
HAL Id: hal-00905075
https://centralesupelec.hal.science/hal-00905075

Submitted on 15 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heterogeneous Model Composition in ModHel’X: the
Power Window Case Study

Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, Ayman Dogui

To cite this version:
Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, Ayman Dogui. Heterogeneous Model Com-
position in ModHel’X: the Power Window Case Study. Workshop on the Globalization of Modeling
Languages at MODELS 2013, Sep 2013, Miami, United States. �hal-00905075�

https://centralesupelec.hal.science/hal-00905075
https://hal.archives-ouvertes.fr


Heterogeneous Model Composition in

ModHel’X: the Power Window Case Study

Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, and Ayman Dogui

Supélec E3S – Computer Science Department

firstname.lastname@supelec.fr

http://wwwdi.supelec.fr/software

Abstract. This paper describes an heterogeneous model of a power win-

dow which is available on the ReMoDD repository. This model uses timed

finite state machines for modeling the controller of the power window,

synchronous data flows for modeling the mechanical part of the win-

dow, and discrete events for modeling the communications between the

components on the car’s bus. An important aspect of this model is the

specification of the semantic adaptation between the heterogeneous parts

of the model. This semantic adaptation is made for data, control, and

time. The semantic adaptation of control and time relies on the TESL

library which is an implementation of the model of time used in the

ModHel’X platform. The model can be run using a simulation scenario

with a graphical display of the outputs. The semantic adaptation can be

disabled in order to show how it affects the behavior of the model. The

demo can also be run with a graphical interface and a user in the loop.

1 Introduction

Using the most suitable set of concepts for modeling a system allows for com-
pact and understandable models. A modeling paradigm with a restricted set of
concepts helps staying focused on the problem that must be solved and reduces
accidental complexity. It may even allow the use of formal analysis tools on
the model. However, because of its efficient but limited set of concepts, such a
paradigm cannot be used for modeling a complex system, with numerous and
heterogeneous components. In such a case, several modeling paradigms are nec-
essary to model the different components of the system, to study the system
under different points of view and at different levels of abstraction, or to per-
form different kinds of analysis [1]. Making those different modeling paradigms
cooperate in the global model of the system is therefore essential.

Multi-paradigm modeling [2] requires well-defined semantics for modeling
languages as well as mechanisms for composing heterogeneous models. Supélec’s
Department of Computer Science is developing ModHel’X, a platform for build-
ing and executing heterogeneous models. It constructs the behavior of a model by
combining the observations of the behavior of black box components according
to a model of computation. More details can be found in [1,3].

http://wwwdi.supelec.fr/software
http://www.cs.colostate.edu/remodd/v1/content/gemocmodels2013


ModHel’X has been inspired by Ptolemy [4] but focuses on the modeling of
the semantic adaptation between models of computation. Semantic adaptation is
the “glue” that is necessary at the boundary between two parts of a model that
use different modeling paradigms so that the resulting composed model has a
well-defined semantics. The problem of semantic adaptation, and the approach
we use for solving it are described in [5,6] and illustrated on former versions
of the power window case study. In this article we present a new version of
this model, which relies on TESL (Tagged Events Specification Language) — a
model of time we developed as an extension with time tags of a restriction of
CCSL (Clock Constraints Specification Language [7]) — for specifying semantic
adaptation. This model of time is described in a technical report [8].

In the following, we first present the power window system, then we show how
it is modeled using several modeling paradigms in ModHel’X, and we present
the different kinds of semantic adaptation needed in the model.

2 The Power Window System

Figure 1 shows the structure of the power window system. The switch sends user
commands to the controller through the bus. The controller receives the com-
mands from the switch as well as information about the end stops and obstacle
detector from the electro-mechanical part. It sends commands to the electro-
mechanical part to switch the motor on or off.

bus

DE

TFSM

SDF

Fig. 1. The power window example

Since commands which transit on the bus occur at specific instants and carry
data, we model the bus using the Discrete Events (DE) model of computation.
The behavior of the switch is not modeled explicitly, and we will either use a sce-
nario player to simulate the actions of the user, or a graphical user interface with
virtual buttons. The controller is naturally modeled using a state machine. To
implement an automatic impulse mode to completely close or open the window
when the user presses the button for a short time (less than 500ms), we need
timed transitions, so we use the Timed Finite State Machine (TFSM) model
of computation. The continuous dynamics of the electromechanical part of the



window could be modeled using differential equations. However, since we do not
yet have a continuous solver in ModHel’X, we use a discretized model consisting
of difference equations, which corresponds to the Synchronous Data Flow (SDF)
model of computation.

