morgan | The many meanings of Smart Grid[END_REF][START_REF] Hajian-Hoseinabadi | Reliability and component importance analysis of substation automation systems[END_REF][START_REF] Daemi | Constructing the bayesian network for components reliability importance ranking in composite power systems[END_REF]. It is expected to improve the major weak points of the current electricity grid, by improving the communication and control functions [START_REF] Farhoodnea | Identification of multiple harmonic sources in power systems using independent component analysis and mutual information[END_REF][START_REF] Tan | Advances and trends of energy storage technology in Microgrid[END_REF][START_REF] Chang | Performance and reliability of electrical power grids under cascading failures[END_REF][START_REF]Smart Grid Laboratory -Energylab, Smart Grid. Le reti elettriche di domani[END_REF]. This requires an effective, reliable and real-time information flow [START_REF] Arya | Probabilistic reliability indices evaluation of electrical distribution system accounting outage due to overloading and repair time omission[END_REF][START_REF] Sood | Developing a communication infrastructure for the Smart Grid[END_REF] to be implemented through an advanced metering infrastructure (AMI) in which smart electricity meters (SEMs) are the communication and metering terminals for the purposes of billing and controlling by the distribution company (Figure 1) [START_REF] Ilić | Modeling of future cyber-physical energy systems for distributed sensing and control[END_REF].

Figure 1 The structure of smart grid`s functions and its relationship with the SEM [START_REF] Ilić | Modeling of future cyber-physical energy systems for distributed sensing and control[END_REF] The SEM is an advanced meter that measures the consumption in more details than a conventional meter and optionally, but generally, transmits the information back to the local distribution system for monitoring and billing purposes [START_REF] Ren | Intelligent domestic electricity management system based on analog-distributed hierarchy[END_REF]. It also allows to interact with the meter itself for controlling its functionalities, such as Time-of-Use prices (TOU) [START_REF] Farhangi | The path of the smart grid[END_REF]. Many countries (e.g. France, Germany, United Kingdom, United States, etc.) had/have plans of intensive investments for replacing conventional meters with SEMs [START_REF] Gungor | Smart grid technologies: communication technologies and standards[END_REF], and thus the reliability of SEM becomes a crucial issue for the service warranty and maintenance of the whole grid system [START_REF] Depuru | Smart meters for power grid: challenges, issues, advantages and status[END_REF][START_REF] Kalinowski | A new look at component maintenance practices and their effect on customer, station and system reliability[END_REF].

The reliability of electronic devices like SEM can be in general evaluated by empirical methods such as 217 Plus [START_REF]Reliability Prediction Procedure for Electronic Equipment[END_REF], Bellcore SR-332 [START_REF]Reliability prediction procedure for electronic equipment[END_REF], and IEC 62380 [START_REF]Reliability data handbook-universal model for reliability prediction of electronics components, PCBs and equipment[END_REF], which make use of component failure data to estimate system failure rates [START_REF] Bowles | A survey of reliability-prediction procedures for microelectronic devices[END_REF]. Because of their ease-to-use character in practical engineering situations, they are supported and implemented by many companies for evaluating the reliability of SEM [START_REF] Jones | A comparison of electronic-reliability prediction models. Reliability[END_REF].

However, due to the complexity of the interactions among the SEM components and the lack of the related failure data, the results obtained by these methods may not be representative of the realistic conditions [START_REF] Cushing | Comparison of electronics-reliability assessment approaches[END_REF].

Another method for SEM reliability estimation is based on the IEC 62059 standard, which makes use of the results of accelerated life testing (ALT) [START_REF]Electricity metering equipment-dependability, part 31: temperature and[END_REF]. However, the major issue encountered by IEC 62059 ALT during its implementation is that the recommendation for at least 5 failures in 30 samples is difficult to achieve because the cost constraints and experiment conditions are such that often no failure occurs.

In addition, with the rapid technological advancements of SEM, the reliability of SEM has been significantly improved, which implies that ALT might not be very applicable in terms of financial cost and testing time.

