INTRODUCTION

Multi-state system (MSS) modeling has been widely applied to resolve system reliability assessment problems (Natvig, 2011, Lisnianski and[START_REF] Lisnianski | Multi-state System Reliability: Assessment, Optimization and Applications[END_REF]. Under this framework, the performance of each component is discretized into more than two exclusive states from perfect functioning to complete failure, and each state is characterized by a probability of occurrence. In general, MSS reliability assessment aims to derive the system availability as the probability that the system performance is not less than the demand w, . is determined by the MSS system structure, which is a function of the n component performance variables, , where is the i-th component performance variable that takes values from the finite set

, where is the performance level of component i at its state and is the highest possible state of component i. Typically, and represent the performance levels at complete failure and perfect functioning conditions, respectively.

Uncertainty is an unavoidable factor in MSS reliability assessment [START_REF] Lisnianski | Multi-state System Reliability: Assessment, Optimization and Applications[END_REF]. Conventionally, the uncertain behavior of is described by its discrete probability distribution , such that . The probability distribution is sufficient to describe the state randomness, i.e. uncertainty of objective and aleatory type due to the natural variability or stochasticity of the component behavior. Another type of uncertainty to account for is that due to the incomplete or imprecise knowledge about the component performance [START_REF] Li | Uncertainty analysis of the adequacy assessment model of a distributed generation system[END_REF][START_REF] Singer | A fuzzy set approach to fault tree and reliability analysis[END_REF][START_REF] Lin | Reliability-based measures for a system with an uncertain parameter environment[END_REF][START_REF] Wang | Quantitative Evaluation of Human-Reliability Based on Fuzzy-Clonal Selection[END_REF][START_REF] Cai | Introduction to Fuzzy Reliability[END_REF][START_REF] Chen | Fuzzy system reliability analysis using fuzzy number arithmetic operations[END_REF]. This type of uncertainty is often referred to as subjective and epistemic [START_REF] Helton | Alternative Representations of Epistemic Uncertainty[END_REF][START_REF] Apostolakis | The concept of probability in safety assessments of technological systems[END_REF]. Recently, epistemic uncertainty in MSS models has been described by a fuzzy approach based on the universal generating function (UGF) paradigm [START_REF] Ushakov | Universal generating function[END_REF], assuming that the state probabilities and/or the state performance can be fuzzy variables (FVs) [START_REF] Ding | Fuzzy Multi-State Systems: General Definitions, and Performance Assessment[END_REF][START_REF] Ding | A Framework for Reliability Approximation of Multi-State Weighted k-out-of-n Systems[END_REF]. Interval values have also been used in [START_REF] Li | Interval-Valued Reliability Analysis of Multi-State Systems[END_REF] to represent the imprecision in both state probability and performance.

The issue of handling both types of uncertainties (aleatory and epistemic) has been an active research topic in the area of reliability and risk assessment [START_REF] Ferson | What Monte Carlo methods cannot do[END_REF][START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF] since the 1990s. Aleatory, epistemic, mixed aleatory and epistemic uncertainties (due to partial variability and partial ignorance [START_REF] Baraldi | A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis[END_REF]) have been represented by probability distributions, possibility distributions, hybrid numbers [START_REF] Kaufmann | Introduction to Fuzzy Arithmetic: Theory and Applications[END_REF] or random fuzzy variables (RFVs) [START_REF] Ferson | Hybrid arithmetic. ISUMA-NAFIPS[END_REF], belief functions of evidence theory [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. A joint uncertainty propagation process has been used by various authors [START_REF] Ferson | Hybrid arithmetic. ISUMA-NAFIPS[END_REF][START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF][START_REF] Bá Rdossy | Evaluation of uncertainties and risks in geology: new mathematical approaches for their handling[END_REF][START_REF] Baraldi | A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis[END_REF] ABSTRACT: In this work, we extend the traditional universal generating function (UGF) approach for multistate system (MSS) reliability assessment to account for both aleatory and epistemic uncertainties. Firstly, a theoretical extension, named hybrid UGF (HUGF), is made to introduce the use of random fuzzy variables (RFVs) in the approach; secondly, the composition operator of HUGF is defined by considering simultaneously the probabilistic convolution and the fuzzy extension principle; finally, an efficient algorithm is designed to extract probability boxes (p-boxes) from the system HUGF, which allow quantifying different levels of imprecision in system reliability estimation. The HUGF approach is demonstrated on a numerical example. least possible loss of information. The propagation process is carried out by the Monte Carlo simulation (MCS) method [START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF], which however can be quite time-consuming [START_REF] Ferson | What Monte Carlo methods cannot do[END_REF] and can have difficulties in handling dependencies [START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF]. For analytical joint uncertainty propagation, the hybrid arithmetic approach based on RFVs has been proposed [START_REF] Cooper | Hybrid processing of stochastic and subjective uncertainty data[END_REF][START_REF] Ferson | Hybrid arithmetic. ISUMA-NAFIPS[END_REF], assuming the orthogonality between aleatory and epistemic uncertainty and mixing the probabilistic convolution for aleatory uncertainty and the fuzzy calculus for epistemic uncertainty. It is recalled that a hybrid number is a random distribution of fuzzy numbers (i.e. RFV) and also is a fuzzy probability distribution (i.e. fuzzy random variable): these concepts are interchangeable since they lead to equivalent representations, and complementary interpretations and calculation strategies [START_REF] Ferson | Hybrid arithmetic. ISUMA-NAFIPS[END_REF]. In the rest of this paper, we use the term RFV in line with the existing studies.

