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1 INTRODUCTION 
 
Multi-state system (MSS) modeling has been widely 

applied to resolve system reliability assessment 

problems (Natvig, 2011, Lisnianski and Levitin, 

2003). Under this framework, the performance of 

each component is discretized into more than two 

exclusive states from perfect functioning to com-

plete failure, and each state is characterized by a 

probability of occurrence. In general, MSS reliabil-

ity assessment aims to derive the system availability 

     as the probability that the system performance 

   is not less than the demand w,      
           .      is determined by the MSS 

system structure, which is a function      of the n 

component performance variables,      
               , where    is the i-th component 

performance variable that takes values from the fi-

nite set                    
 , where      is the 

performance level of component i at its state 

          and    is the highest possible state of 

component i. Typically,      and      
 represent 

the performance levels at complete failure and per-

fect functioning conditions, respectively. 

Uncertainty is an unavoidable factor in MSS reli-

ability assessment (Lisnianski and Levitin, 2003). 

Conventionally, the uncertain behavior of    is de-

scribed by its discrete probability distribution 

          , such that            
  
     . The 

probability distribution is sufficient to describe the 

state randomness, i.e. uncertainty of objective and 

aleatory type due to the natural variability or 

stochasticity of the component behavior. Another 

type of uncertainty to account for is that due to the 

incomplete or imprecise knowledge about the com-

ponent performance (Li and Zio, 2012b, Singer, 

1990, Lin et al., 2012, Wang et al., 2011, Cai, 1996, 

Chen, 1994). This type of uncertainty is often re-

ferred to as subjective and epistemic (Helton, 2004, 

Apostolakis, 1990). Recently, epistemic uncertainty 

in MSS models has been described by a fuzzy ap-

proach based on the universal generating function 

(UGF) paradigm (Ushakov, 1986), assuming that the 

state probabilities and/or the state performance can 

be fuzzy variables (FVs) (Ding et al., 2008, Ding et 

al., 2010). Interval values have also been used in (Li 

et al., 2011) to represent the imprecision in both 

state probability and performance. 

The issue of handling both types of uncertainties 

(aleatory and epistemic) has been an active research 

topic in the area of reliability and risk assessment 

(Ferson, 1996, Baudrit et al., 2006) since the 1990s. 

Aleatory, epistemic, mixed aleatory and epistemic 

uncertainties (due to partial variability and partial 

ignorance (Baraldi and Zio, 2008)) have been repre-

sented by probability distributions, possibility distri-

butions, hybrid numbers (Kaufmann and Gupta, 

1985) or random fuzzy variables (RFVs) (Ferson 

and Ginzburg, 1995), belief functions of evidence 

theory (Shafer, 1976). A joint uncertainty propaga-

tion process has been used by various authors 

(Ferson and Ginzburg, 1995, Baudrit et al., 2006, 

Bárdossy and Fodor, 2004, Baraldi and Zio, 2008) to 

propagate uncertainties associated to the elementary 

variables onto the system-level function with the 
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least possible loss of information. The propagation 

process is carried out by the Monte Carlo simulation 

(MCS) method (Baudrit et al., 2006), which howev-

er can be quite time-consuming (Ferson, 1996) and 

can have difficulties in handling dependencies 

(Baudrit et al., 2006). For analytical joint uncertainty 

propagation, the hybrid arithmetic approach based 

on RFVs has been proposed (Cooper et al., 1996, 

Ferson and Ginzburg, 1995), assuming the 

orthogonality between aleatory and epistemic uncer-

tainty and mixing the probabilistic convolution for 

aleatory uncertainty and the fuzzy calculus for epis-

temic uncertainty. It is recalled that a hybrid number 

is a random distribution of fuzzy numbers (i.e. RFV) 

and also is a fuzzy probability distribution (i.e. fuzzy 

random variable): these concepts are interchangeable 

since they lead to equivalent representations, and 

complementary interpretations and calculation strat-

egies (Ferson and Ginzburg, 1995). In the rest of this 

paper, we use the term RFV in line with the existing 

studies. 

In this work, we will draw the theoretical connec-

tion between UGF and RFV to define a new UGF, 

hybrid UGF (HUGF), which extends the conven-

tional UGF to represent the RFV whose random di-

mension is discrete for the multi-state case. Algebra-

ic operators on HUGF will be introduced for joint 

uncertainty propagation and an efficient algorithm 

will be developed to extract probability boxes (p-

boxes) of system availability from the system 

HUGF.  

