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Abstract. The complete and executable definition of a Domain Spe-
cific Language (DSL) includes the specification of two essential facets:
a model of the domain-specific concepts with actions and their seman-
tics; and a scheduling model that orchestrates the actions of a domain-
specific model. Metamodels can capture the former facet, while Models
of Computation (MoCs) capture the latter facet. Unfortunately, theo-
ries and tools for metamodeling and MoCs have evolved independently,
creating a cultural and technical chasm between the two communities.
Consequently, there is currently no framework to explicitly model and
compose both facets of a DSL. This paper introduces a new framework
to combine a metamodel and a MoC in a modular fashion. This allows
(i) the complete and executable definition of a DSL, (ii) the reuse of a
given MoC for different domain-specific metamodels, and (iii) the use of
different MoCs for a given metamodel, to account for variants of a DSL.

1 Introduction

Domain-specific languages (DSLs) offer a limited, dedicated set of concepts to
domain experts to let them express their concerns about a system. Previous stud-
ies have shown that the limited expressiveness of DSLs, combined with dedicated
tools, can increase the productivity in the construction of software-intensive sys-
tems, while reducing the number of errors [1]. A recent study by Hutchinson et
al. has even demonstrated that DSLs are one of the main motors for an industrial
adoption of model-driven engineering [2].

Defining a DSL completely and precisely is difficult, in particular when it
comes to the formal definition of its semantics. However, Bryant et al. [3] point
out that the formal definition of DSL semantics is the foundation for the major
expected benefits of DSLs: the automatic generation of the DSL tooling (e.g.,
editor and compiler), the formal analysis of model behavior, or the rigorous
composition of multiple concerns modeled with different languages.

⋆ This work has been partially supported by VaryMDE, a collaboration between Inria
and Thales Research and Technology.
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Fig. 1. Our approach to implement the behavioral semantics of a DSL

As described in the left of Figure 1, Harel et al. synthesizes the construction of
a DSL as the definition of a triple: abstract syntax, concrete syntax and semantic
domain [4]. This work focuses on the definition of the abstract syntax (AS), the
semantic domain (SD) and the respective mapping between them (Mas_sd).
Several techniques can be used to define those three elements. This paper focuses
on executable metamodeling techniques, which allow one to associate operational
semantics to a metamodel. In this context, we argue that the formal definition of
the semantic domain must rely on two essential assets: the semantics of domain-
specific actions and the scheduling policy that orchestrates these actions. It is
currently possible to capture the former in a metamodel and the latter in a Model
of Computation (MoC), but the supporting tools and methods are such that it
is very difficult to connect both to form a whole semantic domain (see right of
Figure 1).

We propose to model domain-specific actions and MoCs in a modular and
composable manner, resulting in a complete and executable definition of a DSL.
We experiment this proposal by leveraging two state-of-the-art modeling frame-
works developed in both communities: the Kermeta workbench [5] that supports
the investigation of innovative concepts for metamodeling, and the ModHel’X
environment [6] that supports the definition of MoCs. We foresee two major
benefits for this composition: the ability to reuse a MoC in different DSLs, and
the ability to reuse domain-specific actions with different MoCs to implement
semantic variation points of a DSL. Saving the verification effort on MoCs and
domain-specific actions also reduces the risk of errors when defining and vali-
dating new DSLs and their variants. We illustrate this approach and the reuse
capacities through the actual composition of the fUML DSL with a sequential
and then a concurrent version of the discrete event MoC.

The rest of the paper proceeds as follows: Section 2 introduces fUML, our
case study throughout the paper. Then we describe how to design the domain-
specific actions of a DSL and the MoC, respectively using Kermeta (Section 3)
and ModHel’X (Section 4). We propose in Section 5 a tool-supported approach
to combine them to implement the complete behavioral semantics of a DSL in
a modular and reusable fashion. Finally, we present in Section 6 the application
of our approach to vary the MoC of fUML. Section 7 presents related work, and
Section 8 concludes and proposes directions of future work.
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2 Case Study: fUML

The Semantics of a Foundational Subset for Executable UML Models (fUML)
[7] is an executable subset of UML that can be used to define the structural and
behavioral semantics of systems. It is computationally complete by specifying
a full behavioral semantics for activity diagrams. This means that this DSL
is well-defined and enables implementors to execute well-formed fUML models
(here execute means to actually run a program).

As an example, Figure 2 shows an executable fUML model representing the
activity of our team when we meet for work sessions. We are used to first having
a coffee while talking together about the latest news. When we finish drinking
our coffee and talking, we begin to work.