In this work, we will draw the theoretical connection between UGF and RFV to define a new UGF, hybrid UGF (HUGF), which extends the conventional UGF to represent the RFV whose random dimension is discrete for the multi-state case. Algebraic operators on HUGF will be introduced for joint uncertainty propagation and an efficient algorithm will be developed to extract probability boxes (pboxes) of system availability from the system HUGF.

The rest of the paper is organized as follows. Section 2 illustrates, through a multi-state model of solar generation, the co-existence of aleatory and epistemic uncertainty in MSS and presents the assumptions made for MSS modeling. In Section 3, the concept of RFV is recalled and HUGF is proposed as theoretical extension of UGF for RFV representation. In Section 4, the algebraic operators of HUGF are defined. In Section 5, the algorithm extracting the probability boxes (p-boxes) of MSS reliability is proposed. Section 6 presents one case study. Section 7 concludes this work.

MSS WITH ALEATORY AND EPISTEMIC UNCERTAINTIES

We take the solar generator model from (Li and Zio, 2012a) as an illustrative example of multi-state component affected by the two types of uncertainties. Its description is based on two random variables (RVs), solar irradiation and mechanical condition, a set of generation parameters and an energy conversion function (which transfers the irradiation to power output). In practice, there is usually sufficient historical data to capture the variabilities in solar irradiation and mechanical condition. In multi-state setting, solar irradiation is discretized into several exclusive states ranging from zero to maximum irradiations; the mechanical condition is assumed to be a binary RV taking values {0, 1}, where '0' means complete failure and '1' means perfect functioning. The power output of one solar generator is given by the following functions:

(1.a) (1.b) (1.c) (1.d) (1.e)
where is the solar energy conversion function, is the vector of operation parameters, is the total number of solar cells in the solar generator, is the fill factor, is the short circuit current in A, is the current temperature

coefficient A/ o C, is the cell temperature in o C, is the open-circuit voltage in V, is the voltage temperature coeffi- cient V/ o C, is the ambient temperature in o C, is the nominal operating temperature in o C,
is the voltage at maximum power point in V, and is the current at maximum power point in A.

In literature, the operation parameters are typically treated as constants. In practice, they often change during the operation phase due to degradation of materials, changes in the operating environment, etc [START_REF] Giannakoudis | Optimum design and operation under uncertainty of power systems using renewable energy sources and hydrogen storage[END_REF]. However, often insufficient information is available to model them as RVs, due to the unwillingness of the manufacturers to disclose the commercially sensitive data [START_REF] Li | Uncertainty analysis of the adequacy assessment model of a distributed generation system[END_REF]. In this situation, the FVs are one promising alternative. It can be seen from eq. ( 1) that each realization of is a fuzzy number. Essentially, is a RFV, which we will show in Sections 3 and 4.

Based on the example above, the following assumptions are made for our MSS modeling:  Following assumption 2, the performance of a component i is a discrete RV if there is sufficient data to eliminate all the imprecision in its parameters; otherwise it will be a RFV (or a pure FV , if only FVs are involved in the component model).  The state of the system is completely determined by the state of its components.



HUGF FOR HYBRID UNCERTAINTY REPRESENTATION IN MSS

In this Section, the definition of RFV is first recalled. Then the UGF representation of RFV, named HUGF, is formally defined.

RFV

RFV was first introduced by Kaufmann and Gupta [START_REF] Kaufmann | Introduction to Fuzzy Arithmetic: Theory and Applications[END_REF] as a tool to jointly express the epistemic and aleatory uncertainties. Later, RFV were extended by Cooper et al. [START_REF] Cooper | Hybrid processing of stochastic and subjective uncertainty data[END_REF] and Baudrit et al. [START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF] for hybrid uncertainty propagation in the area of risk analysis. Given the monotonicity of cumulative distribution functions (CDFs) of RVs and the nestedness of possbility distribution functions of FVs, the formal definition of RFV proposed by Ferson and Ginzburg [START_REF] Ferson | Hybrid arithmetic. ISUMA-NAFIPS[END_REF] is presented as follows.

