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Abstract– Time and frequency synchronization in the IEEE 802.11a OFDM (Orthogonal Frequency Division Multiplexing)
wireless communication system is addressed in this paper. Usually synchronization algorithms rely only on training
sequences specified by the standard. To enhance the synchronization between stations, we propose to extract known
information by both the transmitter and the receiver at the IEEE 802.11a physical layer to be then exploited by the receiver
in addition to the training sequences. Indeed the parts of the identified SIGNAL field are either known or predictable from
the RtS (Request to Send) control frame when the CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
mechanism is triggered jointly to bit-rate adaptation algorithms to the channel. Moreover the received RtS control frame
allows the receiver to estimate the channel before time synchronization stage improving then the performance of the proposed
synchronization algorithm. Simulation results show that the performance of the proposed synchronization algorithm is
improved as compared to existing algorithms.

Keywords– IEEE 802.11a, OFDM, SIGNAL field, channel estimation, time synchronization, frequency synchronization, RtS
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1 Introduction

In wireless communication systems, spectral efficiency
always plays an important role and Orthogonal Fre-
quency Division Multiplexing (OFDM) is one of the
modulation techniques that helps increase the efficiency
because it allows to transmit a large number of closely
spaced orthogonal sub-carrier signals. By exploiting
the OFDM technique, the IEEE 802.11a standard sup-
ports a high-speed data transmission at rates up to
54Mbps [1]. However, the OFDM system performance
is greatly influenced by Inter-Symbol Interference (ISI)
and Inter-Carrier Interference (ICI) caused by time
and frequency offsets [2]. Therefore, accurate time and
frequency synchronization is required before the data
packet is demodulated at the receiver. A synchroniza-
tion process can be performed by either exploiting some
redundant information (i.e., Non-Data-Aided (NDA)
techniques) or using a training sequence (i.e., Data-
Aided (DA) techniques) included in the transmission
physical packet.

NDA algorithms using the Cyclic Prefix (CP) can be
found in [3], [4] and [5]. Recall that the CP is a copy
of the data part of the OFDM symbol. Before being
transmitted via the channel, each OFDM symbol is

preceded by the CP to reduce the ISI effect in multipath
channel environment. In [3], a Maximum Likelihood
(ML) based algorithm for time and frequency syn-
chronization is presented. The symbol timing and the
Carrier Frequency Offset (CFO) parameters are defined
by searching the index that maximizes the ML function.
To be simpler in computation, the received complex
samples can be quantized into some certain symbols.
In [5], instead of working directly with the received
samples, all complex samples are presented by one of
four new complex samples. The new complex samples
contain real and imaginary parts of values ±1. In
spite of such a quantization, the new complex samples
still contain information about the symbol timing. In
general, the CP-based algorithms have low accuracy
because there usually is an ISI area included in the
CP interval. However, they achieve a high spectral
efficiency since the transmission of training symbols is
not required, in contrast to the DA algorithms.

We first mention the method in [6], proposing a
training sequence which is composed of two symbols
for time and frequency synchronization. The first sym-
bol consists of two identical halves. Based on these
halves, the receiver realizes the Auto-Correlation Func-
tion (ACF) applied on the received signal, the maxi-
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mum absolute value of which allows us to estimate
the symbol timing. Once the time synchronization is
obtained, the CFO estimation is performed in two main
steps. The first step estimates the Fractional Frequency
Offset (FFO) using the phase of the ACF between two
halves of the first symbol. The second step estimates
the Integer Frequency Offset (IFO) by exploiting the
second symbol. A Cross-Correlation Function (CCF)
between the known second symbol and the correspond-
ing received symbol in frequency domain is defined.
The IFO value is then determined by the index that
maximizes this function. To reduce the training symbols
and thus get a high spectral efficiency, only one training
symbol was proposed in [7] and it is generated by
repeating (copying) the first symbol of the sequence of
data symbols. The symbol timing and the CFO estimate
are achieved via the ACF between the two repetition
symbols. In [8], a joint CFO and channel estimation
was proposed, using the Maximum-A-Posteriori (MAP)
criterion. Specifically, a posteriori probability function of
the CFO and channel coefficients is investigated. The
unknown parameters are then estimated by finding the
values maximizing this function.