The fUML specification includes both a subset of the abstract syntax of UML,
and an execution model of that subset supported by a behavioral semantics. We
introduce these two parts of the specification in the rest of this section.

2.1 The fUML Abstract Syntax

Figure 3 shows an excerpt of the fUML metamodel corresponding to the main
concepts of the abstract syntax. The core concept of fUML is Activity that
defines a particular behavior. An Activity is composed of different elements called
Activity Nodes linked by Activity Edges. The main nodes which represent the
executable units are the Executable Nodes. For instance, Actions are associated
to a specific executable semantics. Other elements define the activity execution
flow, which can be either a control flow (Control Nodes linked by Control Flow)
or a data flow (Object Nodes linked by Object Flow).

The example in Figure 2 uses an illustrative set of elements of the abstract
syntax of fUML. The start of the Activity is modeled using an Initial Node. A
Fork Node splits the control flow in two parallel branches: one for the Action of
having a coffee, the other for the Action of talking to each other. Then a Join
Node connects the two parallel branches to the Action of working.

Of course, the abstract syntax also includes additional constraints in the
metamodel to precise the well-formedness rules (a.k.a. static semantics). For
example, such an additional constraint expresses that control nodes can only be
linked by control flows. fUML uses the Object Constraint Language (OCL) [8]
in order to define those constraints.

We refer the reader to the specification of fUML for all the details about the
comparison with UML2 and the whole description of the fUML metamodel [7].
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2.2 The fUML Behavioral Semantics

To support the execution of models, fUML introduces a dedicated Execution
Model. The activity execution model has a structure largely parallel to the ab-
stract syntax using the Visitor design pattern [9] (called SemanticVisitor). Note
that although the semantics is explained using visitors, which are rather at the
implementation level, it is left open by the fUML specification to implement the
language using other means than visitors.

In addition, to capture the behavioral semantics, the interpretation needs to
define how the execution of the activity proceeds over time. Thus, concepts are
introduced in the execution model for which there is no explicit syntax. Such
concepts support the behavior of an activity in terms of tokens that may be held
by nodes and offers made between nodes for the movement of these tokens.

Based on the execution model, the specification denotationally describes the
behavioral semantics of fUML using axioms in first order logic. Moreover, a ref-
erence implementation of the fUML semantics has been proposed in Java4. Both
define the domain-specific actions (i.e., the behavioral semantics of the domain-
specific concepts defined in the abstract syntax) as a concrete implementation
of the visitor, including a deeply scattered scheduling of such domain-specific
actions. We refer to the latter concern as (part of) the Model of Computation
(MoC) of the language. Such an implementation prevents the reuse of a MoC
for different DSLs (e.g., the fact that all the domain-specific actions should run
in sequence is a behavioral specification that can be reused in many domains),

4 Cf. http://portal.modeldriven.org/



as well as its easy replacement with another one for the same DSL. Indeed,
several semantic variation points exist in the MoC. As stated by the specifica-
tion itself, some semantic areas “are not explicitly constrained by the execution
model: The semantics of time, the semantics of concurrency, and the semantics
of inter-object communications mechanisms” [7]. We investigate in the rest of
this paper an approach to modularly define the domain-specific actions and the
MoC of a software language. Such an approach aims at supporting the reuse and
the variability in languages, and is illustrated through the fUML case study.

3 Using Kermeta for an executable metamodel of fUML

Kermeta is a workbench that can be used for implementing domain-specific lan-
guages (DSLs). It supports different meta-languages depending on the DSL con-
cern (abstract syntax, static semantics, behavioral semantics and connection to
concrete syntax), and modularization features. In this section, we provide some
background on Kermeta, and we show benefits and drawbacks in implementing
both the abstract syntax and the behavioral semantics.

3.1 Abstract Syntax Definition

First of all, to build a DSL in Kermeta, one implements its abstract syntax (i.e.,
the metamodel), which specifies the domain concepts and their relations. The
abstract syntax is expressed in an object-oriented manner using Ecore [10], an
implementation aligned with the meta-language MOF (Meta Object Facility)[11].

MOF provides language constructs for specifying a DSL metamodel: pack-
ages, classes, properties, multiple inheritance and different kinds of associations
between classes. The semantics of these core object-oriented constructs is close
to the object model common to various languages such as Java and C#.

To implement fUML’s abstract syntax, we reuse the metamodel standardized
by the OMG (cf. Figure 3 for an excerpt). In practice, the OMG provides the
fUML metamodel in terms of MOF, and we automatically translate it into an
Ecore-based metamodel (the format supported by the Kermeta workbench).