Semantic adaptation is necessary at the boundary between heterogeneous
parts of the model, and it is represented by puzzle pieces on the figure.

3 The Power Window in ModHel’X

Figure 2 shows the structure of the model of the power window in ModHel’X.
The root model uses the DE model of computation, and its structure contains
five blocks. On the left and right sides, the scenario and display are used to feed
the model with events and to display the results. Similar components are used
for interfacing the model with the simulation interface in the interactive version.

Root Model

C

Root Structure
DE

S
ce
n
a
ri
o

DE-TFSM IB ×2.0 + 1.0

M

Controller

C

State

machine

@0.0

TFSM

DE-SDF IB ∆1.0@1.0

SDF

Window

SDF

Window

model

SDF

D
is
p
la
y

∆

Fig. 2. Structure of the model of the power window

The model of the controller, which uses the TFSM model of computation,
and the model of the window, which uses the SDF model of computation, are
embedded in interface blocks (respectively DE-TFSM IB and DE-SDF IB). Inter-
face blocks is the mechanism used in ModHel’X to specify semantic adaptation
between heterogeneous models. The block labeled ∆ in the top part of the model
is a delay which models the time taken by the end stop information produced
by the window to reach the input of the controller. This delay is modeled ex-
plicitly in order to avoid instantaneous feedback, which is not yet supported by
our implementation of the DE model of computation. We detail the role of the
two interface blocks with respect to semantic adaptation in the next section.

4 Semantic Adaptation

The concept of semantic adaptation has been detailed and illustrated on the
power window model in [6]. In particular, we have shown that semantic adapta-



tion can be decomposed along three axes: the adaptation of data, the adaptation
of the control flow, and the adaptation of time scales. In this paper, we show how
the semantic adaptation of time and control can be specified at a more abstract
level using the TESL model of time (see [8] for more details on TESL).

4.1 Adaptation between DE and TFSM

The adaptation of data between DE and TFSM consists in transforming DE
events into input symbols for the state machine, and output symbols from the
state machine into DE events. This is achieved by decoding the value of input DE
events into symbols and encoding symbols into values for the output DE events.
On Figure 2, the dashed arrows between the pins of the interface blocks and the
pins of their internal model represent this adaptation of data between models
of computation. The interface block implements this generic decoding/encoding
policy. The details which are specific to a model are set using properties of the
pins. Here, the scenario produces events with values -1, 0 and 1, which are de-
coded into input symbols cmd up, cmd stop, and cmd down of the controller.
Similarly, the properties set on the output pins of the interface block make it
encode the output symbols motor up, motor stop, and motor down of the con-
troller into events with respective values 1, 0 and -1, which will be interpreted
accordingly by the SDF model of the window.

Semantic adaptation between DE and TFSM is also necessary with respect
to time. The timed transitions in the state machine are expressed according
to a time scale which is not necessarily the same as the time scale used in the
discrete event model. In this example, in order to illustrate this aspect, we choose
arbitrarily to make time advance twice as fast in TFSM than in DE, with an
offset of one unit of time. This is represented by the “×2.0 + 1.0” label in a
dashed frame on the figure and it is realized by a TESL tag relation between the
clock of the DE model and the clock of the state machine. The controller has
an initial transition which is used to initialize the output, and we must specify
at what time this transition occurs. We choose to trigger it at time 0.0 on the
TFSM time scale, as indicated by the “@0.0” label in a dashed frame on the
state machine. These timing labels are interpreted by the interface block and
translated into calls to the TESL Java API.

The last aspect of semantic adaptation between DE and TFSM is the control
flow. When the controller enters a state from which a timed transition starts,
it must be updated at the current time plus the delay of the transition, even if
it receives no input symbol at this time. For this, the interface block uses the
TESL Java API to create an implication relation between the clock of the state
machine and the clock of the DE model, and to request the occurrence of an
event on the TFSM clock at the expiration time of delay transitions.

4.2 Adaptation between DE and SDF

The semantics of SDF implies that a model can be updated only when it has
all its data available in input. The semantic adaptation of data here consists in



maintaining the current value of the input each time an event is received from
the controller, and to feed the SDF model with this input value each time it
must be updated. On the output side, we choose to produce events only when
the value of an SDF output changes.

The SDF model of computation has no notion of time. However, an SDF
model may have been designed in such a way that its behavior is correct with
respect to the rest of the system only if it is updated periodically on some time
scale. In this example, we choose to update the SDF model periodically on the
DE time scale. The role of the interface block is therefore to update the SDF
model at each period, but also to take care of not updating the SDF model at
other instants even if some data is available on input, because such updates would
break the periodic pattern. The “∆1.0@1.0” label in a dashed frame specifies
that the DE-SDF IB interface block should use the TESL API to request an
update of the SDF model every 1.0 unit of time starting at date 1.0.

