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Building Heterogeneous Models at Runtime to
Detect Faults in Ambient-Intelligent
Environments

Christophe Jacquet!, Ahmed Mohamed!?, Frédéric Boulanger!, Cécile
Hardebolle!, and Yacine Bellik?

! SUPELEC E3S, Gif-sur-Yvette, France
2 LIMSI-CNRS, Orsay, France

Abstract. This paper introduces an approach for fault detection in
ambient-intelligent environments. It proposes to compute predictions for
sensor values, to be compared with actual values. As ambient environ-
ments are highly dynamic, one cannot pre-determine a prediction method.
Therefore, our approach relies on (a) the modeling of sensors, actuators
and physical effects that link them, and (b) the automatic construction
at run-time of a heterogeneous prediction model. The prediction model
can then be executed on a heterogeneous modeling platform such as
ModHel’X, which yields predicted sensor values.

Keywords: Heterogeneous modeling, models@run.time, models of com-
putation, ambient intelligence

1 Introduction

Ambient intelligence is a vision in which physical environments are equipped
with electronic devices that make them sensitive and responsive to the presence
of people [3]. Overall, it comprises systems that activate some actuators based
on data provided by some sensors, applying reasoning and decision techniques.

However, software and hardware may suffer failures, and ambient intelligent
systems are at risk because of their vast number of sensors and actuators. As
people are expected to rely on these systems more and more in the future, being
able to detect faults is a major concern. This paper focuses specifically on the
detection of hardware faults. It does not investigate the precise identification of
the faulty component(s), nor does it deal with software faults.

In software, mechanisms such as exceptions can report failures. Likewise, an
actuator can provide a return code, but this reflects only the transmission of orders
to the hardware, not the final result. For instance, when the system activates
a light bulb, it receives an acknowledgement that confirms the switch-on of the
electrical circuit, but this does not necessarily mean that the bulb is really on
(the bulb may be damaged for instance). Therefore, a reliable ambient-intelligent
application needs to assess at run-time the real status of its actuators.

To address the issue, the designer could pre-determine control loops using
designated sensors. However, the particularity of ambient systems is that physical



resources, mainly sensors and actuators, are not necessarily known at design
time: instead, they are dynamically discovered at run-time. In consequence, such
control loops cannot be pre-determined. The diagnosis strategy, the links between
sensors and actuators, need to be automatically determined at run-time.

We have proposed a fault-detection approach that relies only on sensors
discovered at run-time, thereby not requiring the addition of specific devices
for diagnosis purposes. To achieve this, we have introduced a metamodel for
describing ambient-intelligent systems, in which actuators and sensors are modeled
independently, and are loosely coupled. The links between them are deduced
automatically at run-time thanks to the thorough modeling of the physical effects
involved, i.e. the physical laws such as light propagation or heat diffusion.

More precisely, we build a prediction model automatically at run-time. Exe-
cuting this model, the system determines what values are expected to be read on
sensors. Comparing the output of this prediction model with the actual output
of sensors, it is able to detect faults. As the prediction model applies physical
laws, it contains calculations. Besides, it must also model the behavior of objects.
For example, an actuator such as a light bulb has state: it may be switched
off, switched on but warming up, or switched on with full brightness. Therefore,
the prediction model must also contain state, for instance state machines. In
consequence the prediction model is heterogeneous, so we use a heterogeneous
modeling tool, ModHel’X, to represent it and to execute it.

This overall approach for diagnosis has already been presented; see [6, 5] for
more details. The contribution of this paper is the explicit construction and
execution of a heterogeneous prediction model at run-time. We show that a
heterogeneous modeling tool such as ModHel’X is well adapted for this.

The paper is structured as follows. Section 2 summarizes our approach. It
relies on an example to show the need for building a heterogeneous model. The
automated methodology for generating such a model is detailed in Section 3.
Section 4 discusses the benefits and limitations of our current approach; Section 6
summarizes the paper and gives some perspectives.

2 Owur Approach

As seen above, ambient intelligent environments being dynamic by nature, the
designers cannot pre-determine links between actuators and sensors. Therefore
we introduce an approach in which such links can be determined automatically.