The rest of the paper is organized as follows. Sec-

tion 2 illustrates, through a multi-state model of so-

lar generation, the co-existence of aleatory and epis-

temic uncertainty in MSS and presents the 

assumptions made for MSS modeling. In Section 3, 

the concept of RFV is recalled and HUGF is pro-

posed as theoretical extension of UGF for RFV rep-

resentation. In Section 4, the algebraic operators of 

HUGF are defined. In Section 5, the algorithm ex-

tracting the probability boxes (p-boxes) of MSS reli-

ability is proposed. Section 6 presents one case 

study. Section 7 concludes this work. 

2 MSS WITH ALEATORY AND EPISTEMIC 
UNCERTAINTIES 

We take the solar generator model from (Li and Zio, 

2012a) as an illustrative example of multi-state 

component affected by the two types of uncertain-

ties. Its description is based on two random variables 

(RVs), solar irradiation and mechanical condition, a 

set of generation parameters and an energy conver-

sion function (which transfers the irradiation to 

power output). In practice, there is usually sufficient 

historical data to capture the variabilities in solar ir-

radiation and mechanical condition. In multi-state 

setting, solar irradiation    is discretized into sever-

al exclusive states ranging from zero to maximum ir-

radiations; the mechanical condition    is assumed 

to be a binary RV taking values {0, 1}, where ‘0’ 

means complete failure and ‘1’ means perfect func-

tioning. The power output    of one solar generator 

is given by the following functions: 

 

                               (1.a) 

                                  (1.b) 

                                (1.c) 

         
      

   
                  (1.d) 

   
         

       
                       (1.e) 

 

where       is the solar energy conversion func-

tion,                                     is 

the vector of operation parameters,   is the total 

number of solar cells in the solar generator,    is 

the fill factor,     is the short circuit current in A, 

   is the current temperature coefficient A/
o
C,    

is the cell temperature in 
o
C,     is the open-circuit 

voltage in V,    is the voltage temperature coeffi-

cient V/
o
C,    is the ambient temperature in 

o
C, 

    is the nominal operating temperature in 
o
C, 

     is the voltage at maximum power point in V, 

and      is the current at maximum power point in 

A.  

In literature, the operation parameters are typical-

ly treated as constants. In practice, they often change 

during the operation phase due to degradation of ma-

terials, changes in the operating environment, etc 

(Giannakoudis et al., 2010). However, often insuffi-

cient information is available to model them as RVs, 

due to the unwillingness of the manufacturers to dis-

close the commercially sensitive data (Li and Zio, 

2012b). In this situation, the FVs are one promising 

alternative. It can be seen from eq. (1) that each real-

ization of    is a fuzzy number. Essentially,    is 

a RFV, which we will show in Sections 3 and 4. 

Based on the example above, the following as-

sumptions are made for our MSS modeling: 

 

 For any component i, it has      different 

states            where state    and 0 are the 

perfect functioning and the complete failure states, 

respectively. The generic intermediate state j 

(      ) is a degradation state where the 

component is partially functioning. The state in-

dex j is a crisp value. 

 In the model of a component i, FVs are used to 

represent model parameters if they are tainted 

with imprecision. 



 Following assumption 2, the performance of a 

component i is a discrete RV    if there is suffi-

cient data to eliminate all the imprecision in its 

parameters; otherwise it will be a RFV   
  (or a 

pure FV    , if only FVs are involved in the com-

ponent model). 

 The state of the system is completely determined 

by the state of its components. 

3 HUGF FOR HYBRID UNCERTAINTY 
REPRESENTATION IN MSS 

In this Section, the definition of RFV is first re-

called. Then the UGF representation of RFV, named 

HUGF, is formally defined.  

3.1 RFV  

RFV was first introduced by Kaufmann and Gupta 

(Kaufmann and Gupta, 1985) as a tool to jointly ex-

press the epistemic and aleatory uncertainties. Later, 

RFV were extended by Cooper et al. (Cooper et al., 

1996) and Baudrit et al. (Baudrit et al., 2006) for hy-

brid uncertainty propagation in the area of risk anal-

ysis. Given the monotonicity of cumulative distribu-

tion functions (CDFs) of RVs and the nestedness of 

possbility distribution functions of FVs, the formal 

definition of RFV proposed by Ferson and Ginzburg 

(Ferson and Ginzburg, 1995) is presented as follows. 