It is important to note that the two interface blocks used in this model
implement generic adaptation patterns. They define standard ways of composing
DE with SDF and DE with TFSM. Their particular behavior in this example is
obtained by interpreting the structure of the adaptation relations between the
pins of the interface block and the pins of its internal model, and by taking into
account specific properties the user has set for these pins and models.

5 Simulation

Get http://modhelx.vze.com/2013-09-05_ModHelX_PowerWindow.zip, then
run demos.powerwindow.PowerWindowDisplay.java to obtain the result shown on
the left of Figure 3. If an argument is given when running this example, the
program switches to a very basic semantic adaptation between the DE model and
the SDF model, which leads to a completely different behavior, and illustrates
the importance of explicit semantic adaptation.

Running PowerWindowGUI.java should display the graphical interface shown
on the right of the figure. One can click on the triangle-shaped buttons to close
and open the window. They turn green when the motor is on. One can click on
the “obstacle” checkbox to have an obstacle appear in the way of the window.
One can check that the controller makes the window move down before stopping.

Fig. 3. Results of the execution of the model

http://modhelx.vze.com/2013-09-05_ModHelX_PowerWindow.zip


6 Conclusion

This model illustrates how three different modeling paradigms (Discrete Events,
Timed Finite State Machines and Synchronous Data Flows) can be used to model
different parts of a global model in the most suitable way. It also illustrates how
important is the explicit modeling of the semantic adaptation between hetero-
geneous models. The source code has been made available on ReMoDD.

In this implementation, semantic adaptation is provided as reusable interface
blocks which can be parameterized (for instance, the update period of the SDF
model is given by setting a property of the interface block) and which model a
particular policy of adaptation. However, although the time and control aspects
of semantic adaptation are specified using the TESL time model, the adaptation
of data is written in Java, and the interaction with the TESL solver is made
through its Java API. This creates a semantic gap between the implementation
and the abstract notions involved in the modeling of semantic adaptation. We
are currently working on the design of a domain-specific language for modeling
semantic adaptation in order to provide the designers of a model with a more
suitable level of description and to allow eventually the verification of properties
on the composition of heterogeneous models.

References

1. Hardebolle, C., Boulanger, F.: Exploring multi-paradigm modeling tech-
niques. SIMULATION 85(11/12) (November/December 2009) 688–708

2. Mosterman, P.J., Vangheluwe, H.: Computer Automated Multi-Paradigm
Modeling: An Introduction. SIMULATION 80(9) (2004) 433–450

3. Hardebolle, C., Boulanger, F.: Multi-formalism modelling and model execu-
tion. Intl Journal of Computers and Applications 31(3) (July 2009) 193–203

4. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer,
S., Sachs, S., Xiong, Y.: Taming heterogeneity – The Ptolemy approach.
Proceedings of the IEEE 91(1) (January 2003) 127–144

5. Boulanger, F., Dogui, A., Hardebolle, C., Jacquet, C., Marcadet, D., Prodan,
I.: Semantic adaptation using CCSL clock constraints. In Kienzle, J., ed.:
Models in Software Engineering. Volume 7167 of Lecture Notes in Computer
Science., Springer-Verlag (2012) 104–118

6. Boulanger, F., Hardebolle, C., Jacquet, C., Marcadet, D.: Semantic adap-
tation for models of computations. In Caillaud, B., Carmona, J., Hiraishi,
K., eds.: Proceedings of the 11th International Conference on Application of
Concurrency to System Design, IEEE Computer Society (2011) 153–162

7. Mallet, F., Deantoni, J., André, C., De Simone, R.: The Clock Constraint
Specification Language for building timed causality models. Innovations in
Systems and Software Engineering 6(1-2) (March 2010) 99–106

8. Boulanger, F., Hardebolle, C., Jacquet, C., Prodan, I.: Model-
ing time for the execution of heterogeneous models. Technical re-
port 2013-09-03-DI-FBO, Supélec E3S - Computer Science Depart-
ment (September 2012) http://wwwdi.supelec.fr/software/downloads/

InternalReports/Report_2012-09-03-DI-FBO.pdf.

http://www.cs.colostate.edu/remodd/v1/content/gemocmodels2013
http://wwwdi.supelec.fr/software/downloads/InternalReports/Report_2012-09-03-DI-FBO.pdf
http://wwwdi.supelec.fr/software/downloads/InternalReports/Report_2012-09-03-DI-FBO.pdf

	Heterogeneous Model Composition in ModHel'X: the Power Window Case Study