The static semantics of a DSL (i.e. the context conditions) corresponds to
the well-formedness rules on top of the abstract syntax (expressed as invariants
of metamodel classes) [4]. The static semantics is used to filter syntactically in-
correct DSL models before actually running them. Kermeta supports OCL to
express the static semantics5 and it translates this semantics into equivalent Ker-
meta constraints, directly woven into the relevant metamodel classes using the
Kermeta keyword aspect. Listing 1.1 shows the well-formedness rule previously
introduced for fUML as expressed in the Kermeta workbench using OCL.

5 Note that Kermeta fully support OCL, and thus similarly supports the axiomatic se-
mantics (expressed as pre- and post-conditions on operations of metamodel classes).
It is used to check the correctness of a DSL model’s execution either at design time
using model-checking or theorem proving, or at runtime using assertions, depending
on the execution domain of the DSL.



Listing 1.1. Weaving the Static Semantics of fUML into the Standard Metamodel

1 package fuml;

2 require "fuml.ecore"

3 aspect class ControlFlow {

4 inv : self.source.oclIsKindOf(ControlNode) and

5 self.target.oclIsKindOf(ControlNode)

6 }

In Kermeta, the abstract syntax and the static semantics are conceptually
and physically (at the file level) defined in two different modules. Consequently, it
is possible to define several variants of the static semantics for the same domain,
i.e. to share a single MOF metamodel between different static semantics.

3.2 Behavioral Semantics Definition

To define the behavioral semantics of a DSL, one must first define the required
data structure (i.e., the execution model) using MOF. The abstract syntax and
the execution model are then the basis to implement the behavioral semantics.
Nevertheless, MOF does not include concepts for the definition of the behav-
ioral semantics and OCL is a side-effect-free language. To define the behavioral
semantics of a DSL, Kermeta provides an action language [5]. It can be used to
define either a translational semantics (for building a compiler) or an operational
semantics [12] (for building an interpreter).

The Kermeta language is imperative, statically typed, and includes classical
control structures such as blocks, conditional statements, loops and exceptions.
It also implements traditional object-oriented mechanisms for handling multi-
ple inheritance and generics, and provides an execution semantics to all MOF
constructs that must have a semantics at runtime, such as containment and
associations. For example, if a reference is part of a bidirectional association,
the assignment operator semantics has to handle both ends of the association.
Kermeta also borrows the semantics of multiple inheritance from the Eiffel pro-
gramming language [13].

Using the Kermeta language, the domain-specific actions are expressed as
methods of the classes of the abstract syntax [5]. Similarly to the static semantics,
the methods are added to the relevant metamodel classes (using the keyword
aspect). Unlike the specification and the Java implementation that largely
duplicate the structure of the abstract syntax to describe the structure of the
visitor (see Section 2.2), aspects avoid duplicating the structure while keeping
a conceptual and physical separation. For instance, in Listing 1.2, the method
execute is added to the concept CallBehavioralAction of the fUML abstract
syntax. This method is the Kermeta-based specification of the corresponding
fUML behavioral semantics that consists in calling the behavior associated to
the action.

Listing 1.2. Weaving the Behavioral Semantics of fUML into the Standard Metamodel

1 aspect class CallBehavioralAction {

2 operation execute() : Integer is do

3 result := self.behavior.call() // call the associated behavior

4 end

5 }



Once the domain-specific actions have been described, it is necessary to de-
scribe their scheduling according to a particular model of computation. We de-
scribe in the next section the usual way to do this in Kermeta, and we discuss
the drawbacks of this approach.

3.3 Mashup of the DSL Concerns

As introduced above, all pieces of static semantics and domain-specific actions
are encapsulated in metamodel classes. The aspect keyword enables DSL de-
signers to relate the language concerns (abstract syntax, static semantics, and
domain-specific actions) together. It allows designers to reopen a previously cre-
ated class to add some new information such as new methods, new properties or
new constraints. It is inspired from open-classes [14].

In addition, Kermeta provides the keyword require that one uses to actu-
ally mash up those concerns. A DSL implementation requires an abstract syntax,
a static semantics and the domain-specific actions. Listing 1.3 shows how such an
implementation looks like in Kermeta. Three require keywords are used to im-
port three modules, each of which specifies one of the three concerns. The require
mechanism also provides some flexibility with respect to the static semantics and
the domain-specific actions. For example, several sets of domain-specific actions
could be defined in different modules and then chosen depending on particular
needs. It is also convenient to support semantic variations of the same concept.