In this paper, a new method is proposed for predicting the reliability of SEM based on the results of accelerated degradation testing (ADT) [START_REF] Meeker | Accelerated degradation tests: modeling and analysis[END_REF]. ADT is an effective testing technique for dealing with highly reliable devices. Different from traditional ALT, ADT requires the performance degradation indicators to be defined and the relationship between the degradation and the failure to be specified [START_REF] Oliveira | Comparison of methods to estimate the time-to-failure distribution in degradation tests[END_REF][START_REF] Si | Remaining useful life estimation based on a nonlinear diffusion degradation process[END_REF].

Based on ADT, we propose a 5-step framework for the reliable lifetime prediction of SEM: (1) perform ADT with 64 (or 56) SEM samples tested under each of 6 different configurations of 3 testing stressors, normally temperature, humidity, and electricity at different levels; (2) fit linear regression models of the degradation paths using the data collected for the degradation indicators throughout the pre-defined testing time horizon; (3) predict the degradation to failure with respect to a performance threshold, and obtain the times to failure of the samples; (4) build an accelerated degradation function of the stressors by fitting a Time-to-Failure Weibull distribution whose scale parameter is substituted by the accelerated degradation function itself; (5) Evaluate the lower bound reliable lifetime of SEM using the Weibull distribution obtained in step 4. The rest of the paper is organized as follows: Section II introduces the functional modules of SEM, the physical degradation process of SEM and the relevant influential stressors; Section III describes the ADT experiment setting, procedures and results; Section IV establishes the degradation model; Section V fits the Time-to-Failure Weibull model and uses it for reliability prediction; Section VI concludes this work.

II. FUNCTIONALITY AND PHYSICAL DEGRADATION OF THE SEM

A. Functionality analysis of SEM

From the functionality point of view, SEM is divided into the following 8 modules: communication module, indicating module, power supplying module, controlling module, encrypting module, billing module, metering module and timing module. Table I lists these modules and their functions.

TABLE I SEM MODULES AND THEIR FUNCTIONS

The system diagram of SEM functionality, as performed by the modules listed in Table I, is shown in Figure 3. Within the methodological work proposed in the paper, the reasons that we consider specifically the billing function to exemplify our reliability analysis procedure are: 1) it is the function most concerned by the operators and end-users, as it is directly related to the amount of payment; 2) it is indicated as one of the key functions defined by the reference standard [START_REF]Electricity metering equipment-dependability, part 31: temperature and[END_REF].

During the billing function, the metering module acquires and measures the consumer's power consumption. Note that to have a clearly defined higher level structure of the SEM, in this study we regard all the components related to metering functionally as parts of the metering module. For example, a typical SEM contains a current sampling sub-module and a voltage sampling sub-module acquiring current and voltage data, respectively. The data collected by them are, then, sent to the metering microchip for signal filtering and A/D. All of the above mentioned components belong to metering module. The controlling module receives the measurements and transfers them to the billing module. The billing module computes the fee dependent on the referenced time received from the timing module and the power consumption measurements received from the controlling module. The power supplying module supplies the operating power to all the modules. The indicating module monitors the situations of running SEM and shows the needing information of electricity consumption by a LCD screen. The five modules, timing module, billing module, controlling module, metering module and power supplying module, are strongly related to the billing function. 

B. Physical degradation

According to the practical requirements, SEM's performance is expected to be evaluated with respect to a number of performance indicators, which reflect different aspects of the operation and functional conditions of SEM. As mentioned in Section 2.A our interest is on the billing function of SEM, so we retain only the performance indicators relevant to such function. However, there appears to be no physical indicator to measure the correctness of the billing function directly. Among all measurable quantities, the power consumption and the timing are the most critical to the billing function. Therefore we have selected the indicators of basic errors (BE) and chronometer errors (CE) to measure these two quantities, and define them in accordance to the parameters of State Grid Corporation of China [START_REF]Smart electricity meter standards assembly[END_REF].

