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An optimization-based control approach for reliable microgrid energy

management under uncertainties

Ionela Prodan!, Enrico Zio!?

Abstract— This paper proposes an optimization-
based control approach for microgrid energy manage-
ment. For exemplification of the approach consider a
microgrid system connected to an external grid via a
transformer and containing a local consumer, a renew-
able generator (wind turbine) and a storage facility
(battery). The objective of minimizing the costs is
achieved through a predictive control framework for
scheduling the battery usage in the microgrid system.
The proposed control framework takes into account
cost values, power consumption, generation profiles
as well as functional constraints under uncertainties
in the wind speed profile. Simulation results using
real numerical data are presented for a reliability test
system.

I. INTRODUCTION

Future intelligent electricity grids attract increasing
public attention during the last years. Green (solar and
wind) energy production is supposed to increase sig-
nificantly in the coming years. This requires a “smart-
grid” approach in order to deal with distributed pro-
duction/intermittent variations of output and optimal
scheduling of demand [1].

In the present paper, we introduce an original
optimization-based control approach to efficiently man-
age the energy production in a microgrid system.

Various approaches for the energy management within
a microgrid are reported in the literature. For example,
[2], [3] propose an agent-based modeling approach to
model microgrids and to analyze by simulation the in-
teractions between individual intelligent decision-makers.
Energy management of hybrid renewable energy gen-
eration was proposed in [4], [5]. In these papers, the
long-term goals are focused on the efficient use of elec-
tricity within microgrids, e.g., the planning of battery
scheduling to store the electricity locally generated from
renewable sources and reuse it during periods of high
electricity demand. It is important to mention that in
these works the decision framework was developed under
deterministic conditions, e.g., those of a typical day in
summer, and without taking into account explicitly the
dynamics of the individual components of the microgrids.

The starting point of our work is that a widely
used technique in the control community to manage
the dynamics of systems affected by uncertainties in
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the behavior of their components is Model Predictive
Control (MPC) (see, for instance, [6] for basic notions
about MPC), due to its ability to handle control and
state constraints while offering good performance spec-
ifications. Typically, in MPC, the objective (or cost)
function penalizes deviations of the states and inputs
from their reference values, while the constraints are
enforced explicitly. Due to its versatility, MPC has had
a successful record in industrial applications, to mention
just a few recent ones: for refrigeration systems [7], for
power production plants [8] and transportation networks
[9].

In the present paper, we address the problem of reli-
able energy management of a microgrid by proposing a
predictive control framework. The microgrid considered
as example is inspired from [3] and is connected to an
external grid via a transformer and contains a local
consumer, a renewable generator (wind turbine) and a
storage facility (battery). The underlying management
setting is one of multi-criteria decision-making for bat-
tery scheduling with the objectives of increasing the
utilization rate of the battery during high electricity
demand (i.e., decrease of the electricity purchase from the
external grid) and increasing the utilization rate of the
wind turbine for local use (i.e., increase of the consumer
independence from the external grid). With respect to
previous work [10], [3], we propose a more realistic model
of the battery. In particular, we assume the existence
of a leakage current and provide a switched model with
“charge” and “discharge” functioning modes.

The remainder of the paper is organized as follows.
Section II presents the components of the microgrid
system and Section III describes the predictive con-
trol mechanism used for battery scheduling within the
microgrid. Some simulation reasults are presented in
Section IV and the conclusions are drawn in Section V

II. SYSTEM AND MODEL DESCRIPTION

Consider a microgrid as in Fig. 1, which includes a
local consumer (e.g., large cooling houses), a renewable
generator (e.g., wind turbine) and a storage facility (e.g.,
battery). The microgrid is connected to the external
grid via a transformer. The goal is to plan the battery
schedule in order to achieve the consumer objectives
of increasing the utilization rate of the battery during
high electricity demand (i.e., decrease the electricity
purchase from the external grid) and the utilization rate
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Fig. 1: Microgrid architecture

of the generator for local use (i.e., increase the consumer
independence from the external grid).