Listing 1.3. Mashup of the fUML Concerns

1 package fuml;

2 require "fuml.ecore" // abstract syntax

3 require "fuml.ocl" // static semantics

4 require "fuml.kmt" // domain-specific actions

5 class Main {

6 operation Main(): Void is do

7 // Scheduling calls to domain-specific actions

8 // to drive the execution of an fUML model

9 end

10 }

The Kermeta-based implementation of fUML follows the approach above. All
fUML concerns are separated in different units, and the fUML runtime environ-
ment is the result of the mashup.

Finally, to implement the entire behavioral semantics, it is necessary to spec-
ify how the domain-specific actions are scheduled. One approach is to scatter
the scheduling policy across all the methods defining the domain-specific actions
in the visitor, as done in the specification and in the Java-based reference im-
plementation. While this approach is easy to implement, it clearly prevents the
modularization of the scheduling policy, which would be required to enable its
variability. To avoid scattering the scheduling policy, another approach is to ex-
tract it in the main class that starts the execution of the model for a particular
purpose, and therefore according to a particular MoC (see Listing 1.3). Although
this approach of separating the MoC from the domain-specific actions allows the
use of the same MoC for variants of the domain-specific actions, the MoC is



strongly coupled to the DSL and must be redefined from scratch for every new
DSL. It is thus impossible to reuse or to adapt a MoC for different DSLs.

In the next section, we present how the MoC-based modeling framework
called ModHel’X can be used to improve the aforementioned approach. This new
approach paves the way for reusing the implementation of MoCs. Then, we intro-
duce in Section 5 an approach to combine such a MoC with the domain-specific
actions, enabling the reuse of a MoC in different domains, and the implementa-
tion of different MoCs for a specific domain.

4 Using ModHel’X Models of Computation for fUML

ModHel’X [6,15] is a framework for building and executing multi-paradigm mod-
els, that is to say models built from parts described using different modeling
paradigms. In ModHel’X, the behavioral semantics of a modeling paradigm is
given by the combination of two elements:

1. A Model of Computation (MoC), which is a set of rules defining the se-
mantics of control and concurrency, the semantics of communications and
the semantics of time of the modeling paradigm. Synchronous Data-Flows
(SDF), Discrete Events (DE), and Kahn Process Networks (KPN) [16] are
examples of models of computation.

2. A library of components with predefined behavior. For instance, the compo-
nent library of the synchronous data-flow MoC of ModHel’X includes com-
ponents representing mathematic functions like addition, multiplication, etc.
The behavior of those components correspond to the domain-specific actions
introduced in Section 2.2.

Therefore, building a ModHel’X model is a two-step process: (1) choose compo-
nents to assemble and (2) choose the MoC according to which the components
interact. In the following, we present how MoCs and components are represented
in ModHel’X to allow model execution. Then we will show how they can be used
in the description of any DSL.

4.1 Generic Abstract Syntax

At the core of ModHel’X is a generic metamodel for describing the structure
of models, and a generic execution engine for interpreting such structures using
the semantics defined by MoCs. This means that all ModHel’X models have the
same abstract syntax (given by the generic metamodel of ModHel’X) but each
model may have a different execution semantics depending on the MoC which is
used by the execution engine to interpret it. The fact that all models have the
same abstract syntax is what allows ModHel’X to support the composition of
models which have different semantics. The composition mechanism itself is not
presented in this paper because it is not used yet in the presented methodology,
but a detailed description can be found in [15].



Figure 4 shows a simplified excerpt of the metamodel of ModHel’X. To illus-
trate the concepts in this metamodel, we show in Figure 5 how the fUML model
of Figure 2 would be described in ModHelX. An element of a ModHel’X model
which has a behavior is a block, represented as a gray rectangle in Figure 5. In-
deed, blocks are the mechanism used in ModHel’X to represent domain-specific
actions. In the fUML example, ActivityNodes are represented by blocks because
they all have a behavior (which can relate to control in the case of ControlNodes,
or to executable behaviors in the case of ExecutableNodes).

Blocks communicate with their environment through pins (black circles in
Figure 5), and the structure of a model is defined by establishing relations be-
tween the pins of blocks (the lines with arrows on the figure).