BE measures the deviation of the power consumption from a reference value and is defined as follows:

(1) where is the reference power consumptions indicating the initial value of a single SEM before the test, and the is the testing power consumptions indicating the value of one observation during the test.

CE measures the deviation of the testing frequency from a reference value:

(2)
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where is the reference clock frequency related to the chronometer of a SEM, and is one testing clock frequency value during the test.

The performance indicators are usually linked to specific failure modes, classified into different levels of criticality. For example, the IEC 62059 standard classifies the billing related failure modes into three criticality levels depending on the extent to which they affect the billing function: critical failure, major failure, minor failure (Table II). In our case we are concerned with the most critical failure class in Table II, with limiting thresholds of acceptable performance equal to and [START_REF] Cushing | Comparison of electronics-reliability assessment approaches[END_REF], respectively. C. Failure modes analysis: identification of failure modes and stressors

In order to identify the possible degradation stressors, we decompose the relevant SEM modules into various components. Table III summarizes the decomposition and the possible stressors that can influence the performance of each component [START_REF]Reliability prediction procedure for electronic equipment[END_REF]. The identified stressors are the environmental stresses experienced by SEM under practical conditions.

TABLE III KEY COMPONENTS OF BILLING-RELATED MODULES AND THE STRESSORS [13]

The ways that the stressors affect BE and CE are presented as follows:

1) Temperature effects: The billing function, whose accuracy is measured by its BE, is carried out mainly by the metering and billing modules. The former processes the loading measurements by the diverter, and then transfers the measured signal to the metering chip. Due to the metallic material of the diverter, its resistance value is unstable when operating at high temperature, which in general results in decreased metering accuracy [START_REF] Wondrak | Physical limits and lifetime limitations of semiconductor devices at high temperatures[END_REF]. In addition, the stability of the reference value of the voltage of the metering chip is dependent on the proper operation of the power supplying module, whose components are not stable at a high temperature [START_REF] Lu | Design for reliability of power electronics modules[END_REF]. The chronometer error is used to measure the performance of the timing chip and the oscillator and both can be deterred by high temperature. The stability of the oscillator acts as the main factor affecting the stability of the timing function.

2) Humidity effects: Moisture enters the integrated chip (IC) via the gap of its package, possibly leading to failure [START_REF] Roesch | Historical review of compound semiconductor reliability[END_REF]. Furthermore, moisture with high temperature can cause aging and oxidation of all components, which gradually deteriorate the performance of every module related to billing and time functions.
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3) Electricity effects: The sampling circuit of SEM deals with large currents (above 10A), and thus generates significant amounts of heat inside the SEM. The high internal temperature can possibly lead to degradation/failure of the components, as discussed in item 1) above.

III. ACCELERATED DEGRADATION TEST

A. Experiment setting and procedure

1) Experiment setting

The experiment setting includes determining the number of testing samples, designing testing profiles, and deploying the testing system. The testing samples are from the two major SEM suppliers (Wasion and Sanxing) in the Chinese market. Their specifications are listed in Table IV. Because the specifications of the two types are identical, only one set is shown. 

Number of testing samples

Consider n identical and independent SEMs, each one with same reliability R under the testing conditions. Let random variable X denotes the number of failed SEM samples at the end of the testing. Then, the producer accepted failure risk is defined as [START_REF] Kolarik | Creating quality: concepts, systems, strategies, and tools[END_REF]:

(

By the binomial distribution, is computed as:

(4)

To determine n for the test, we consider , (for the requisite of highly reliable SEM), and the producer's confidence level (represent the lower bond, the acceptable and the ideal confidence levels, respectively). Consecutively assuming the producer is overconfident about the products, n can be obtained by the following inequality:

(

The solutions to n for each combination of the three parameters are listed in Table IV. Considering one failure in testing (x=1), the confidence level , and sample reliability , then the number of samples n should be 59 for each experiment run. This configuration is used because it can achieve the samples size of ideal confidence level. To provide redundant samples, the number of samples n actually tested has been set to 64. However, due to cost constraints, the samples for experiment run S6 (see Table V) are reduced to 56, which leads to a confidence level .