 

Definition 1 (Ferson and Ginzburg, 1995) Let   

denote the set of all CDFs defined on the real num-

ber set   and each element     is an onto func-

tion            such that             

whenever      . A RFV is a set of closed inter-

vals, each characterized by a pair of functions from 

 : 

 

                              (2) 

 

such as for            ,    
       

    

   
       

    wherenever      , where    

and    represent fuzzy membership values of  . 

 

Example: Figure 1a depicts the three-dimension 

representation of a RFV. The x-axis is the real num-

ber line, the F-axis has the cumulative probability 

values, and the  -axis contains the possibility val-

ues. The shaded area at         level includes all 

the closed probability intervals characterized by    

as the lower bound and    as the upper bound. 

Figure 1c shows the two-dimension representation 

of this RFV and its   level probability intervals. 

Figure 1b depicts the intersection of the RFV with 

the plan F(x) = p; similarly, Figure 1d depicts this 

intersection in the two-dimension representation. 

 

 
Figure 1.Three-dimension and two-dimension representations 

of an example RFV 

3.2 HUGF representation of RFV 

The UGF for a discrete RV X is defined as:  

 

          
   

              (3) 

where   is the base of the z-transform,     is the 

sample space size of  ,    is the j-th sample of  , 

and    is the probability mass attached to    satis-

fying    
 
     . The u-function is useful in rep-

resenting the PMF of discrete RV because it pre-

serves some basic properties of the moment-

generating function, which uniquely determines its 

PMF (Lisnianski and Levitin, 2003).  

Besides Definition 1, RFV can also be regarded 

as a random distribution of fuzzy numbers (Cooper 

et al., 1996). In the context of MSS, the random dis-

tribution is defined on a finite set of elements, e.g. 

crisp numbers or fuzzy numbers. Figure 2 shows 

such a RFV. 

 

 
Figure 2. An example RFV defined on finite fuzzy numbers 

 

Definition 2. For a RFV    defined on a finite set of 

fuzzy numbers          , its u-function, de-

noted by       , is written as follows: 

 



           
    

        
    

    
  

          (4) 

 

It is noted that this definition satisfies the basic 

property of UGF: the coefficient and exponent are 

not necessarily scalar variables but can be other 

mathematical objects (i.e. FV) (Lisnianski and 

Levitin, 2003). It is seen that (3) is the special case 

of (4). On the other hand, if there is only one term of 

z, with its coefficient equal to 1, then (4) will reduce 

to the following expression, 

 

                               (5) 

 

which is the u-function of a pure FV. Recall that 

        can be uniquely determined by its α-cut set: 

       , thus (4) defines a one-to-one correspond-

ence to   . 

4 JOINT UNCERTAINTY PROPAGATION IN 
MSS  

This Section defines the HUGF composition opera-

tors to combine different types of uncertain varia-

bles. Based on the HUGF composition operators, the 

method for joint uncertainty propagation in MSS re-

liability assessment is then proposed. 

4.1 HUGF composition operator for joint 
uncertainty propagation 

Because RFV treats the two types of uncertainties 

separately, the composition operator of HUGF has to 

combine the properties of both probabilistic UGF 

composition operator (Ushakov, 1986) and fuzzy ex-

tension principle (Dubois et al., 2000). In the follow-

ing three cases, we show that the conventional UGF 

composition operator    is applicable on HUGF 

compositions if its structure function      supports 

fuzzy arithmetic operations.  

 

Case 1:    between the u-functions of two FVs     

and    , 

 

    
         

                        (6) 

 

The extension principle (Dubois et al., 2000) reads 

that                             
         

     . 

For example, in the denominator of eq. (1.e) if we 

have                and             
  , then u-function of the denominator can be writ-

ten as 

     
          

                                          

(7) 

It is noted that fuzzy arithmetic assumes the total 

dependence between the  -cuts (Baudrit et al., 

2006). 