There are two different kinds of blocks in ModHel’X. Interface blocks are
blocks whose behavior is described by an internal ModHel’X model. They are
the mechanism we use for supporting heterogeneity through hierarchy (see [15]
for more details). Atomic blocks are the basic building blocks which are the
leaves of the hierarchy of models. For instance, the control nodes of fUML (join
and fork in particular), would be atomic blocks in ModHel’X. While we provide
libraries of atomic blocks for all the MoCs implemented in ModHel’X, we do not
provide specific tools to allow users to define their own domain-specific atomic
blocks because it is out of the scope of ModHel’X as a MoC-based experimen-
tation platform for heterogeneous modeling. This means that the behavior of
atomic blocks has to be described using a formalism which is external to our
framework (for instance C or Java). Therefore, it is interesting for ModHel’X
to benefit from techniques such as those provided by Kermeta to allow users to
design and specify easily their own domain-specific atomic blocs, i.e. their own
domain-specific actions. We will show in Section 5 how the approach proposed
in this paper allows the use of Kermeta specifications of the behavior of the
ActivityNodes of fUML in ModHel’X.

structure 1
1 moc

* *

interface

*

source

1
target

1

Model

BlockStructure
<< abstract>>

ModelOfComputation

<< abstract>>

Block
Pin Relation

Fig. 4. Simplified excerpt of the generic metamodel of ModHel’X

4.2 Abstract Semantics for Models of Computation

As introduced previously, ModHel’X is dedicated to the execution of models.
The execution of a model in ModHel’X is performed by the generic execution
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Fig. 5. fUML example model in ModHel’X

engine, which computes a series of observations, or snapshots. The MoC of a
model is responsible for computing each snapshot of the model according to its
specific semantics.

As illustrated by the sequence diagram in Figure 6, to compute a snapshot
of a model, the MoC repeatedly chooses a block to observe (schedule operation),
observes its behavior through its interface (update) and propagates observed
information between blocks (propagate). It repeats this process until the com-
putation of the reaction of the model is complete.

The schedule and propagate operations, as well as the rules for determining
the stopping conditions of the algorithm, form the generic interface of MoCs.
Together with the generic execution algorithm, they form the abstract semantics
of ModHel’X. The scheduling and propagation operations must be specified as
MoC-specific actions for each MoC (see Figure 7) because they are the implemen-
tation of the rules that define the control, concurrency, time and communication
semantics of the corresponding modeling paradigm. The update operation is
delegated to each block to provide the MoC with an observation of its behavior
through its interface, while keeping the internal details in a complete black box.

schedule():scheduledBlock

update()

propagate()

snapshot()

eng:ExecutionEngine moc:ModelOfComputation

scheduledBlock:Block

while

[canGoFurther()]

Fig. 6. Abstract semantics of ModHel’X

To implement the semantics of fUML in ModHel’X, we would have to choose
or to build a MoC which implements the scheduling and propagation policies
defined in the specification. Although the specification does not say much about
time, concurrency, and inter-object communications, we know that Activity-



Nodes are linked by control and object flows on which tokens are propagated
using the mechanism of offers. This is in favor of an event-based model of com-
putation. Moreover, ExecutableNodes can represent the call of actions, so their
behavior can take time. We could therefore choose to use the well-known Dis-
crete Events (DE) model of computation [16], which already exists in ModHel’X.
We present its semantics in the following section.

4.3 The Discrete Events (DE) MoC

DE is a MoC for the simulation of communicating processes, for instance hosts
exchanging messages on a network. In DE, blocks exchange events at given dates.
A block is observed when it receives an event from an upstream block or when
it has spontaneous behavior. When observed, a block may produce outgoing
events, to be transmitted to downstream blocks. If several events have the same
timestamp, they are delivered at the same time, but in a sequence of microsteps
(determined by a topological ordering of the blocks), so that the overall obser-
vation at that time is causal and deterministic.

The classical version of DE allows blocks to run concurrently. The schedul-
ing algorithm for DE in ModHel’X relies on a global event queue. At a given
instant, the MoC looks for all the events ei with the smallest time tag tnow and
advances the current time to tnow. It then looks for the blocks bj which are the
targets of the ei events and schedules one of the minimal elements among the
bj according to the topological ordering of the blocks. The choice of a minimal
element guarantees that events produced at tnow during the update of a block
can be processed by their target at tnow in one iteration. A mechanism which is
out of the scope of this paper is used to avoid cycles in the graph of blocks. The
snapshot is complete when no event with time-stamp tnow remains in the queue.

The fUML specification leaves open the type of scheduling of the activity
nodes: their execution may be concurrent or sequential. The classical version of
DE, the “concurrent” one described above, may therefore be used as one possible
scheduling for fUML, but a sequential variant of DE is also possible.

We have designed a “Sequential DE” MoC that has the following differences
with the “Concurrent DE” MoC. At a given moment, only one block may be
active. A block is said to be active if it has been given control (i.e. events have
been provided to the block and the block has been observed), but it has not
released control (i.e. it has not produced events yet). Sequential DE keeps track
of the blocks that are active-able. If a block receives an event at t, then it is
active-able starting at time t. But contrary to Concurrent DE that systematically
and immediately activates all the active-able blocks, Sequential DE waits for the
currently active block to release control (which will involve taking a new snapshot
if the release is not immediate) before activating another active-able block.