Testing Profile

The normal operational temperature and electricity current for SEM range from -40 o C to 60 o C and 0A to 10A, respectively [START_REF]Smart electricity meter standards assembly[END_REF]. Under extreme testing conditions of high operational stresses, it is found that the failure threshold of temperature and electricity current for SEM are 120 o C and 60A, respectively. On the contrary the highest working humidity (relative humidity (RH)) of SEM is not met during the testing, due to the capacity constraint of the testing chamber: the highest reachable temperature and humidity of the testing chamber are 80 o C and 95%, respectively, but they cannot be achieved simultaneously, due to the capacity constraint of the testing chamber.

The lowest temperature, humidity and current levels are set to 55 o C, 80%, and 20A, respectively. This is because: 1) the maximum nominal operating temperature of SEM is 60 o C and ADT requires that the lowest testing temperature be close to the highest normal operating temperature in order to accelerate the aging of SEM; 2) it is found that BE and CE of SEM increase only when the RH is above 80%; 3) the changes of BE and CE are significant when the current level is above 20A. The three stressors have been divided into 2, and 3 levels, respectively.

Due to the cost constrains, the allowable number of ADT runs is 6. The six design points of our experiment are shown in Table V.

TABLE VI THE DESIGN OF THE SIX EXPERIMENT RUNS

Figure 4 shows that there are totally 18 possible design points considering all levels of the stressors. The star means unreached test design points due to the capability of the testing chamber; the polygon represents the adopted test design points; the dots are the rejected test design points, considering the actual degradation effectiveness of the stressors under these conditions. Due to the cost constraints, the censoring horizon is set to be 400 hours (online time). The online (i.e. accelerated) intervals are mainly 24 hours (Figure 6), and the offline (i.e. normal condition) testing interval is about 4 hours. In order to find the optimal size of the online interval, we have tried different intervals ranging from 8 hours to 24 hours under the designs S4 and S6 which are the first two experiments performed, leading to 22 observations (including an initial testing). We have found 24-hour long online interval to be an optimal option, whose degradation effects and number of offline tests can meet the requirements of the experiment (Figure 7). The number of testing cycles for S2, S3 and S5 is 17 because of the total censoring horizon that has one [START_REF] Kalinowski | A new look at component maintenance practices and their effect on customer, station and system reliability[END_REF] 

B. Results

The CE degradation paths of one sample (No. 5000101) under different stress designs show a common increasing trend (Figure 8). It is noted that due to a failure of testing equipment, the censoring time of S1 is 328 hours instead of 400 hours. In order to build a realistic degradation model of SEM, we simulate the real operating condition [START_REF] Vournas | Relationships between voltage and angle stability of power systems[END_REF] of SEM by considering all its 18 loading conditions (shown in Table VI below)

during the offline testing. [START_REF] Tan | Advances and trends of energy storage technology in Microgrid[END_REF] where y is the testing results (BE and CE) measured at time t, is the pre-testing result, is the slope, and is the noise following a normal distribution with mean equals to zero and variance σ 2 .

Due to the assumption that the degradation paths are linear, we smooth the data by moving average #: [START_REF] Chang | Performance and reliability of electrical power grids under cascading failures[END_REF] where is the smoothed data point, i is the time index of the data point being smoothed, represents the total number of observations at every stress condition, and (an odd number) is the span size of the smoothing. K is the parameter to be optimized for best smoothing. Two evaluation criteria, root mean square error (RMSE) and R-square, are used to measure the two aspects of the smoothing effect over each span of size K: deviation to the original data points and flatness, respectively. The former criterion is defined directly on the data as:

(8)
Instead, is computed by fitting a linear regression model on the smoothed data points by: [START_REF] Arya | Probabilistic reliability indices evaluation of electrical distribution system accounting outage due to overloading and repair time omission[END_REF] where is the mean value of the observations. As these two criteria are in general conflicting with each other, the weighted sum of them (after scaling into the same range [0, 1]) is used to guide the search for optimal K: [START_REF] Sood | Developing a communication infrastructure for the Smart Grid[END_REF] where and are the scaled values. We assign equal weights 0.5 to each criterion, because accuracy and the flatness are equally important for our purposes. Figure 10 

V. RELIABILITY MODEL

A. SEM Lifetime Prediction

For each SEM at each design level, there are 19 competing regression functions that link the BEs and CE with the lifetime of the component. According to the standard of the Chinese State Grids company [START_REF]Smart electricity meter standards assembly[END_REF], the failure threshold of CE is [START_REF] Ilić | Modeling of future cyber-physical energy systems for distributed sensing and control[END_REF] and the threshold of BEs is [START_REF] Ren | Intelligent domestic electricity management system based on analog-distributed hierarchy[END_REF] Given the thresholds and the regression coefficients in Table VII, the predicted time when degradation path i exceeds its corresponding threshold can be obtained by solving the regression equation in [START_REF] Tan | Advances and trends of energy storage technology in Microgrid[END_REF]. We take as the predicted lifetime of the whole SEM under a specific design level. Figure 13 shows the distribution of the predicted lifetimes of the SEMs cumulated under all the design levels. Based on [START_REF]Accelerated testing: statistical models, test plans and data analyses[END_REF], for more than two stressors the accelerated lifetime model of SEM has a general log-linear form: [START_REF] Farhangi | The path of the smart grid[END_REF] where are the parameters to be estimated and is the vector of different stressors. In our case, where T is the absolute temperature, RH (%) is relative humidity, and I is the current.

1) Three-parameter model

The acceleration model considering all the stressors is defined in the following form [START_REF] Escobar | A review of accelerated test models[END_REF]:

where A, B, C, D are the parameters to be estimated. In [START_REF] Gungor | Smart grid technologies: communication technologies and standards[END_REF] the three stressors are assumed to be independent from each other. The temperature and humidity follow a variation of the Eyring model of electronic devices [START_REF] Striny | Reliability evaluation of aluminum-metallized mos dynamic ram's in plastic packages in high humidity and temperature environments[END_REF], while the electricity follows the inverse power law model [START_REF] Escobar | A review of accelerated test models[END_REF].

We considered four intensively used distributions of failure data modeling as our alternative choices namely Weilbull distribution, exponential distribution, normal distribution and log-normal distribution. The P-P plot (probability-probability plot) method was introduced to determine the best fitted one. The P-P plot is so constructed that if the theoretical distribution is adequate for the data, the graph of a function of t (y axis) versus a function of the sample cumulative distribution function (x axis) will be close to a straight line [START_REF]Accelerated testing: statistical models, test plans and data analyses[END_REF]. Compared with other distribution, the results illuminate that Weilbull distribution is relatively reasonable for our data (Figure 14).

So we estimate the parameters of Weibull distribution as follows,

where . To estimate the parameters and m, we conduct the maximum likelihood estimation (MLE).

The MLE function is: [START_REF] Kalinowski | A new look at component maintenance practices and their effect on customer, station and system reliability[END_REF] where 

t

2) Two-parameter model

Based on the results of Table VIII, the parameter of current is negligible comparing to the coefficients of the other stressors. To confirm this observation, we conduct a Wilcoxon signed rank test [START_REF] Walpole | Probability and statistics for engineers and scientists[END_REF] to compare the lifetime data of two paired groups: S1 vs. S2 and S5 vs. S6, because the temperature and humidity levels are the same within these two groups. Table IX summarizes the results and shows that there is no significant difference regarding the paired lifetimes within each group.

The reasons of the fact that the electricity has little impact onto SEM degradation are presented as follows: the power supply to the SEM and the electricity measured by the SEM are different. The electricity level is raised to amplify the condition which SEM measures, while the power supply is stable during the testing. Because the electricity acquiring circuit is isolated from the main operational SEM circuit, the electricity can only cause minor effects onto the rest of the SEM by generating small amounts of heat.