In the IEEE 802.11a standard, training sequences have
been specified at the beginning part of the physical
packet (i.e., the preamble). These sequences are com-
posed of a Short Training Field (STF) and a Long
Training Field (LTF). Based on this structure, an algo-
rithm for both time and frequency synchronization was
developed in [9] where Coarse Time Synchronization
(CTS) and Coarse Frequency Synchronization (CFS) use
the ACF applied on the STF, while Fine Frequency
Synchronization (FFS) and Fine Time Synchronization
(FTS) use the ACF calculated on the LTF. The same
approach is found in [10] where the FTS is carried out
by the CCF between the received signal and a part
of the LTF. Apart from the use of the ACF and CCF,
the FTS is also combined with the channel estimation
via the relationship between the time offset and the
channel estimation process. As proposed in [11], first
a set of possible time offsets is given, and for every
offset a Channel Impulse Response (CIR) is estimated
using the Least Square (LS) method. The estimated CIR
allows the extraction of the LTF symbols. The correct
time offset is then deduced by selecting the offset value
that minimizes the Mean Square Error (MSE) criterion
between the known LTF symbols and the estimated LTF
symbols.

Compared to NDA algorithms, generally the perfor-
mance of an IEEE 802.11a communication system using
only training sequences (i.e., DA technique) is sig-
nificantly improved. However the existing algorithms
only exploit the preamble while the exploitation of any
available redundancy (which is a main advantage of the
NDA algorithm) has not been introduced.

An interesting combination of advantages of the
NDA and DA algorithms is found in [12]. In this work,
apart from the commonly used training sequence, the
CTS also exploits the SIGNAL field of the IEEE 802.11a
standard since its unknown parts are predictable via
the Request to Send (RtS) control frame when the

Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) mechanism is activated. In addition,
to improve the performance of the CTS step, a joint
FTS and channel estimation based on the Minimum-
Mean Squared-Error (MMSE) criterion is developed.
Subsequently, in [13] a joint FTS and channel estimation
performing the MAP criterion instead of the MMSE
criterion is considered.

The results provided in [12] and [13], where the
additional information (SIGNAL field) is exploited,
motivates us to further investigate this direction. We
propose a new time and frequency synchronization al-
gorithm for IEEE 802.11a communication system where
the SIGNAL field is extensively exploited by the algo-
rithm at several levels. Moreover, the channel informa-
tion, provided from the reception of the RtS control
frame, is used for improving the accuracy of the CTS
stage, as compared to that in [12] and [13].

This paper is organized as follows. The next section
describes the communication system in accordance to
the IEEE 802.11a standard to better take into account
the structure of the physical frame. Section 3 reviews
some important synchronization algorithms. Section 4
concerns the proposed time and frequency synchroni-
sation algorithm. Section 5 provides and discusses the
simulation results. Section 6 concludes the work.

2 IEEE 802.11a Physical Packet

The IEEE 802.11a physical packet is composed of three
fields: a PREAMBLE training field, a SIGNAL field and
a DATA field (see Figure 1). The PREAMBLE field helps
the receiving station to synchronize with respect to
the transmitting station. This field is composed of: (i)
ten identical STF, usually used for Automation Gain
Control (AGC), diversity selection, signal detect and
Coarse Frequency Synchronization (CFS); and (ii) two
identical LTF, reserved for the channel estimation and
Fine Frequency Synchronization (FFS). The SIGNAL
field provides information about the transmission rate
(in Mbits/s) and the length of the DATA field (in
octets).

The physical packet modulation follows the speci-
fications of the IEEE 802.11a wireless communication
system as summarized in Figure 2. The binary SIGNAL
sequence is used as an input of the convolutional
encoder with a constraint length K = 7, a polynomial
generator [171, 133], and a code rate R = 1/2. Its out-
puts are then interleaved (by a known interleaver) and
then BPSK (Binary Phase Shift Keying) modulated. This
is followed by pilot insertion and OFDM modulation,
with an N-point Inverse Fast Fourier Transform (IFFT).
Modulated similarly to the SIGNAL field, however the
DATA field bits are applied to a scrambler before the
convolutional encoder. Furthermore variable code rates
(with R = 1/2, 2/3 or 3/4) and different modulations
(e.g. M-PSK or M-QAM) are available depending on the
desired data rate to achieve.

The IFFT is applied to the symbols X(k), for 0 
k  N � 1, to get samples x(n) in the time domain.
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Figure 2. Wireless communication system using OFDM.

Note that in the 802.11a standard the number N of IFFT
points is also the length of one LTF repetition. Then,
each OFDM symbol is generated from these samples
and preceded by a Cyclic Prefix (CP). The samples x(n)
are then shaped by a specific window prior to being
transmitted via a multipath fading channel described
by a Finite Impulse Response (FIR) filter of length L.
At the receiver, the received discrete baseband signal
rD(n) is expressed by

rD(n) =
L�1

Â
i=0

h(i)x(n � i � q)ej2pe(n�q)/N + g(n), (1)

where h(i) is the slowly time-varying discrete
complex Channel Impulse Response (CIR) with
ÂL�1

i=0 E{|h(i)|2} = 1 (E is the expectation operator), L
is the number of channel taps, g(n) is the complex
Additive White Gaussian Noise (AWGN), e = DFcT
is the normalized frequency offset with DFc being the
frequency offset between the transmitter and the re-
ceiver, T being the OFDM symbol duration, and q is the
symbol timing. In order to correctly demodulate rD(n),
time synchronization and frequency synchronization
are required to estimate q and e respectively. This is
the goal of this paper.