Throughout this paper, we assume that all objects can communicate with the
system. They send notifications to an object management process when entering
or leaving the environment and they can describe themselves. We suppose that an
object identifies itself as an instance of a given class, which completely describes its
features and possible behaviors (see Sections 2.1 and 2.2). In addition, an object
may report its coordinates each time it moves. A system such as Ubisense [9]
can provide such communication and localization capabilities off-the-shelf.



2.1 A Loosely Coupled Meta-Model for Ambient Systems

In the physical world, actuators and sensors are linked through the phenomena
generated by the former and detected by the latter. To reflect this, we have created
a metamodel in which we model actuators, sensors and physical phenomena (called
effects). We model the fact that (a) a certain category of actuators produce a
given effect, and that (b) a certain category of sensors detect a given physical
property, consequence of a given effect.

For instance, we model that any light actuator (e.g. a lamp) produces light,
more precisely an effect that we call luminous flux. Conversely, any light sensor
detects a physical property called illuminance. Illuminance at a given position
can easily be calculated knowing the light sources and their luminous fluxes.

This approach is translated into an abstract metamodel (see Fig. 1 left),
which is specialized for every kind of effect, for instance for light (see Figure 1
right). The formulae that describe an effect are structured as a set of functions
attached to the effect. For the propagation of light they are as follows:

distance(A, B) = \/(Ax — B.x)2 + (A.y — B.y)? (1)
i1lum(4, B) = — AT )
(distance(A, B))
B.illuminance = > illum(A, B) (3)
Ac€LightActuators

The notation Obj.prop refers to the property prop of the object Obj. Some
properties define an effect (e.g., the flux emitted by a light bulb, its position in
space); we suppose that they are known. Some are observable by a sensor (e.g.,
the illumination received by a light sensor) and we wish to predict them.

In the formulae above, A and B are free variables that stand for any object.
LightActuators is the set of light actuators. Formula (1) defines a function,
called distance, that computes the 2D distance between two ambient objects A
and B. In formula (2), i11um(A, B) is the illuminance contributed by object A
onto object B. Formula (3) states that the total illuminance on object B is the
sum of the individual contributions of every light actuator onto object B.

In this example, the light effect is defined quite precisely. More generally,
depending on the application’s needs, an effect can be defined at various levels of
granularity. For instance, we could have used a simple boolean rule (“if a light
bulb is on in a room then the light sensors in that room normally detect light”).

2.2 Using the Models to Predict Expected Behavior

At run-time, the specialized metamodel is instantiated to reflect the actual
objects present in the environment. For instance, let us suppose that at some
point a room contains two light actuators 1al and la2, and a light sensor 1s1.
Initially, there is no link between the actuator and sensors. The links will be
deduced automatically using available information about their types. For a given



Device

is-a is-a
Actuator LightSensor LightActuator
detects produces detects produces
dict - redicts
EffectProperty precil Effect | | llluminance P

describedBy describedBy

*

Formula I

Fig. 1. Abstract metamodel describing the objects of the ambient environment (left),
and a specialization of it to account for a specific effect: the emission of light (right).
(1), (2) and (3) refer to the corresponding formulae defined in the text.

configuration of the environment, these links make up a prediction model that
may be used at will to compute new expected sensor output when some known
properties change.

In this section, we show on the example with the light sensors and actuators
how to build a prediction model, before studying the general automatic method
in Section 3. We want to predict the output of a sensor, so we look for the formula
that can calculate it. It gives us an expression that may contain function calls. So
we recursively use the formulas to apply functions and to eventually determine a
simple mathematical expression that gives the result. We need to determine the
illuminance perceived by 1s1, so we start by applying formula (3) symbolically:

1sl.illuminance = illum(lal,1ls1) + illum(1a2,1s1) (4)

Then we process the two function calls to i11lum recursively using formula (2),
and after that we do the same with distance using formula (1):

. . lal.flux la2.flux
1sl.illuminance = 5 + 5 (5)
(distance(lal,1ls1)) (distance(la2,1s1))
. lal.flux n
~ (lal.x —1s1.x)2 + (lal.y — 1sl.y)2 6
la2.flux (6)

(la2.x — 1s1.x)%2 4 (la2.y — 1lsl.y)?