The following section shows how the ModHel’X implementation of these two
MoCs, “ConcurrentDE” and “SequentialDE”, can be used to drive the execution
of an fUML model in which the domain-specific actions are described in Kermeta.
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5 Bridging the Chasm

The previous sections have shown that:

– It is possible to easily define the abstract syntax and the execution model
of a DSL, together with the semantics of its domain-specific actions, using
Kermeta. However, a model of computation has to be written from scratch
for each DSL in order to define the scheduling policy of these actions.

– ModHel’X offers various models of computation and provides means to de-
fine customized models of computation on top of an execution engine which
allows the simulation of heterogeneous models. However, no specific tool is
provided to help the user specify domain-specific actions which are repre-
sented as blocks in a ModHel’X model.

In this section, we now bridge the chasm between these two worlds in order to
benefit from the advantages of both. As a result, we present a general methodol-
ogy that allows us to execute models described with DSLs defined in a modular
way. We present the application of this methodology to the fUML case study.
We have also applied the methodology to the Software and Systems Process
Engineering Metamodel specification of the OMG [17]. The corresponding ex-
periments are available online at http://www.gemoc.org/kermeta-modhelx.

Our approach is based on the decomposition of a DSL semantics as shown in
Figure 7. The structure of the MoC, on the left, and of the domain, on the right,
have been presented in the previous sections. In the following sections, we show
how the abstract syntax and execution models on both sides can be mapped,
and how the abstract semantics of the MoC modeling framework (ModHel’X in
our case), combined with the concrete execution semantics of the MoC, is used
to schedule domain-specific actions in order to execute a model.

5.1 Abstract Syntax Mapping

First, the abstract syntax of the DSL is mapped onto the abstract syntax of
ModHel’X, to enable model execution through the generic engine. In the case
of fUML, the control structure and the activity nodes must be mapped onto
ModHel’X elements. Activity nodes have domain-specific actions that must be
callable, so they are naturally mapped onto atomic blocks (that can be observed



through the update operation). Control edges are mapped onto relations between
blocks, which represent the possible flow of control.
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Fig. 9. Example fUML model and its wrapping ModHel’X model using DE.

Figure 8 shows the mapping between the two metamodels, and Figure 9 shows
the result of the syntactic transformation of an fUML model into a ModHel’X
model using the DE MoC. This model transformation is made before the exe-
cution starts, by instantiating a wrapper for each activity node. For fUML, we
need two kinds of wrappers. ActivityNodeWrapper wraps reactive activity nodes,
i.e. nodes that start a behavior, which possibly takes some time, when they are



given control. All activity nodes except InitialNodes are of this kind. However
InitialNodes must create control at the start of the simulation, without receiving
control explicitly. That is why they are wrapped into specific InitialNodeWrap-
pers. Then, for each edge in the fUML model, we create a relation between the
pins of the relevant blocks in the ModHel’X model. It must be noted that in this
case, the mapping between activity nodes and blocks, and between control edges
and relations is straightforward. However, in the general case, the structure of
the ModHel’X model may be different from the structure of the domain-specific
model.

5.2 Abstract Semantics to Domain Specific Actions Mapping

We must now map the abstract semantics of ModHel’X onto the domain-specific
actions. The entry point of the abstract semantics for blocks is the update oper-
ation. Therefore, an activity node is wrapped into a special kind of block, which
has an update operation that calls the domain-specific actions of the node. The
wrapper acts as a block in the ModHel’X model, so its class is a subclass of Block.
On the other hand it must execute the associated domain-specific actions, so it
relies on the DSL’s method signatures. Figure 10 shows how the wrapper maps
the abstract semantics of ModHel’X onto the domain-specific semantics of fUML.
When DE gives control to the wrapper block by calling its update method, the
wrapper calls the domain-specific action (the fire operation). If the wrapped
activity node is an action which takes time, the wrapper also requests to be
observed in the future, so that it can handle the termination of the action.

The schedule and propagate operations allow the MoC to choose which block
should be updated next, and how information produced by the update should
be propagated to the other blocks.

5.3 Execution Model Mapping

The last item of Figure 7 to be mapped is the execution model, which represents
the state of the execution of the model. The update operation of the wrapper
synchronizes the execution models on both sides. In the case of the DE MoC and
of fUML, DE events represent control on the MoC side, and must be translated
into fUML control tokens before the domain-specific actions are called. When the
fUML model has updated its execution model, control tokens must be converted
into DE events so that the MoC has the necessary information to schedule the
rest of the execution. Time must also be synchronized so that the MoC knows
when to schedule a block, and activity nodes know when they terminate.