3 State-of-the-arts on Synchronization

Among the synchronization algorithms developed in
the literature, this section has selected two kinds of
algorithms, which will be briefly described. One is
related to redundant information (NDA) [14, 15] and
the other on training sequences (DA) [8–10].

In [14], the CP of the OFDM symbol was exploited.
The symbol timing is estimated by searching the index
that provides the minimum difference between the two
sliding windows as

bq = arg min
q

Ng�1

Â
n=0

|rD(n + q)� rD(n + q + N)|, (2)

where Ng the length of the CP and N the length of the
actual OFDM symbol.

If CFO exists, the solution provided by Equation (2)
may be inaccurate. To deal with this situation, the au-
thors of [15] proposed to minimize the squared differ-
ence between the received signal corresponding to the
first sliding window and the conjugate received signal
associated to the second sliding window. Accordingly,
the symbol timing is given by

bq = arg min
q

Ng�1

Â
n=0

(|rD(n + q)|� |r⇤D(n + q + N)|)2 . (3)
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The symbol timing can also be deduced from the index
which maximizes the ACF as follows:

bq = arg max
q

Ng�1

Â
n=0

rD(n + q)r⇤D(n + q + N). (4)

The DA algorithms developed in [9] and [10] not
only have low computational complexity but also are
adapted to the IEEE 802.11a standard. To estimate the
time offset, these algorithms proceed in two main steps:
the Coarse Time Synchronization (CTS) step followed
by the Fine Time Synchronization (FTS) step to estimate
the remaining time offset.

The CTS is based on the normalized ACF

R(q) =

143

Â
n=0

r⇤D(n + q)rD(n + q + 16)

143

Â
n=0

|rD(n + q)|2
,

applied on the STF (i.e., 160 samples) as specified by
the standard, and the symbol timing is the one which
maximizes the normalized ACT function, and is given
by

bq = arg max
q

R(q). (5)

In [10], the CFO is then estimated as

beCFO =
N

2p16
\

143

Â
n=0

r⇤D(n + q̂)rD(n + q̂ + 16). (6)

To improve the frequency synchronization accuracy
provided by (6), the authors of [9] proposed to adjust
the CFO with FFS step which is deduced from the ACF
applied on the LTF repetitions as follows:

beFFO =
N

2p64
\

63

Â
n=0

r⇤D(n + q̂ + 192)rD(n + q̂ + 256). (7)

The estimated CFO is then deduced to

ê = beCFO + beFFO, (8)

and is used for compensating the received signal.
Following these operations, FTS is now considered.

Denote r0(n) the received signal which is compensated
after CTS and frequency synchronization steps. The es-
timated remaining time offset Dbq is one of the possible
positions in the set L maximizing the CCF between
r0(n) and a part of the known LTF denoted gLTF(n)
(first 32 over 128 samples) and is thus given by

Dbq = arg max
Dq2L

�

�

�

�

�

31

Â
n=0

g⇤LTF(n)r
0(n + Dq)

�

�

�

�

�

2

. (9)

In [8], to improve the performance of the CFO es-
timation, a frequency synchronization algorithm (FS-
based MAP) was developed where a transmission burst
consisting of some pilot OFDM symbols is employed.
The time offset is assumed to be perfectly compensated
(i.e., q = 0). For convenience, the received signal cor-
responding to one pilot OFDM symbol of length N is
expressed in matrix form as

rp = F
p
e Sph + g, (10)

where

rp = [r(n), r(n + 1), . . . , r(n + N � 1)]T ,

F
p
e = diag

n

ej2pen/N , ej2pe(n+1)/N , . . . , ej2pe(n+N�1)/N
o

,

Sp = [Sp
0 , Sp

1 , . . . , Sp
L�1],

Sp
l = [x(n � l), x(n + 1 � l), . . . , x(n + N � 1 � l)]T ,

h = [h(0), h(1), . . . , h(L � 1)]T ,
g = [g(n), g(n + 1), . . . , g(n + N � 1)]T

In the above, the superscript “p” indicates “pilot”,
r(n) is given by Equation (1) with q = 0, and x(n)
is the known pilot sample in the time domain with
l = 0, . . . , L � 1.