Definition 1 [START_REF] Ferson | Hybrid arithmetic. ISUMA-NAFIPS[END_REF] Let denote the set of all CDFs defined on the real number set and each element is an onto function such that whenever . A RFV is a set of closed intervals, each characterized by a pair of functions from :

(2) such as for , wherenever

, where and represent fuzzy membership values of .

Example: Figure 1a depicts the three-dimension representation of a RFV. The x-axis is the real number line, the F-axis has the cumulative probability values, and the -axis contains the possibility values. The shaded area at level includes all the closed probability intervals characterized by as the lower bound and as the upper bound. Figure 1c shows the two-dimension representation of this RFV and its level probability intervals. Figure 1b depicts the intersection of the RFV with the plan F(x) = p; similarly, Figure 1d depicts this intersection in the two-dimension representation. 

HUGF representation of RFV

The UGF for a discrete RV X is defined as:

(3) where is the base of the z-transform, is the sample space size of , is the j-th sample of , and is the probability mass attached to satisfying . The u-function is useful in representing the PMF of discrete RV because it preserves some basic properties of the momentgenerating function, which uniquely determines its PMF [START_REF] Lisnianski | Multi-state System Reliability: Assessment, Optimization and Applications[END_REF].

Besides Definition 1, RFV can also be regarded as a random distribution of fuzzy numbers [START_REF] Cooper | Hybrid processing of stochastic and subjective uncertainty data[END_REF]. In the context of MSS, the random distribution is defined on a finite set of elements, e.g. crisp numbers or fuzzy numbers. Figure 2 shows such a RFV. , is written as follows:

(4)

It is noted that this definition satisfies the basic property of UGF: the coefficient and exponent are not necessarily scalar variables but can be other mathematical objects (i.e. FV) [START_REF] Lisnianski | Multi-state System Reliability: Assessment, Optimization and Applications[END_REF]. It is seen that ( 3) is the special case of (4). On the other hand, if there is only one term of z, with its coefficient equal to 1, then (4) will reduce to the following expression,

(5) which is the u-function of a pure FV. Recall that can be uniquely determined by its α-cut set: , thus (4) defines a one-to-one correspondence to .

JOINT UNCERTAINTY PROPAGATION IN MSS

This Section defines the HUGF composition operators to combine different types of uncertain variables. Based on the HUGF composition operators, the method for joint uncertainty propagation in MSS reliability assessment is then proposed.

HUGF composition operator for joint uncertainty propagation

Because RFV treats the two types of uncertainties separately, the composition operator of HUGF has to combine the properties of both probabilistic UGF composition operator [START_REF] Ushakov | Universal generating function[END_REF] and fuzzy extension principle [START_REF] Dubois | Possibility theory, probability and fuzzy sets: Misunderstandings, bridges and gaps[END_REF]. In the following three cases, we show that the conventional UGF composition operator is applicable on HUGF compositions if its structure function supports fuzzy arithmetic operations.

Case 1:

between the u-functions of two FVs and ,

The extension principle [START_REF] Dubois | Possibility theory, probability and fuzzy sets: Misunderstandings, bridges and gaps[END_REF] reads that . For example, in the denominator of eq. (1.e) if we have and , then u-function of the denominator can be written as ( 7)

It is noted that fuzzy arithmetic assumes the total dependence between the -cuts [START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF].

Case 2:

between one RV and one FV , (

For example, on the right hand side of eq. (1.b) the first term is . Suppose that has three state levels (0, 0.2, 0.8) with the probability vector (0.4, 0.4, 0.2); then, the u-function of this term can be written as ( 9)

Case 3:

between two random FVs and , (

For example, by substituting eq. (1.d) into eq. (1.b), the first and second terms become and , respectively. Let and ; then, we have the following u-function for the addition of these two terms (11) Note that all the FVs and RVs used in the three cases above are artificially created for illustration purposes, aiming at showing the capability of the HUGF composition operator of handling the combination of variables with different uncertainty representations.

In general, the HUGF composition operator of N u-functions, i.e. uncertain variables, is defined as follows (12) It is noted that for the case of two arguments, the following two notations are interchangeable:

(13) Two basic properties of , namely the associative and communicative properties, are recalled for the reduction of composition computation time. If the function possesses the associative property for any of its variables, then also possesses this property ( 14) If the function possesses the communicative property for any of its variables, then also possesses this property (15) By applying these two properties, the elementary RVs and FVs might be eventually separated:

(16) In this way, the u-functions of FVs can be processed prior to the combination with the u-function of RVs, which involves multiplication to the polynomials.