The interactions between the independent components
of the microgrid are one of the most important factors in
accomplishing the consumer objectives. More precisely,
as shown in Fig. 1 the electricity power transmitted
by the renewable generator to the battery at time step
t is represented by ¢(t) € R, the electricity power
transmitted by the battery to the consumer at time step
t is represented by b.(t) € R. In order to maximize
the utilization of the battery within the microgrid, the
consumer takes electricity from the local renewable gen-
erator through the battery. The battery can be charged
from the external grid or can also give electricity to the
external grid: the electricity power transmitted by the
battery to the external grid at time step t is denoted
by b.(t) € R. It is possible to sell electricity to the
external grid when the level of charge in the battery is
deemed sufficient for covering local needs. The electricity
power transmitted by the external grid to the battery
at time step t is by(¢t) € R and the electricity power
transmitted by the external grid to the consumer at
time ¢ is represented by p(t) € R. Here, the transformer
provides electricity power from the external grid as well
as information about the electricity market price, which
plays an important role as the consumer can decide
to take energy when the price is low. Therefore, the
consumer has also the possibility to take electricity from
the external grid when the renewable resource is not
available (or sufficient).

Finally, the ultimate goal is to control the battery
such that all the consumers objectives are fulfilled while
considering all the interactions between the independent
components of the electrical grid.

A. Dynamic models of the microgrid components

The controllable component is the battery. For describ-
ing its dynamics we consider the following equation:

b(t+1) = b(t) + [by(t) + g(t) — be(t) — be(B)]AL, (1)

where b(t) € R [Wh] represents the level of battery
charge at time step ¢ and b,(¢) € R [W], g(¢t) € R [W],
be(t) € R [W], be(t) € R [W] are the electricity power
quantities previously described (see also Fig. 1).

Consider also the generator system, whose dynamics
can be described as:

g(t+1) = f(g(t),v(t)), (2)

where f(-,-) : R — R is the dynamical function, g(t) € R
the electricity power given by the generator and v(t) € R
the wind speed at time step ¢ (here considered of 1 hour).
Note that f(-,-) is nonlinear, that is, the output of the
generator depends nonlinearly on the wind speed and can
be roughly partitioned into three regimes of functioning
(starting-up, nominal functioning and dangerous wind
levels) as shown in Fig. 2:
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where ve; [m/s], v, [m/s] and v., [m/s] are the cut-in,
rated and cut-off wind speeds, respectively, and P, [W]
is the rated power of the wind turbine. Uncertainty in
the power curve parameters (3) are considered, in the
ranges v < Vg < V2, U3 <v < Vg4, Us < Veo < Vg and
p1 < P. < pa, where vy, v2,v3,v4, V5,6, p1,p2 € R.
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Fig. 2: Reference power curve for the wind turbine as a
function of the wind speed.

B. Constraints description

From Fig. 1 it is seen that the consumer can take
electricity from two sources, i.e., the battery and the
external grid. Therefore, for a reliable management of
the energy system it is necessary to ensure that at time ¢
the electricity purchased from these two sources satisfies
the following condition:

be(t) + p(t) = d(t). (4)

The energy stored in the battery at time ¢ needs to
remain between some bounds; consequently, the following



condition is imposed:
Bmin S b(t) S Bma:rv (5)

where Bpin, Bimaz € R. The maximum battery capacity,
Biaz, is equal to the rated capacity. The minimum ca-
pacity, Byin, is determined from the Depth of Discharge
(DoD) which is used to describe how deeply the battery
is discharged:

Bumin = (1 = DoD) X Bnaa.

Furthermore, the rate of battery charge at time ¢ needs
also to remain between some bounds as described by the
following condition:

Dmin S Ab(t) S Dmara (6)

where Dinin, Dinaz € R.

Finally, constraints on the amount of electricity trans-
mitted to and from the battery as well as to the consumer
are imposed:

Umin S u(t) S Umax7 (7)

where  Upin, Umaz € R and wu(t) =
[pT(t) bL(t) bI(t) bl(t)]" represents the vector of
control signals.

C. Cost function description

Denote by e(t) € R [$/Wh] the electricity market price
at time step t. Then, the total energy cost at time ¢ is:

C(t) = e(t) - At[by(t) + p(t) — be(t)]; (8)

where a small value of C(t) means small energy drawn
from the external grid.

D. Profiles of interest

All the elements of the electrical system are character-
ized by certain profiles of reference. Arguably, the most
important is the profile characterizing the consumer load,
denoted as d(t). Taking into account the weekly, daily
and hourly variability it is possible to predict a refer-
ence load. Therefore, in order to predict the reference
load of the consumer we consider a top-down approach
based on available statistical measurements of electricity
consumption (the real numerical data of a reliability test
system task force are found in [11]).

Lastly, we need to provide the evolution of the prices
e(t) on the electricity market. Again, we use existing
historical data of market prices [11].