The MAP estimates of the normalized frequency
offset and channel are given by

{ĥ, ê} = arg max
h,e

lnP(h, e|rp) (11)

where P is the a posteriori probability density function
of h and e given rp. Calculating P(h, e|rp) under the
assumption that e is uniformly distributed in the range
[�e0, e0], the MAP estimates of CFO and channel coef-
ficients are

{ĥ, ê} = arg min
h,e

fMAP(h, e), (12)

where

fMAP(h, e) =
1
s2

g
||rp � F

p
e Sph||2 + hHR�1

h h,

with s2
g and Rh being the noise variance and the

channel covariance matrix (for more details, see [8, Sec-
tion IV]). Estimating the gradient vector of fMAP(h, e)
with respect to hH and setting it to zero to obtain the
following MAP estimate of the channel:

bh = ((Sp)HSp + s2
g R�1

h )�1(Sp)H(F
p
e )

Hrp. (13)

Replacing (13) into fMAP(h, e) provides the CFO
estimate

ê = arg min
e

gMAP(e), (14)

where

gMAP(e) = (rp)HF
p
e (Sp)+(F

p
e )

Hrp,

(Sp)+ = Sp
h

(Sp)HSp + R�1
h s2

g

i�1
(Sp)H .

To determine the CFO estimate, the Newton-Raphson
approximation is calculated as follows:

êi+1 = êi �


∂2g(e)
∂e2

��1
∂g(e)

∂e

�

�

�

ê=ei
, (15)

where êi represents the CFO estimation at the ith itera-
tion, and

∂g(e)
∂e

= 2<
n

(rp)HGpF
p
e (Sp)+(F

p
e )

Hrp
o

,

∂g2(e)
∂e2 = 2<

n

(rp)H(Gp)2F
p
e (Sp)+(Fp

e )
Hrp+

(rp)HGpF
p
e (Sp)+(Gp)H(F

p
e )

Hrp)
o

,

Gp = j
2p

N
diag{n, n + 1, . . . , n + N � 1}.



44 REV Journal on Electronics and Communications, Vol. 3, No. 1–2, January – June, 2013

STF New algorithm
( )r n∆

( )c n

( )fr n ( )r n
! !,θ ε∆

Coarse Time Synchronization (CTS) Fine Time and Frequency 
Synchronization 

SIGNAL
( )sr n

( )sc n

!
sθ∆!θ

! ( )h i ! ( )h i( )sc n

Figure 3. Proposed time and frequency synchronization algorithm.

4 Proposed Synchronization Algorithm

To improve the synchronization of stations in a wire-
less communication system, the underlying idea of
our approach consists in extracting information at the
IEEE 802.11a physical layer in order to be exploited
by the receiver as known information, in addition to
the usuel training sequences (i.e., STF and LTF). Our
investigations allow the identification the SIGNAL field
when the CSMA/CA mechanism is activated to avoid
collisions in the wireless communication system. In-
deed the parts of the SIGNAL field are either known
or predictable from the RtS control frame when the
CSMA/CA mechanism is triggered jointly with bit-rate
adaptation algorithms to the channel.

The proposed synchronisation algorithm, as summa-
rized in Figure 3, is performed by the receiver in three
main stages: (i) extracting the redundant information
to determine the SIGNAL field (see Section 4.1); (ii)
coarse time synchronization using the SIGNAL field
and channel estimation from the RtS control frame (see
Section 4.2); and (iii) joint fine time synchronization and
frequency offset estimation (see Section 4.3).

4.1 Characterization of the SIGNAL field
The objective of this section is to identify the two

main parts of the SIGNAL field (see Figure1), which
are "RATE" and "LENGTH". The transmitter initiates
the CSMA/CA mechanism by sending a RtS control
frame to ask the receiver if it is available [16] (see
Figure 4). If it is the case, the receiver performs a rate
adaptation algorithm by measuring the Signal to Noise
Ratio (SNR) level of the received RtS frame to estimate
the channel conditions [17]. Then it replies with a Clear
to Send (CtS) control frame to: (i) inform other stations
of its unavailability to receive information coming from
other stations during a specified period of time; and (ii)
suggest to the transmitter a transmission rate that the
sender should use to transmit its physical packet. By the
way the receiver has a knowledge of the transmission
rate corresponding to the value of the RATE subfield
of the SIGNAL field. Therefore the unknown LENGTH
subfield of the SIGNAL is deduced from the following
relationship since the RATE value is known [1]:

LENGTH = RATE⇥
(Tpacket � Tpre � TSIGNAL � (Tsymb/2))� 22

8
, (16)

where Tpre, TSIGNAL and Tsymb are known durations (in
micro-seconds) of the PREAMBLE, the SIGNAL field
and the OFDM symbol, respectively referred in [1]. The

DIFS
tim
e

tim
e

Transmitter Receiver

SIFS

SIFS

SIFS

t∆

Figure 4. RtS/CtS handshake with active CSMA/CA mechanism.