However, the ambient temperature inside the testing chamber is controlled by the constant blow of heated air. The local heat generated by the electricity acquiring circuit is quickly removed away and therefore has little impact onto the degradation of the SEM. Therefore, the accelerated model is modified eliminating current:
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The parameter estimates of the two-parameter acceleration model are calculated by the same procedure as the 3-parameters model and the results are shown in Table X. 

C. Reliable Lifetime Evaluation

As shown in Section IV.B, the lifetime of SEM follows a Weibull distribution with parameters and m, and can be obtained from ( 16); so, the reliability function of SEM can be written as,

Taking the natural log twice on both sides of ( 17),

where is the reliable lifetime (the lifetime of a device given a predefined reliability level) [START_REF]Applied Life Data Analysis[END_REF]. For the Weibull distribution, the lower bound of the reliability lifetime can be obtained by [START_REF]Applied Life Data Analysis[END_REF][START_REF] Kececioglu | Reliability & Life Testing Handbook[END_REF]: [START_REF] Bowles | A survey of reliability-prediction procedures for microelectronic devices[END_REF] where the index indicates the confidence levels and is the variance of [START_REF] Escobar | A review of accelerated test models[END_REF]:

Substituting the estimated parameters m, , and into [START_REF]Reliability data handbook-universal model for reliability prediction of electronics components, PCBs and equipment[END_REF] given the normal conditions (I=10A, T=20℃

or 25℃, RH=45%) of SEM operation, the lower bound of the reliable lifetime at different confidence levels and reliability values is calculated (Table XI). 

VI. CONCLUSIONS

Reliability of SEM plays an important role for an effective answer to the question of future electric grids.

In order to estimate it, ALTs, based on IEC62059 or other standards, are often conducted. However in a situation of evaluation of more reliable products, ADT can be a more capable, flexible and practical option, such as SEM, which only need to trace the deterring indicators of products during the test.

The major difficult to apply ADT to SEMs is how to determine the performance indicators and the testing profile that monitored in tests. In this work, an example of performance indicators, which are BE and CE, is

given by taking into account the major function, configuration and key components of SEM. Also, the failure mechanism both in inner component and functional output are considered. Based on that, the testing profile including numbers of samples, testing environment stress, testing profile and testing platform are then devised.

With respect to predict the reliability, in terms of reliable life, based on the degradation information, pseudo life method was introduced. The key to pseudo life method is how to capture the best fitting function of degradation path. In this respect, a linear regression with moving average is presented. To determine the optimal number of moving average span and RMSE, a discriminant is developed and used, as the result of which 17 is the best span number. Compared with several alternative distributions, Weilbull distribution can provide a better fitting solution of pseudo life.

Because we have applied temperature, humidity and current as three accelerated testing stress to test, we firstly assume that it should be a three-parameters degradation function, but the result indicates current should not be involved, which means it is a two-parameters degradation function. The reliable life of the SEMs is obtained by MLE of the Weibull distribution considering its parameters as ADT function.

The scope of future work is how to conduct a demonstration test based on the predicting results of ADT.

A work of sample determining method has already been presented on account of this paper`s contribution [START_REF] Hui | Single sampling inspection method of smart meter according to reliable life[END_REF]. 

Figure 2 5 -

 5 Figure 2 5-step framework for the reliable lifetime prediction

Figure 3

 3 Figure 3 The functional diagram of SEM

Figure 4

 4 Figure 4 Illustration of the design points

Figure 5

 5 Figure 5 SEM testing chamber, platform and equipment

Figure 6

 6 Figure 6 Profile of one testing cycle

  -hour and sixteen 24-hour testing intervals. S1 has 15 cycles which include one 16-hour and fourteen 24-hour intervals due to a failure of the testing system. S4 and S6 have 22 cycles because the total online time 400 hours are split in five 8-hour, six 16-hour and eleven 24hour intervals.

