Découverte de connaissances dans les séquences par CRF non-supervisés
Résumé
Les tâches de découverte de connaissances ont pour but de faire émerger des groupes d'entités cohérents. Ils reposent le plus souvent sur du clustering, tout l'enjeu étant de définir une notion de similarité pertinentes entre ces entités. Dans cet article, nous proposons de détourner les champs aléatoires conditionnels (CRF), qui ont montré leur intérêt pour des tâches d'étiquetage supervisées, pour calculer indirectement ces similarités sur des séquences de textes. Pour cela, nous générons des problèmes d'étiquetage factices sur les données à traiter pour faire apparaître des régularités dans les étiquetages des entités. Nous décrivons comment ce cadre peut être mis en œuvre et l'expérimentons sur deux tâches d'extraction d'informations. Les résultats obtenus démontrent l'intérêt de cette approche non-supervisée, qui ouvre de nombreuses pistes pour le calcul de similarités dans des espaces de représentations complexes de séquences.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...