Tpacket is the duration (in micro-seconds) required to
transmit the DATA physical packet. This parameter can
be deduced from the DURATION field value of the RtS
frame which is given by [18]:

DURATION = 3TSIFS + TCtS + TACK + Tpacket, (17)

where TSIFS is the known duration (in micro-seconds)
of a Short Inter-Frame Space, TCTS and TACK are re-
spectively the known required durations to transmit
CtS and Acknowledgement (ACK) frames. From the
knowledge of the RATE, LENGTH and "R" (Reserved),
the "Parity" field corresponding to one bit is deduced.
With six zero tail bits appended, the 24-bits SIGNAL
field is completely identified. The receiver thus exploits
this field for synchronization.

4.2 Coarse time synchronization (CTS)

This section estimates the symbol timing of the re-
ceived signal, which is q in Equation (1). For this, two
steps are performed and described below.

4.2.1 Symbol timing estimation: The receiver estimates
the symbol timing using the CCF between the received
signal rD(n) and the known STF c(n). However if the
transmitted signal is heavily distorted by the wireless
channel, the symbol timing estimation will be affected.
Therefore, instead of directly using the received signal
in the CCF, we propose to estimate the transmitted
signal; this will improve the estimation accuracy as
explained below.

To estimate the transmitted signal, x(n), we start
with the channel estimation based on the informa-
tion knowledge extracted from the protocol when the
CSMA/CA is activated. To allow the stations of any
wireless system to receive the RtS control frame, the
transmitting station has to send this frame with a power
level higher than the nominal transmission power level
at which the DATA frame is sent [19]. According to
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this strategy, we assume that the transmitter and re-
ceiver stations have been correctly synchronized during
the medium reservation negotiation (i.e., RtS/CtS) to
enable the transmission of the physical DATA packet.
Moreover the channel is assumed to be static between
the transmission duration of RtS and DATA frames (see
Figure 4). Indeed under worst transmission/reception
conditions of the CtS control frame the interval time be-
tween the transmitted physical packet and RtS control
frame (TRtS + TCtS + 2TSIFS) is small (e.g., 124 µs with
the lowest rate of 6 Mb/s), meaning that the Doppler
frequency can be considered as a small value.

Note that the PREAMBLE fields of both the control
(e.g., RtS, CtS) and the DATA frames (see Figure 1) are
the same. The channel estimation, as specified by the
standard for the physical packet, is related to the LTF of
the RtS PREAMBLE. A MAP-based channel estimation
is then given by

bh = (GHG + s2
g R�1

h )�1(GHrRtS + s2
g R�1

h µh), (18)

where rRtS is the received RtS frame signal correspond-
ing to the LTF sequence, G contains the LTF training
samples, s2

g is the noise variance, Rh is the covariance
matrix of the true channel, and µh is the mean vector
of the true channel. Instead of using a Power Delay
Profile (PDP) to calculate Rh = E{hhH}, we propose
to replace the true channel h by its Least-Square (LS)
estimation h̃ given by the IFFT of H̃ = X�1RRtS where
X the diagonal matrix whose elements are the known
LTF symbols and RRtS the received symbol vector.

Denote Ĥ(k) (with 0  k  N � 1) the channel
estimate and RD(k) (see ((1))) the received symbols
corresponding to the DATA frame in the frequency
domain, then the transmitted symbol estimate, X̂(k),
obtained by using a Zero-Forcing (ZF) equalizer, is
given by

X̂(k) =
RD(k)
Ĥ(k)

, (19)

and the time-domain estimate of the transmitted signal
is

x̂(n) =
1
N

N�1

Â
i=0

X̂(k)ej2pkn/N . (20)

The symbol timing is then deduced as the index
of the maximum value of CCF between the estimated
transmitted signal x̂(n) and the known STF c(n) of
length LSTF, which is given by

q̂ = arg max
q

LSTF�1

Â
n=0

c⇤(n)x̂(n + q). (21)

4.2.2 CTS using the SIGNAL field: The received signal
still affected by the remaining time offset (i.e., Dqs =
q̂ � q) is expressed by

rs(n) =
L�1

Â
i=0

h(i)x(n � i � Dqs)ej2pe(n�Dqs)/N + g(n).