Let where w is the arbitrary demand, the procedures of computing the MSS HUGF are presented as follows:

(1) Build the u-function for each component. For component affected by both types of uncertainties, obtain by combining the elementary FVs or RVs using with the consideration of the communicative and associative rules;

(2) Obtain the HUGF using to combine the component u-functions according to the system structure function

, where the communicative and associative rules also apply;

(3) Compute the system HUGF, .

This method involves both the fuzzy arithmetic and probabilistic convolution operations, either of which could lead to high computational cost. To reduce the computational complexity of this method, approximation techniques have to be applied especially when the MSS contains a large number of uncertain variables.

EXTRACTING INFORMATION FROM SYSTEM HUGF

As described in Section 4, is represented by a RFV. Thus, the MSS availability is no longer a precise value but a set of probability intervals, one for each level. This complete information is, however, too complex to be utilized by the decision maker. In order to extract useful information from these probability intervals, the post-treatment methods have been proposed. In this Section, we present two of them: p-boxes [START_REF] Ferson | Different methods are needed to propagate ignorance and variability[END_REF] and homogenous post-processing [START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF], and propose one algorithm to produce them from the system HUGF.

p-boxes

The concept of p-box is similar to that of RFV. [START_REF] Ferson | Different methods are needed to propagate ignorance and variability[END_REF] proposed to fix the level and, then, build the lower and upper probability bounds of an event B, i.e. . Two representative cases of the p-boxes are and . The p-box corresponds to a pessimistic condition where the imprecision is maximized while the p-box corresponds to an optimistic situation where the imprecision is minimized. It is noted that even in the optimistic case, there still can be imprecision if the level of each FV is not a single number.

5.2 Homogenous post-processing [START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF] proposed this method to extract only one lower and one upper probability bounds, which take the fuzzy mean [START_REF] Dubois | The mean value of a fuzzy number[END_REF] over all p-boxes:

and

(17)

It can be shown that and . [START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF], then, established the link between the interval and the belief functions of evidence theory, under the condition that there are finite elements in the probability sample and possibility sample spaces, which is not true in our case. Figure 4 depicts the CDF curves of the p-boxes at the levels equal to 0 and 1, and the average p-boxes. where and . To show the extraction of (at a fixed level), we take as an example. By definition of we have , where and is the highest state of . Its computation is straightforward and can be calculated similarly. To show the extraction of the average availability p-box , we take as an example. By definition we have . For its computation, at a particular state j the following three exclusive conditions are identified: 1) for any , then we have because is a constant for any ; 2) for any , then we have

; 3) and for certain and , then we have where (See Fig. 5). can be obtained similarly. 
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, then ;

Else-if and , then calculate and . End

CASE STUDY

In this Section, we demonstrate the proposed HUGF method on the three-element flow transmission system, whose block diagram is shown in Fig. 6. The u-function of each component performance variable is presented as follows, Then, HUGF of the system can be written as:

G1 G2 G3
Suppose that the load demand is a constant value with 4.25 (in arbitrary units), then the system HUGF is:

Based on this u-function, the useful quantities for p-boxes constructions are presented in Table 1. According to our algorithm, the upper and lower bounds of system availability p-boxes are computed as follows: Therefore, , , and .

CONCLUSIONS

Aleatory and epistemic uncertainties always coexist in the models for the assessment of industrial systems. How to properly handle them poses challenges to the reliability engineers. In this work, we have proposed an efficient approach based on UGF for joint uncertainty representation, propagation and exploitation in reliability assessments of MSS. Drawing from the well-established RFV theory, HUGF has shown to be adequate for the representation of RFVs defined on a finite set of FVs. Based upon this foundation, the composition operator of HUGF has been defined by combining probabilistic convolution with the fuzzy extension principle. Finally, an efficient algorithm has been designed to extract reliability p-boxes from the system HUGF.
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Table 1 .

 1 Quantities (in arbitrary units) for constructing pboxes

	Term						Probability
	1	-3.25	-0.25	-2.25	-1.25		0.01
	2	-1.25	0.75	-0.25	-0.25	0.75	0.05
	3	-1.25	1.75	-0.25	0.75		0.04
	4	-0.25	1.75	0.75	0.75	0.25	0.04
	5	-0.25	2.75	0.75	1.75	0.25	0.03
	6	0.75	2.75	1.75	1.75		0.2
	7	0.75	3.75	1.75	2.75		0.02
	8	1.75	3.75	2.75	2.75		0.4
	9	2.75	4.75	3.75	3.75		0.178
	10	3.75	5.75	4.75	4.75		0.032