In the general case, the wrapper has to synchronize three aspects of the
execution model: control, time and data. In this example, the DE/fUML wrapper
adapts control and time only; we did not deal with the adaptation of data in
this work.

One of the difficulties of the approach is to decide what to model in the
MoC and what to model in the domain-specific actions. In order to favor the
modularity and the reuse of the MoC for different DSLs, we decided to handle
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Fig. 10. Mapping fUML domain-specific semantics on ModHel’X abstract semantics

only the control and time aspects in the MoC and the wrapper. An example
of such a design decision is the choice of whether to check in the MoC or in a
domain-specific action if an activity node can be activated. Both can be done: the
wrapper can be responsible for calling fire only when all the inputs of the block
have received an event, or fire can be responsible for executing the activity only
when all incoming control edges have a control token. We chose to implement
the latter behavior in the fire domain-specific action even though this is related
to control, because it is the core semantics of fUML that states that an activity
node is executed only when it has received control on all its incoming edges.

6 Implementations and Execution Traces

We have experimented the approach proposed in this paper using Kermeta and
ModHel’X to implement fUML6. Using our implementation, we have been able to
execute the fUML WorkSessionActivity example, wrapped as shown in Figure 9.
The following sections present the execution traces obtained using the classical
“Concurrent” DE MoC, then its “Sequential DE” variant. To help differentiat-
ing the two executions, we have chosen different durations for the Have a coffee
action (10 minutes), the Talk action (15 minutes) and the Work action (45 min-
utes). The execution traces obtained using our implementation are graphically
depicted by the timing diagrams shown on Figure 11. Those diagrams illustrate
the time at which the different actions respectively start and complete.

6.1 Using the Concurrent DE MoC

The execution obtained using the Concurrent DE MoC is illustrated by the
timing diagram shown on the left part of Figure 11. With Concurrent DE, the

6 The experiments are provided at http://www.gemoc.org/kermeta-modhelx
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Fig. 11. Timing diagrams of the execution traces when the model is scheduled by
different MoCs

two actions after the Fork start concurrently at t = 0, the beginning of the
execution of the overall activity. So a first snapshot is taken at time t = 0,
and we see on the timing diagram that both the Have a coffee and the Talk
actions start. After that, two more snapshots are taken when each of the actions
completes: at t = 10 for Have a coffee; at t = 15 for Talk. Within the latter
snapshot, the Join is activated since the two preceding actions are finished and
it releases control to the Work action, which therefore starts at t = 15. A last
snapshot is taken when the Work action completes at t = 15 + 45 = 60.

6.2 Using the Sequential DE Variant

The execution obtained using the Sequential DE MoC is illustrated by the timing
diagram shown on the right part of Figure 11. With Sequential DE, the two
actions after the Fork become active-able at the initial time (t = 0). But since
only one of them can be active at the same time, the MoC chooses to start one
of them, for instance Have a coffee. So a first snapshot is taken at time t = 0. A
second snapshot is taken when the Have a coffee action completes (t = 10). At
that time, the Talk action can start. A third snapshot is taken when the Talk
action completes (t = 25 = 10+ 15). During this snapshot, the Join is activated
and it releases control to the Work action, which therefore starts at t = 25. A
last snapshot is taken at t = 25 + 45 = 70, when the Work action completes.

As illustrated by the timing diagrams of Figure 11, we have managed to ob-
tain two different executions of the same fUML model by changing the model of
computation which is used to schedule it. This shows how the modular descrip-
tion of the semantics of DSLs as the association of a model of computation and
a set of domain-specific actions facilitates the obtention of variants of a given
DSL. In the following, we compare our approach to related work in the domains
of modeling language engineering and MoC-based modeling.

7 Related Work

Much work have been done on the design and implementation of both software
languages and models of computation. In this paper, we propose a conceptual
and technical framework to bridge the chasm between them. This framework
leverages experiences of both communities. This section presents related work in



the field of language design and implementation, and then in the field of models
of computation.

The problem of the modular design of languages has been explored by sev-
eral authors (e.g. [18,19]). For example, JastAdd [19] combines traditional use
of higher order attribute grammars with object-orientation and simple aspect-
orientation (static introductions) to get a better modularity mechanism. With
a similar support for object-orientation and static introductions, Kermeta and
its aspect paradigm can be seen as an analogue of JastAdd in the DSML world.
Rebernak et al. [20] and Krahn et al. [21] contributed to the field in the context
of model-driven DSLs. While they also advocate modularity of DSL compilers
and interpreters, we go further: we take advantage of modularity mechanisms
for integrating the body of knowledge on models of computation, and allow their
reuse and variability.