(22)
To estimate Dqs, the 802.11a SIGNAL field (see Figure 1)
was exploited in [12, 13] as a new additional training
sequence at the receiver since all parts of this field are
completely known (see Equations (16) and (17)).

The CCF is then performed between the known
SIGNAL field cs(n) of length LSIG (i.e., CP length added
to the SIGNAL length) and the received signal rs(n).
The remaining time offset is then deduced from the
index, among the set of possible values Q = {Dq

(k)
s |k =

�K, . . . , K; K 2 N}, which maximizes the CCF as given
by

Dbqs = arg max
Dq

(k)
s 2Q

LSIG�1

Â
n=0

c⇤s (n)rs(n + Dq
(k)
s ). (23)

After this step, the received signal with a remaining
time offset Dq (i.e., Dq = Dbqs � Dqs) is expressed by

r f (n) =
L�1

Â
i=0

h(i)x(n� i�Dq)ej2pe(n�Dq)/N + g(n). (24)

4.3 Joint MAP frequency synchronization and
channel estimation using the SIGNAL field

This section proposes to estimate the remaining time
offset Dq and the normalized frequency offset e. We
develop a joint fine time and frequency synchronization
based on the MAP criterion. To do so, we not only
adapt the frequency synchronization algorithm (FS-
based MAP) developed in [8] to the IEEE 802.11a spec-
ifications but also make changes to the algorithm since
the authors assumed that the time synchronization is
perfectly compensated. Knowledge of the SIGNAL field
is also taken into account in this stage as described
below. The received signal r corresponding to the two
LTF repetitions and the SIGNAL field is expressed in a
matrix form as follows:

r = FDq,eSDqh + g, (25)

where

r = [r f (n), . . . , r f (n + 2N + NG + NS � 1)]T ,
SDq = [S0,Dq , S1,Dq , . . . , SL�1,Dq ],

Sl,Dq = [x(n � l � Dq), x(n + 1 � l � Dq), . . . ,
x(n + 2N + NG + NS � 1 � l � Dq)]T ,

h = [h(0), h(1), . . . , h(L � 1)]T , (CIR)
g = [g(n � Dq), g(n � Dq + 1), . . . ,

g(n � Dq + 2N + NS + NG � 1)]T ,

FDq,e = diag
⇢

ej 2pe(n�Dq)
N , . . . , ej 2pe(n�Dq+2N+NS+NG�1)

N

�

.

Above, x(n) is the known LTF and SIGNAL sample
in the time domain (0  l  L � 1), N the number
of samples of one LTF repetition, NS the length of the
SIGNAL field and NG the length of its guard interval,
h and g are the CIR and noise vectors.

The remaining time offset Dq, the normalized fre-
quency offset e and the CIR h are jointly estimated
according to the MAP criterion as follows:

{ĥ, Dbq, ê} = arg max
h,Dq,e

lnP(h, Dq, e|r), (26)

where P is the a posteriori probability density function
of h, Dq and e given r.
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In this section, e is also assumed to be uniformly
distributed in the range [�e0, e0]. To realize (26), we
define a set L containing 2M + 1 possible time offset
values; L = {�DqM, . . . , DqM}. For a given value Dqm 2
L, the MAP-based estimates of the CFO and channel
coefficients correspondingly are

{ĥDqm , êDqm} = arg min
h,e

f (m)
MAP(h, e), (27)

where

f (m)
MAP(h, e) =

1
s2

g
||rDqm � FDqm ,eSDqm h||2 + hHR�1

h h,

with rDqm being the received signal corresponding to
the offset value Dqm. Setting the gradient vector of
f (m)
MAP(h, e) with respect to hH to zero provides the

MAP-based channel estimate

bhDqm =
h

SH
Dqm

SDqm + s2
g R�1

h

i�1
SH

Dqm
FH

Dqm ,erDqm . (28)

Replacing (28) into f (m)
MAP(h, e) provides the CFO

estimate
êDqm = arg min

e
g(m)

MAP(e), (29)

where

g(m)
MAP(e) = rH

Dqm
FDqm ,eS+

Dqm
FH

Dqm ,erDqm ,

S+
Dqm

= SDqm

h

SH
Dqm

SDqm + R�1
h s2

g

i�1
SH

Dqm
.

The Newton-Raphson approximation is then calculated
as follows:

êDqm ,i+1 = êDqm ,i �
"

∂2g(m)
MAP(e)

∂e2

#�1
∂g(m)

MAP(e)

∂e

�

�

�

ê=ei

(30)
where êDqm ,i indicates the CFO estimation at the ith
iteration, and

∂g(m)
MAP(e)

∂e
= 2<

n

rH
Dqm

GDqm FDqm ,eS+
Dqm

FH
Dqm ,erDqm

o

,

∂g2
MAP(e)

∂e2 = 2<
n

rH
Dqm

G2
Dqm

FDqm ,eS+
Dqm

FH
Dqm ,erDqm+

rH
Dqm

GDqm FDqm ,eS+
Dqm

GH
Dqm

FH
Dqm ,erDqm

o

,

GDqm = j
2p

N
diag {n � Dqm, n � Dqm + 1, ...,

n � Dqm + 2N + NS + NG � 1} .