 

Case 2:   between one RV    and one FV    , 

 

   
         

         
  
                    (8) 

 

For example, on the right hand side of eq. (1.b) the 

first term is        . Suppose that    has three state 

levels (0, 0.2, 0.8) with the probability vector (0.4, 

0.4, 0.2); then, the u-function of this term can be 

written as 

 
   

          
   

                               

                          

       (9) 

 

Case 3:   between two random FVs   
  and   

 , 

 

              
          

  
         

                 
       

(10) 

 

For example, by substituting eq. (1.d) into eq. 

(1.b), the first and second terms become         and 

          , respectively. Let               
and              ; then, we have the follow-

ing u-function for the addition of these two terms 

 
         

                
   

                               

                                 

                                  

                                   

                                           

                                   

                         

                                    

                                      

                         

                                   

                                    

(11) 

Note that all the FVs and RVs used in the three 

cases above are artificially created for illustration 

purposes, aiming at showing the capability of the 

HUGF composition operator of handling the combi-

nation of variables with different uncertainty repre-

sentations. 

In general, the HUGF composition operator of N 

u-functions, i.e. uncertain variables, is defined as 

follows 

 



       
        

          
    

         
                      

 
 

   

  

    

  

    
 

(12) 

It is noted that for the case of two arguments, the 

following two notations are interchangeable: 

 

       
        

         
         

        (13) 

 

Two basic properties of   , namely the associa-

tive and communicative properties, are recalled for 

the reduction of composition computation time. If 

the function      possesses the associative property 

for any of its variables, then    also possesses this 

property 

 

       
          

          
          

      

          
          

              
          

      

               (14) 

If the function      possesses the communica-

tive property for any of its variables, then    also 

possesses this property 

 

       
          

          
          

      

       
            

        
          

                      

(15) 

By applying these two properties, the elementary 

RVs and FVs might be eventually separated:  

  

      
          

      

         
         

              
          

      

              (16) 

In this way, the u-functions of FVs can be pro-

cessed prior to the combination with the u-function 

of RVs, which involves multiplication to the poly-

nomials.  

Let      
    where w is the arbitrary de-

mand, the procedures of computing the MSS HUGF 

are presented as follows: 

(1) Build the u-function for each component. For 

component   affected by both types of uncer-

tainties, obtain     
    by combining the ele-

mentary FVs or RVs using    with the con-

sideration of the communicative and associative 

rules; 

(2) Obtain the HUGF       
    using    to 

combine the component u-functions according 

to the system structure function   
    

    
      

  , where the communicative and as-

sociative rules also apply; 

(3) Compute the system HUGF,        
      

          . 

This method involves both the fuzzy arithmetic 

and probabilistic convolution operations, either of 

which could lead to high computational cost. To re-

duce the computational complexity of this method, 

approximation techniques have to be applied espe-

cially when the MSS contains a large number of un-

certain variables.  

5 EXTRACTING INFORMATION FROM 
SYSTEM HUGF 

As described in Section 4,    is represented by a 

RFV. Thus, the MSS availability            

               is no longer a precise value 

but a set of probability intervals, one for each   

level. This complete information is, however, too 

complex to be utilized by the decision maker. In or-

der to extract useful information from these proba-

bility intervals, the post-treatment methods have 

been proposed. In this Section, we present two of 

them: p-boxes (Ferson and Ginzburg, 1996) and 

homogenous post-processing (Baudrit et al., 2006), 

and propose one algorithm to produce them from the 

system HUGF.  

5.1 p-boxes 

The concept of p-box is similar to that of RFV. 

(Ferson and Ginzburg, 1996) proposed to fix the   

level and, then, build the lower and upper probabil-

ity bounds               of an event B, i.e. 

    . Two representative cases of the p-boxes are 

    and    . The p-box               cor-

responds to a pessimistic condition where the impre-

cision is maximized while the p-box               
corresponds to an optimistic situation where the im-

precision is minimized. It is noted that even in the 

optimistic case, there still can be imprecision if the 

    level of each FV is not a single number. 

5.2 Homogenous post-processing 

(Baudrit et al., 2006) proposed this method to ex-

tract only one lower and one upper probability 

bounds, which take the fuzzy mean (Dubois and 

Prade, 1987) over all p-boxes: 

 

               
 

 
 and                

 

 
 

(17) 



It can be shown that             

             and                   . 