We obtain a symbolic expression that contains no function call, and that
depends only on object properties. These properties are of two kinds: (a) structural
properties supposed to be known, such as the z and y coordinates of objects,
(b) properties depending on the current state of objects, such as lal.flux and
la2.flux. If at each instant we know the fluxes emitted by 1al and 1a2, then



we can use formula (6) to predict the value reported by 1s1. An inconsistency
between the expected value and the actual value would indicate a fault.

If at some point the expansion of a formula cannot eliminate remaining free
variable, this means that the set of formulae is not complete. It denotes an issue
in the design of the model of an effect.

We note that actuator characteristics such as the luminous fluxes are not
necessarily known directly at all times. For instance, a Compact Fluorescent
Lamp (CFL) has warming up and cooling periods that have an impact on its flux.
To account for this, a behavioral model can be associated with the actuators. For
example, Figure 2 is a timed finite state machine that coarsely models a CFL.
Upon entry in the system, an actuator is supposed to be in its initial state.

Now that we have seen our approach on an example, let us formalize it.

TurnOn At = 30s

. Waring up / 1000 Im
Cooling / 0 Im

Fig. 2. Simple timed finite state machine for modeling the behavior of a CFL.

TurnOff

2.3 A Workflow for Fault Detection

We can picture diagnosis as a process that runs in parallel with the actual system.
This process must have access to all the events of the process responsible for object
management: notifications for object addition or removal, object movements, and
commands sent to objects such as actuators. In response, the diagnosis process
can build, update and execute a prediction model.

We have just seen that a prediction model may contain parts of different
natures: (a) formulae, for instance formula (6), (b) behavioral sub-models, for
instance the state machine of Figure 2. Therefore, a prediction model is a
heterogeneous model, and the adaptation between its heterogeneous parts must
be defined carefully. For this reason, we have chosen to model it explicitly using
ModHel’X, a heterogeneous modeling tool that is being developed at Supélec
(see Section 3.1). The whole run-time workflow may be as follows (see Figure 3):

(1) The object management process maintains the run-time, dynamic model of
the system’s objects of interest, that conforms to the metamodel in Figure 1.

(2) The diagnosis process deduces links and builds or updates the (heterogeneous)
prediction model each time the structure of the environment changes.

(3) The prediction model is executed by a heterogeneous model execution envi-
ronment.



(4) The results of the execution, predicted measured values, are compared to
actual values so as to draw a conclusion: is there a fault?

Meta- 1 Run-time 2 Prediction 3 Predictions 4

model model for sensor Diagnosis

(static) object (dynamic) link model model output comparison to
management deduction execution actual values

Fig. 3. Overall workflow of the approach.

The main focus of this paper is step (2), described in Section 3.2. First the
heterogeneous modeling tool ModHel’X is introduced in Section 3.1, which gives
some insights on step (3). Steps (1) and (4) are out of the scope of this paper.

3 Generation of a Heterogeneous Prediction Model

3.1 Heterogeneous Modeling with ModHel’X

ModHel’X [1] is an experimental framework for heterogeneous model execution.
ModHel’X allows one (a) to describe the structure of heterogeneous models, (b)
to define the semantics of each modeling language used, and (c) to define the
semantic adaptation between heterogeneous parts of a model.

ModHel’X relies on a metamodel that defines a common abstract syntax for
the structure of all models. As we can see on Figure 6, a model contains blocks
(gray rectangles with rounded corners) that are connected through relations
(arrows) between their pins (black circles).

One attaches semantics to a model using models of computation (MoCs). A
MoC is a set of rules that define the nature of the components of a model and how
their behaviors are combined to produce the behavior of the model. ModHel’X
comes with off-the-shelf MoCs including Timed Finite State Machines (TFSM),
Discrete Events (DE) and Synchronous Data Flow (SDF). TFSM are state
machines with timed transitions. DE and SDF work like their implementations
in Ptolemy II [4]: in DE, blocks are processes that exchange timestamped events
that can contain data; in SDF, blocks are data-flow operators that consume
and produce a fixed number of data samples on their pins each time they are
activated. On Figure 6, the MoC of the overall model is DE, represented by a
diamond-shaped label.

Heterogeneity is handled through hierarchy: ModHel’X introduces special
blocks called interface blocks whose internal behavior is described by a model
obeying a specific MoC. Figure 6 contains three interface blocks. They act as
adapters between the outer MoC and their inner MoC, which may differ. Three
aspects must be adapted [1]: data (which may not have the same form in the
inner and outer models), time (the notion of time and the time scales may differ
in the inner and outer models) and control (the instants at which it is possible
or necessary to communicate with a block through its interface).