From (28) and (29), the CIR estimate is obtained by

bhDqm =
h

SH
Dqm

SDqm + s2
g R�1

h

i�1
SH

Dqm
FH

Dqm ,êm
rDqm . (31)

Among the 2M + 1 estimates of bhDqm based on (28), we
select those that satisfy the following conditions:

|ĥDqm(0)| > b max
Dqi

|ĥDqi (0)|, (32)

where b is a given threshold. Therefore, the set L
becomes G

G = {w0, . . . , wM0 ; M
0  2M}. (33)

Finally, the remaining time offset is estimated by

Dbq = arg max
wm0

L�1

Â
n=0

|ĥwm0 (n)|2. (34)

5 Simulation results

This section discusses the performance of the proposed
synchronization algorithm. Table I lists the simulation
parameters as specified by the IEEE 802.11a standard
in presence of multipath channel COST207-RA which
follows the Rice model with a Line-Of-Sight (LOS) [1].

According to the standard, the tolerance of the in-

Table I
Simulation Parameters

Parameters Values

Bandwidth (B) 20 MHz
Sampling time (Ts) 50 ns
Number of subcarriers (Nc) 52
Number of points FFT/IFFT 64
Subcarrier spacing (DF) 0.3125 MHz
Channel model Rice with COST207-RA
Channel time delay (0, 200, 400, 600) ns
Power of channel paths (Pc) (0, -2, -10, -20) dB
LOS (0, sqr(0.91 / 0.41), 0.7)
Data rate 6 Mbps
LSTF 160
LSIG 80
K 80

ternal oscillator at each station belongs to the range
[�20, 20] ppm and thus the total tolerance of the two
stations falls in [�40, 40] ppm. For the carrier frequency
fc = 5.2 GHz and the OFDM symbol duration T =
N ⇥ Ts = 3.2µs, the normalized frequency offset e is
taken randomly according to a uniform distribution
from the range [�0.6, 0.6]. Note that the symbol tim-
ing offset is also randomly distributed according to a
uniform distribution. The performance of the following
algorithms is compared:

i) Algorithm 1 [10] has been described in Section 3.
The ACF relied on the STF is applied for the
CTS and FS. The CCF based on the LTF is then
employed for the FTS;

ii) Algorithm 1 with a perfect TS is Algorithm 1 but
when the true symbol timing q is known and is
used for a perfect time synchronization;

iii) Algorithm 1 with a perfect FS is Algorithm 1
but when the true value of the frequency offset
e is known and is used for a perfect frequency
synchronisation;

iv) Algorithm 2 is the algorithm presented in Sec-
tion 4;

v) Algorithm 2 with a perfect TS is Algorithm 2 but
when the true symbol timing q is known and is
used for a perfect time synchronization;

vi) Algorithm 2 with a perfect FS is Algorithm 2
but when the true frequency offset e is known
and perfectly compensated; that is, the received
signal after coarse time synchronization stage is
multiplied by e�j2pen/N .
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Figure 5. Deviation with respect to the true time position of a
physical packet.

Figure 5 measures the detection probability of arrival
time of the transmitted physical packet for a given
deviation with respect to its true time position (i.e.,
bq � q) at SNR=15 dB for Algorithms 1 and 2 using 7.104

test physical packets. Algorithm 2 provides the highest
estimation accuracy (equal to 99%) when the packet
arrival time is detected without deviation compared
to other algorithms. Its deviation interval is reduced
to [0, 4] samples when the respective deviations of 1
and 2 are equal to zero. It is also possible to accept
packets, the arrival time of which is estimated after the
true position with a delay time less than 4 samples if we
consider the bqnew = bq � 4. This timing delay is accepted
since the CP of the OFDM symbol and the maximum
delay of the channel response are respectively equal
to 16 and 13 samples and moreover the average power
of tap 0 is one hundred than the one of tap 12 (i.e.,
Pave(0) = 100 ⇥ Pave(12)). In this case, the orthogonal-
ity of subcarrier frequency components is completely
preserved in spite of the fact that there exists a phase
offset which is however compensated by a single-tap
frequency-domain equalizer.