A language workbench is a software package for designing software lan-
guages [22,23]. For instance, it may encompass parser generators, specialized
editors, DSLs for expressing the semantics and others. Early language work-
benches include Centaur [24], ASF+SDF [25], TXL [26] and Generic Model
Environment (GME) [27]. Among more recent proposals, we can cite Metacase’s
MetaEdit+ [28], Microsoft’s DSL Tools [29], Clark et al.’s Xactium [30], Krahn et
al’s Monticore [21], Kats and Visser’s Spoofax [31], Jetbrain’s MPS [32]. The im-
portant difference of our approach is that we explicitly address the MoC concern
in the design of a language, providing a dedicated tooling for its implementation
and reuse. Our approach is also 100% compatible with all EMF-based tools (at
the code level, not only at the abstract syntax level provided by Ecore), hence
designing a DSL with our approach easily allows reusing the rich ecosystem of
Eclipse/EMF. This issue was previously addressed in the context of the Smalltalk
ecosystem [33]. Our contribution brings in a much more lightweight approach
using one dedicated meta-language per language design concern, and providing
the user with advanced composition mechanisms to combine the concerns in a
fully automated way.

In the context of component-based modeling, models of computation are
used to define the interactions between the behavior of the components of a
model. [34] describes several characteristics of models of computation, as well as
a framework for comparing them.

Several approaches to the definition of models of computation have been
proposed. Connector-based approaches like BIP [35] describe the interactions
between behaviors using connectors, which can be considered as operators in a
process algebra. From the properties of the connectors, it is possible to predict
global properties of the models. In the case of BIP, the choice of connectors
guarantees that the synthesized controller fires only interactions valid in the
model. The result is therefore correct by construction.

The Clock Constraints Specification Language (CCSL) [36] can also be used
to describe models of computation. It defines the semantics of the MARTE UML
profile and it has been used for instance to model communication patterns in



AADL [37]. We also used it in previous work to describe models of computation
and the interactions between heterogeneous models of computation [38].

However, these approaches describe how component behaviors are combined
in an instance of a model. Other approaches like Ptolemy [16] and ModHel’X [39]
allow the definition of models of computation independently of any model in-
stance. Such definitions are therefore reusable for any model which obeys the
abstract semantics of the framework. This abstract semantics defines a set of
operations which drive the execution of models. Each model of computation pro-
vides concrete semantics to these abstract operations. The approach presented
in this article relies on such reusable definitions of models of computation.

8 Conclusion and Perspectives

Although previous work has been done on the execution of UML models, as
discussed in section 7, to the best of our knowledge, we introduce in this paper
the first conceptual and technological bridge between executable metamodeling
and models of computation at the level of the metamodels. We leverage on the
experience of their respective fields and we provide an approach for a modular
design and implementation of executable DSLs.

This approach includes a generic design pattern for metamodels bridging the
gap between domain-specific actions woven into the metamodel and a reusable
model of computation. We provide an actual implementation of this pattern,
using Kermeta to weave executable actions into metamodels, and ModHel’X to
schedule their execution according to a reusable MoC. The tools as well as the
different fUML bridges presented in the paper can be freely downloaded on line.

Such a modular design and implementation of a behavioral semantics lever-
ages on experience coming from two communities to achieve many expectations.
As we illustrate with the fUML example coming from the OMG, many languages
have variants of their model of computation, which current implementations do
not take into consideration. Moreover, since the correct behavior of models is
very dependent on the properties of their MoC, the design and implementation
of a MoC can be critical. Being able to reuse validated MoCs, or validating an
implementation of a MoC through reuse in various contexts is an advantage.
Our approach addresses these two considerations by offering the reuse of MoCs
between DSLs. The other way around, being able to reuse the domain-specific
actions of a DSL with different MoCs in order to implement semantic variation
points is also an advantage.

This first step to combine executable metamodeling and MoCs opens many
exciting perspectives that we are proactively exploring. We first plan to examine
very carefully the perimeter of the possible wrappers to propose suitable abstrac-
tions (e.g., control, time, communication, etc) and patterns for their definition.
Then, we would like to fully exploit the benefits coming from the two communi-
ties. In particular, we explore the application of this approach for heterogeneous
executable modeling, taking advantage of the composition features supported by
ModHel’X for multi-paradigm modeling.
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