Figure 7

 7 Figure 7 ADT profile

Figure 9

 9 presents the degradation paths of the BE of the sample No. 5000101, which has the most significant degradation among all samples at design S2. It is shown that most of the 18 degradation paths exhibit the same trend. Figure 10 presents the degradation paths of BE of sample No. 5000101 at loading condition #2 under different stress designs.

Figure 8 Figure 9

 89 Figure 8 Degradation path of CE of sample No. 5000101 under different designs

Figure 13 30 B

 1330 Figure 13 Predicted lifetime of each sample at all stressed conditions

Figure 14

 14 Figure 14 Time-to-Failure data goodness-of-fit of the Weibull distribution

Figure 2 . 5 -Figure 3 .Figure 4 .Figrure 5 .Figure 8 .Figure 9 .Figure 10 .Figure 11 .Figure 12 .Figure 13 .Figure 14 .

 25345891011121314 Figure 2. 5-step framework for the reliable lifetime prediction

TABLE V NUMBER

 V 

OF SAMPLES n UNDER DIFFERENT SETTINGS

  plots against different K values by using the data from sample No. 5000101 at design level S2. It is noted that 17 is the total number of data points collected during the testing at level S2, as it is the total number of testing cycles at level S2. Figure 11 shows all 19 degradation paths (18 BE paths and 1 CE path) of the sample No. 5000101 at design level S2 after the smoothing operation.Figure 11 The weighted value of SEM as span size increases (17 is the maximum span size in S2) Figure 12 Degradation paths of the sample (No.5000101) after smoothing Standard least-square regression is performed on each of the smoothed degradation paths. The results are summarized in Table VII.

  ij is the time to failure of the jth (j=1, 2, … M) sample under the S i (i=1, 2, … 6) stress level.

			By
	setting	, we can obtain the MLE	. The
	results are shown in Table VIII.		

Table IX .

 IX PARAMETER ESTIMATES OF THE THREE-STRESSORS ACCELERATION MODEL

	LC2			0.0189931		0.6971	-0.0355	-0.0003
	LC3			0.0094304		0.9361	-0.0044	-0.0003
	LC4			0.0123157		0.8901	-0.0037	-0.0003
	LC5			0.0102741		0.8980	0.0066	-0.0003
	LC6			0.0081535		0.9300	-0.0362	-0.0003
	LC7			0.0079488		0.9345	-0.0272	-0.0003
	LC8			0.0104789		0.8413	-0.0005	-0.0002
	LC9			0.0070529		0.9507	-0.0408	-0.0003
	LC10			0.0077934		0.9353	-0.0312	-0.0003
	LC11			0.0085557		0.8794	-0.0013	-0.0002
	LC12			0.0082042		0.9273	-0.0488	-0.0003
	LC13			0.0124982		0.7042	-0.0208	-0.0002
	LC14			0.0070861		0.9628	-0.0500	-0.0003
	LC15			0.0076297		0.9299	-0.0454	-0.0003
	LC16			0.0114346		0.6005	-0.0570	-0.0001
	LC17			0.0088175		0.8996	-0.0723	-0.0003
	LC18			0.0136591		0.5022	-0.0942	-0.0001
	CE			0.0099809		0.7334	0.0398	0.0001
					Fisher matrix	
	Parameter	MLE				
		1.7175	0.0032	-0.0269	6.8237	0.5631	0.0003
		-14.5267	-0.0269 1.6893	-449.4764	-23.1221	-0.0303
		3184.6269 6.8237	-449.4764 139070	3037.3073 2.2088
		323.9281	0.5631	-23.1221	3037.3073 1089.5379 0.4895
		0.2251	0.0003	-0.0303	2.2088	0.4895	0.0051

Table X .

 X PREDICTED LIFETIME OF ALL THE SAMPLES AT TWO PAIRED DESIGN LEVELS

	Design pairs	Samples	Wilcoxon signed	P-value	Estimated median
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