The curves of Figure 6 illustrate the MSE (Mean
Square Error) between the true CFO and its estimate
(E{(e � êm)2}) versus Signal to Noise Ratio (SNR).
The result analysis shows that regardless of the time
synchronization being perfect or not, the MSE of our
method is much lower than that of Algorithm 1. In-
deed, at SNR=17.5 dB, MSE(Algo.1) = 4.2 ⇥ 10�5 and
MSE(Algo.2) = 1.6 ⇥ 10�6. Moreover the two curves
corresponding to Algorithm 2 are similar showing that
even if the time offset is estimated the MSE is not af-
fected compared to a perfect time offset compensation.

Figure 7 provides the PSF (Probability of Synchro-
nization Failure) versus SNR. At SNR = 17.5 dB
and with no deviation, the PSF of Algorithms 1
and 2 are as follows: PSF(Algo.1, perfect FS) =
2.5 ⇥ 10�1, PSF(Algo.2, perfect FS) = 7.2 ⇥ 10�3 and
PSF(Algo.2) = 8.7 ⇥ 10�3 which is close to the PSF cal-
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Figure 6. MSE of normalized frequency offset (the rectangular box
presents the operating area of the 802.11a standard).
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Figure 7. Probability of Synchronization Failure (the rectangular box
presents the operating area of the 802.11a standard).

culated when the frequency offset is perfectly compen-
sated. When accepting arrival packets with deviation
less than 4 samples, the PSF of both Algorithms 1 and 2
is reduced. However, the PSF of Algorithm 2 is smaller
than that of Algorithm 1. Indeed at SNR = 17.5 dB,
when the CFO is not perfectly compensated we obtain
PSF(Algo.2) = 1 ⇥ 10�3 while PSF(Algo.1) = 7 ⇥ 10�3.

We noted that the PSF performance of Algorithm 2 in
both cases (i.e., perfect or not perfect FS) is almost the
same. This is explained via Equation (31). If we replace
rDqm = FDqm ,eSDqm h + g into (31), we obtain

bhDqm =
h

SH
Dqm

SDqm + s2
g R�1

h

i�1
SH

Dqm
IDq,êm(SDqm h)+

h

SH
Dqm

SDqm + s2
g R�1

h

i�1
SH

Dqm
FDqm ,êm(g) (35)
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where IDq,êm is the diagonal matrix of size (2N + NG +
NS)⇥ (2N + NG + NS) and is given by

IDq,êm = diag
⇢

ej 2p(e�êm)Dq
N , ej 2p(e�êm)Dq

N , . . . , ej 2p(e�êm)Dq
N

�

.

At SNR = 17.5 dB, we have MSE(Algo. 2) = 1.6 ⇥ 10�6

(see Figure 6). The experimental results show that
the remaining value Dq is relatively small and thus
ej2p(e�êm)Dq/N ⇡ 1. Therefore, IDq,êm is considered as
an identity matrix. The first term in Equation (35)
is therefore independent of the frequency offset. This
explains why for Algorithm 2 the PSF when the CFO
is not perfectly compensated is close to the one of the
perfect FS.

One might ask how the performance of our algorithm
is affected when the estimated channel bh during the ne-
gotiation of the transmission medium (see Section 4.2.1,
Equation (18)) has been slightly modified according to
the walking speed of the receiving station just when the
DATA is transmitted. In fact, if the CtS control frame
has been correctly received, the interval time Dt (see
Figure 4) calculated by the difference between the start-
ing time of the transmitted DATA and the RtS control
frame is equal to 124 µs (i.e., TRtS + TCtS + 2TSIFS) when
the rate is set to 6 Mb/s (the worst case) [16]. If we
assume that the walking speed is equal to 1.5 m/s with
a carrier frequency of 5.2 GHz, the maximum Doppler
frequency fD is a equal to 26 Hz which is a small
value. Indeed each j-th channel tap is multiplied by
ej2p fDDt ⇡ ej0.02 and this does not effect the estimated
channel bh. This is confirmed by the simulation results
provided by Figure 7.

6 Conclusion

This paper proposed a novel algorithm for time and
frequency synchronization conform to the IEEE 802.11a
wireless communication standard. Investigations were
focused first on finding information that could be
exploited by the receiver at the physical frame. The
SIGNAL field is retained since its parts are predictable
when the CSMA/CA mechanism is activated and con-
trol frames RtS/CtS are exchanged during the nego-
tiation of the transmission medium between stations
before transmitting the DATA. In addition to the usual
training sequences, the SIGNAL field is then used for
improving the synchronization process. A new joint
time and frequency synchronization strategy has been
developed. The results have showed that the proposed
synchronization algorithm improves the synchroniza-
tion performance as compared to existing algorithms.
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