3.2 Using Effects to Deduce a Prediction Model

In input, the prediction model receives updates about non-structural changes
in the environment: movements of objects, commands sent to actuators, etc. In
contrast, structural changes, such as the removal or the addition of an object,
trigger a re-build of the prediction model. In output, the prediction model sends
expected sensor values to a fault detection layer that compares them to actual
values and decides which differences are abnormal.

The remainder of this section describes the fully-automated procedure used
to build the prediction model.

The first step is to use the effects as pivots between sensors and actuators,
as explained on the example of Section 2.2. The procedure starts at sensor
outputs and recursively applies functions so as to build a symbolic expression
without function calls. This symbolic expression constitutes a computational
model to be evaluated at each instant. We use Synchronous Dataflow (SDF) as
its model of computation. SDF treats the computational model as a sampled
system, computing its new outputs regularly, for instance each second. When
recursively applying the functions, two cases can occur:

— If a function contains iterating operators, such as the sigma notation for a
sum, then this operator must be expanded depending on the current situation
of the environment. For instance, when processing the summation operator
that iterates over “all the light sources” in formula (3), we actually perform
this iteration and create as many branches in the computational model as
there are light sources. So a function with an iterating operator is decomposed
into elementary operators, each represented by an SDF block.

— If a function contains no iterating operator, then we choose to translate it
into a single SDF block. We could further decompose it into elementary
operators, but our choice generates simpler models.

Figure 4 depicts the SDF model obtained for the running example. The upper
part deals with light actuator 1al, the lower part deals with 1a2. This shows how
the current situation of the environment determines the structure of the model.

lal.flux @& >
lal.pos 0—)>M_)>
Is1.pos .—[Z .>* Isl.illum
=
distance >
la2.pos @—> illum
la2.flux ®

Fig. 4. SDF computational model for the running example.

The second step is to include the actuators’ behavioral models into the larger
prediction model. This is necessary because some input of the computational



model may depend on the current state of some actuator. For instance, the
luminous flux of a light bulb depends its current state, as shown on Figure 2.

The state machines are modeled using the TFSM MoC. Using timed state
machines is necessary, because some transitions fire spontaneously after some
time (for instance on Figure 2, the state machine transitions to state “on” 30
seconds after entering state “heating up”).

At this point we have two parts in the model: a computational dataflow
model using the SDF MoC, and a number of state machines using the TFSM
MoC. These two parts must be interconnected. The discrete events (DE) MoC
is well-suited to compose SDF and TFSM models. Discrete events allow state
changes to be propagated to the SDF model. Therefore, in all cases we build
automatically a top-level model conforming to the DE MoC. The TFSMs and
the SDF model are embedded into this DE model, and semantic adaptation is
performed using interface blocks generated from standard patterns.

At the boundary between DE and TFSM, in input, events such as “switch on
this lamp” have to be forwarded to the TFSM. In output, the TFSM produces
events such as “Light flux now at 1500 lm” that also just have to be forwarded
to DE. ModHel’X provides a generic DE/TFSM adapter, to be parameterized
with a mapping between DE and TFSM events. Figure 5 shows how the state
machine for 1a2, an incandescent lamp, is embedded into a DE interface block
(in gray). A similar interface block is added around lal’s state machine.

Behavioral model of light actuator la2
TurnOn Flux0lm

o
1a2.cmd ,—"6: TurnOn /Flux1500Im @ B ..... 122 flux
. e
T~ L Off 1500, - =~

Ao o
TG TurnOfF /Fluxdim Flux1500Im

Fig. 5. The TFSM model of an incandescent lamp, embedded into a DE interface block.

A similar adaptation is added around the SDF model of Figure 4. However,
in input, an event such as “Light flux now at 1500 lm” cannot be taken into
account immediately in general, because an SDF model is a sampled system that
reacts at specific instants. Therefore, events are translated into values that are
memorized so as to be provided to the model at its next activation instant. For
example, “Light flux now at 1500 lm” creates a new value of 1500 on the pin
corresponding to the actuator’s light flux, and after receiving this event, this new
value is emitted at each SDF instant. In output, the adapter sends an event in
DE only when a value changes in SDF, so as not to create irrelevant events.