(Baudrit et al., 2006), then, established the link be-

tween the interval                 and the belief 

functions of evidence theory, under the condition 

that there are finite elements in the probability sam-

ple and possibility sample spaces, which is not true 

in our case. Figure 4 depicts the CDF curves of the 

p-boxes at the   levels equal to 0 and 1, and the av-

erage p-boxes.  

 
Figure 4. CDF curves of              ,                , and 

              

5.3 Algorithm for the system availability p-boxes 
extraction 

Let B denote the event     ; we have the sys-

tem availability p-box:         where      

      and           . To show the extrac-

tion of         (at a fixed   level), we take    

as an example. By definition of       we have 

         
    

  , where           and     is 

the highest state of   . Its computation is straight-

forward and    can be calculated similarly. To 

show the extraction of the average availability p-box 

         , we take     as an example. By defini-

tion we have            
    

    
 

 
. For its 

computation, at a particular state j the following 

three exclusive conditions are identified: 1)    
   

for any        , then we have       
   

 

 
 

     
  because      

  is a constant for any  ; 2) 

   
   for any        , then we have 

      
   

 

 
  ; 3)     

   and     
   for 

certain             and      , then we have 

      
   

 

 
      

        
   

where     
    (See Fig. 5).     can be obtained 

similarly. 

 
Figure 5. For a particular state j, the computation of 

      
   

 

 
 when     

   and     
   for certain 

            and       
 

Based upon the discussions above, the following 

algorithm is designed for the p-boxes extraction: 

 

Initialize: set                  

For j = 0 to     do 

Obtain    
 and    

 by substituting the given   value 

into the fuzzy number expression.  

If    
  , then          . 

If    
  , then          . 

If    
  , then            ; 

Else-if    
   and    

  , then calculate   
  and  

                
  . 

If    
  , then            ; 

Else-if    
   and    

  , then calculate   
  and  

             
 . 

End 

6 CASE STUDY 

In this Section, we demonstrate the proposed HUGF 

method on the three-element flow transmission sys-

tem, whose block diagram is shown in Fig. 6.  

 

 
Figure 6. A three component flow transmission system 

 

The u-function of each component performance 

variable is presented as follows,  

 
   

                            

    
                                            

    
                                               

 

Then, HUGF of the system can be written as: 

 

G1  

G2  

G3  



             
         

            
    

                                              

                              

                             

                              

                                   

                               

                                             

                              

                             

                              

                  
 

Suppose that the load demand is a constant value 

with 4.25 (in arbitrary units), then the system HUGF 

is: 

 
                                                   

                      

                      

                                          

                                         

                      

                       
 

Based on this u-function, the useful quantities for 

p-boxes constructions are presented in Table 1. 
 

Table 1. Quantities (in arbitrary units) for constructing p-

boxes 
Term    

    
    

    
   

    
  Probability 

1 -3.25 -0.25 -2.25 -1.25   0.01 

2 -1.25 0.75 -0.25 -0.25  0.75 0.05 

3 -1.25 1.75 -0.25 0.75   0.04 

4 -0.25 1.75 0.75 0.75 0.25  0.04 

5 -0.25 2.75 0.75 1.75 0.25  0.03 

6 0.75 2.75 1.75 1.75   0.2 

7 0.75 3.75 1.75 2.75   0.02 

8 1.75 3.75 2.75 2.75   0.4 

9 2.75 4.75 3.75 3.75   0.178 

10 3.75 5.75 4.75 4.75   0.032 

 

According to our algorithm, the upper and lower 

bounds of system availability p-boxes are computed 

as follows: 

 
                                 

                                         
            

                                          

                                    
            

                                          
              

                                         
                    

 

Therefore,                    ,           

               , and                   .  

7 CONCLUSIONS 

Aleatory and epistemic uncertainties always co-

exist in the models for the assessment of industrial 

systems. How to properly handle them poses chal-

lenges to the reliability engineers. In this work, we 

have proposed an efficient approach based on UGF 

for joint uncertainty representation, propagation and 

exploitation in reliability assessments of MSS. 

Drawing from the well-established RFV theory, 

HUGF has shown to be adequate for the representa-

tion of RFVs defined on a finite set of FVs. Based 

upon this foundation, the composition operator of 

HUGF has been defined by combining probabilistic 

convolution with the fuzzy extension principle. Fi-

nally, an efficient algorithm has been designed to ex-

tract reliability p-boxes from the system HUGF.  
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