III. OPTIMIZATION-BASED CONTROL MECHANISM FOR
BATTERY SCHEDULING

For a reliable energy management of the micro-
grid by battery scheduling, we consider the recursive
construction of an optimal open-loop control sequence
u = {u(k),u(k+1), - ,u(k+ N, — 1)}, with u(k) =
[pT (k) bL(k) bT(k) bl (k)]T over a finite constrained
receding horizon, which leads to a feedback control policy

by the effective application of the first control action as
system input:
k+N,

> C, 9)
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subject to the set of constraints:

b(t +1) =b(t) + [be(t) + g(t) — be(t) — be(¢)]At,

gt +1) = Flg(t), o(t)), t =k : k+ N,

be(t) +p(t) > d(t), t=Fk:k+ Np,

Bin < b(t) < Bz, t=k:k+ Ny,

Dpin < Ab(t) < Diag, t= k:k+ Np7
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O(t) = e(t) - At[by(t) + p(t) — be(t)], t =k : k + N,,
where v € (0,1) and depending on the values it takes
between this interval the cost will decrease more or less
fast or not at all.

The strategy used for microgrid energy management
is implemented in the following algorithm:

Algorithm 1: Microgrid
optimization-based control
Input: Consider the profiles d(t : t + kgmaz),
e(t :t+ kmaz) and v(t : t + kpmae) given in
Section II-D
1 for k=1:Fkp4. do

energy management

2 -find the optimal control action u* by solving
9);

3 -compute the next value of the battery state
bt+k+1)=0b(t+k)+ [bp(t +k)+g(t+k)—

4 —be(t+ k) — be(t + k)]A(t + k);

5 end

Note that the price e(t) is variable, therefore, in (9) we
have a variable cost function. It is important to mention
that the increase of the prediction horizon will imply a
decrease of the electricity cost taken from the external
grid. Also, the increase of the prediction horizon length
does not mean that the uncertainty (in the profiles, for
example) accumulate. MPC deals very well with this type
of problems, where a grater weight can be given to the
immediate future costs and a smaller weight to the future
ahead cost (i.e., the cost at time k becomes less and less
important because the term v*~* is decreasing).

IV. SIMULATION RESULTS

We consider the dynamic model (1) for the battery,
the discretization step At = 1 hour and the profiles
described in Section II-D. The battery charge bounds are
Brin =3 EWh, Biar =6 EWh and the battery charge
variation bounds D,,;, = —1 kWh, Dy = 1 EW.
Also, the control signals by(t), b.(t), be(t), p(t) need to
stay between some bounds, i.e., Upin = [0 0 0 0]T kW,
Unnas = [6 6 6 6]7 kW.



The Figures of this section illustrate several of the
signals of interest. First, Fig. 3 shows the level of battery
charge.
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Fig. 3: Battery charge level variation.

Next, Fig. 4 (top right) shows the consumer power
demand d(t) (depicted by dotted line mark), power given
by the battery to the consumer b.(t) (denoted by plus
line mark), the power given by the external grid to the
consumer p(t) (depicted in square line mark). Notice that
the sum of the last two (i.e., b.(t) + p(¢)) is depicted
in dashed line and is always equal to the consumer
power demand, which means that the consumer is always
receiving the electricity power demanded.

The same Fig. 4 (bottom left) depicts both the power
given by the battery to the external grid b.(¢) (triangle
line mark) and the power given by the external grid to
the battery by(t) (diamond line mark). Also, with minus
line mark we plot how much power is drawn overall from
the grid p(t)+by(t) —b(t) (power given from the external
grid to the consumer + power given from the grid to the
battery - power given from the battery to the grid).

Finally, Fig. 4 (bottom right) shows the value of the
cost at each time instant.
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Fig. 4: Power usage.

V. CONCLUSIONS

In this paper, we propose an approach for reliable
microgrid energy management based on receding horizon
control to minimize the costs. A scheduling of battery
usage is determined. The predictive control framework
allows to naturally take into consideration variable cost
values, power consumption and generation profiles, as
well as functional constraints under uncertainty due to
variations in the environment (wind speed). The simu-
lation results using real numerical data for a reliability
test system have proved the feasibility of the proposed
approach. With the considered management strategy, a
good equilibrium between decentralized energy produc-
tion, energy needs and integration into the grid can be
found. Future work will focus on developing a control
theory setting to frame the state transition process of
degradation/failure/recovery dynamics in microgrid en-
ergy systems.
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