The overall prediction model for our example is depicted on Figure 6. It uses
data from an object management service to update the computations. These data



may be simple values, fed directly to the computations, or events that trigger
state changes of some of the TFSMs, in turn generating new values fed to the
computations. The results of the computational model are provided to a fault
detection layer that is not described here.
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Fig. 6. Overall prediction model for the example.

4 Discussion

We have shown a method for generating a prediction model automatically. The
model is regenerated each time the structure of the environment changes, namely
when a new object is introduced in the ambient environment, and each time
an object is removed. These events are relatively infrequent compared to values
changes. When only property values change, it is not necessary to regenerate
the model because the structure does not change; we must only continue model
execution with new input values.

Another problem arises here: how can we maintain the state of the model
when its structure changes? For instance, if in our example at some point a third
light actuator 1a3 appears in the room, the prediction model is regenerated.
While doing so, the states of 1al and 1a2 should be preserved. ModHel’X does
not support model evolution currently; this issue has not been addressed yet.

We used ModHel’X to build and run the prediction model because it allows
one to specify semantic adaptation explicitly at the border between heterogeneous
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models. However, our theoretical approach is not linked with ModHel’X specifi-
cally; it could use other modeling tools such as Ptolemy II or Matlab/Simulink
as well.

One could argue that the behavioral models used in the example are very
rudimentary: for instance a real CFL does not suddenly switch to full light after
the warming up time. A more accurate model would represent a continuous
increase of the luminous flux from switch on. Integrating such a model in our
framework is possible indeed: as the behavioral models of actuator are executed
onto a versatile heterogeneous modeling platform, one can use any MoC and not
just TFSM, one could use for instance the continuous time (CT) MoC.

Currently, uncertainties are not taken into account. However for the approach
to scale to real-world scenarios it will be necessary to do so, as sensors and
actuators have limited accuracy. Their margin of error is generally known, so a
possible approach would be to calculate uncertainty explicitly along with the
calculation of the expected results. Also, the model of a physical effect may be
too simplistic. For instance the simple light model described in this paper does
not model reflections, transmission of light from one room to another, etc. Such
perturbations can have an impact on the actual values measured by the sensors,
adding to the uncertainties.

5 Related Work

[2] underlines the importance of failure detection for ambient (or pervasive)
systems, especially when they are used in to support healthcare. Devices that
cease to function are easy to detect using heartbeat messages, but detecting
Byzantine faults (devices yielding erroneous results) is deemed much harder. This
is the kind of faults that we try to detect here. Fault detection is an important
matter in the related field of autonomic computing too. Most methods learn to
recognize faults from data sets: some of them recognize patterns characteristic of
faults, others construct a set of normal behaviors [8]. Here, instead of learning
techniques, we use automatic model transformations.

Some approaches use static analysis to detect defects in the adaptation logic
of context-aware systems [7]. Contrariwise, we perform fault detection at runtime,
in order to detect hardware failures. To account for the highly dynamic nature of
ambient environments, we do not rely on a pre-existing model of system behavior.

6 Conclusions and Perspectives

This paper has introduced an approach for generating predictions of sensor values
in an ambient intelligent environment. These predictions are to be compared
with actual values, in order to detect faults. As ambient environments are highly
dynamic, one cannot pre-determine a prediction method. Instead, the system
must determine at run-time how predictions can be made. Our approach relies
on (a) the modeling of sensors, actuators and physical effects that link them,
and (b) the automatic construction of a heterogeneous prediction model. This



11

model can then be executed on the heterogeneous modeling platform ModHel’X.
We have shown that this approach is well adapted for taking into account both
physical laws and behavioral models of objects, namely actuators.

We have implemented the automatic procedure described in Section 3.2
in a demonstrator that has enabled us to validate this approach in simulated
conditions. The simulator uses the ModHel’X API to directly instantiate the
prediction model. A next step would be to test it in real-scale in an ambient
intelligent environment.

Other perspectives include a focus on managing the evolution of the prediction
model when its structure changes, and using various MoCs for finer-grained be-
havioral models, beyond simple state machines. The uncertainties stemming from
limited component accuracy and simplifications made when modeling physical
effects will need to be dealt with too. Future work could also investigate the
decisional process involved when eventually making a diagnosis.
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