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Abstract

Dialogue management optimisation has been cast into a plan-

ning under uncertainty problem for long. Some methods such

as Reinforcement Learning (RL) are now part of the state of

the art. Whatever the solving method, strong assumptions are

made about the dialogue system properties. For instance, RL

assumes that the dialogue state space is Markovian. Such con-

straints may involve important engineering work. This paper

introduces a more general approach, based on fewer modelling

assumptions. A Black Box Optimisation (BBO) method and

more precisely a Particle Swarm Optimisation (PSO) is used to

solve the control problem. In addition, PSO allows taking ad-

vantage of the parallel aspect of the problem of optimising a

system online with many users calling at the same time. Some

preliminary results are presented.

Index Terms: spoken dialogue system, black-box optimisation,

dialogue management

1. Introduction

Spoken Dialogue Systems (SDS) are now powerful tools to

complete various tasks. Examples are booking train or flight

tickets, scheduling appointments, asking for tourist informa-

tion, etc. During the dialogue, at each turn of the system, the

Dialogue Manager (DM), which is the decision maker compo-

nent of the SDS, has to choose what to say next to the user, such

that, at the end of the dialogue, the user’s request is fulfilled.

The DM has to find the sequence of dialogue acts which leads

to solve efficiently the task. The dialogue management prob-

lem is thus a sequential decision problem. Since the system has

to face a real user, its behaviour is expected to be as consistent

as a human’s behaviour would be. Consequently, the system

must exhibit tailored dialogue strategies in order not to bore the

user. Solving the problem gets more complicated because of the

variability between the user’s behaviour and the uncertainty in-

troduced by the speech and semantic analysers, two of the most

important modules of an SDS. Indeed, the modules are error-

prone and some misunderstanding during the recognition of the

user act may appear.

Developing such strategies is not obvious. For exam-

ple, strategies have been first defined by means of hand-coded

rules [1] or by means of finite-state machines [2]. The dialogue

strategy is represented in a graph. Each node of the graph is a

dialogue act. The transition to go from one node to another is

defined by the designer of the system. The number of differ-

ent situations the DM is able to face is thus limited. Because

of the intractability of hand-coded strategies when the dialogue

task becomes realistically complex, automatic methods coming

from Artificial Intelligence and Machine Learning have been

developed. First, planning algorithms [3] were proposed. Yet,

planning makes a lot of assumptions such as being able to enu-

merate all the possible contexts or knowing transition probabil-

ities between states given actions. Also, the objective has to be

known in advance so that the optimal path in the graph can be

computed. Once the plan is computed, it cannot be modified

even though the interaction goes wrong.

Planning under uncertainty is thus mandatory to take the

possible failures into account. For this reason, the Markov de-

cision theory framework [4] was proposed for formulating and

solving such problems [5]. The dialogue management problem

has been cast into a Markov Decision Process (MDP) [6] and

Reinforcement Learning (RL) can be used to find an optimal

policy. Within this framework, the quality of each interaction

between the user and the DM is quantified thanks to a numer-

ical value called a reward. This quantity can be measured for

example through the user satisfaction at the end of the dialogue,

the completion of the task, the time needed to complete it, or by

using a combination of several values [7]. The aim is to find the

controller, which is in charge of associating to each encountered

situations (dialogue contexts) a DM action, that maximises the

cumulative rewards.

The Reinforcement Learning (RL) framework [8] has been

proven efficient to solve MDPs when the model of transition

from one state to another is unknown. This method has been

applied to dialogue management in [9, 10, 11]. But, once again,

this framework makes several strong assumptions. For instance,

the dialogue contexts cannot be perfectly observed due to the

recognition error introduced by the speech and the semantic

analysers. The task is therefore non-Markov in the observa-

tion space. To meet the Markov assumption made by the MDP

framework, the underlying states have to be inferred from ob-

servations using what is called a belief tracker. For example, the

Hidden Information State [12] paradigm builds a list of the most

probable current situations given the past observations, which is

supposed to be a Markovian representation allowing for taking

decisions in the MDP framework. .

Finally, to take into account the perceptual aliasing problem

introduced by error-prone speech and language understanding

modules, Partially Observable MDP (POMDP) have been pro-

posed to model the dialogue management task [13]. Yet, solv-

ing the POMDP problem requires the transition and observation

models to be known which also requires a lot of assumptions

and engineering work.

In this paper, we propose to adopt a Black Box Optimi-

sation (BBO) point of view to solve the strategy optimisation

problem with fewer assumptions. This method is usually used

to solve general optimisation problems. Its quality relies on the

fact that, contrary to gradient methods, no strong hypotheses



about the function to optimise is required (such as differentia-

bility) and that the optimisation process does not stay stuck into

local optima. The BBO finds the optimal solution by iteratively

testing a set of candidate solutions in the search space. Each

one of them is called a particle. The only information the BBO

needs to perform the optimisation is an evaluation of the quality

of each of the possible solutions. By means of this information,

the best candidates of each turn are retained for the next one.

The selection methods depend on the type of BBO algorithm

used. Iterations are repeated until some global criterion is met,

such as a given number of iterations is reached, or the fitness

function of the best particle has reached a given value.

In the dialogue management case, each candidate strategy

can be evaluated by computing a score while tested on users.

The score can be the cumulative rewards for example or a sub-

jective score provided by the user after an interaction. BBO

algorithms have already been applied to solve control under

uncertainty problems, such as Covariance Matrix Adaptation-

Evolution Strategies (CMA-ES) [14, 15] or cross entropy meth-

ods [16, 17]. In the dialogue case, the evaluation of the fitness

is the quality of a whole dialogue. It has to be noticed that this

information is much less informative than the reward given at

each turn in the Markovian RL framework. Here, the Particle

Swarm Optimisation (PSO) method is chosen [18, 19].

At each turn of the BBO algorithm, several strategies are

tested at the same time. This parallel architecture of the algo-

rithm particularly fits for DM optmisation. Indeed, several users

may call at the same time. Instead of having all of them inter-

act with a unique strategy currently learnt (which is the case

for previous solutions proposed [20, 21, 22]), several users test

different candidate strategies while all the rest of users are inter-

acting with the best one learnt so far. In consequences, the con-

vergence rate towards the optimal solution might be increased

in terms of time duration (maybe not in terms of dialogues)

and fewer users might be annoyed by poor policies in the early

stages of learning.

The paper is organised as follows. In Sec. 2, an overview

of the PSO algorithm is presented so as its application to the

DM framework. In Sec. 3 are presented the experimental set-

tings to illustrate the method and finally, in Sec. 4 are presented

some results about the test of the method on a spoken dialogue

system.

2. Black Box and DM optimisations

2.1. Criterion to optimise

The general optimisation problem to be solved is to find the

strategy, called a policy, which maximises a score related to the

quality of a dialogue. A policy π is a mapping from the state

space S to the action space A, π : S → A. The state space in-

cludes all the dialogue contexts the dialogue manager is able to

handle. One has to remind that some recognition error might be

introduced by the speech and semantic analysers thus the real

state of the dialogue is not perfectly known. It can also be a

continuous space which makes the exhaustive listing of context

impossible. Usually, the current state is built to be a summary

of the situations and actions previously encountered. Here, it

is built from the state returned by the Hidden Information State

(HIS) [12]. The action space consists of all the actions the DM

can perform, such as: “asking for information”, “providing in-

formation”, etc.

The goal of the optimisation problem is to find the strat-

egy π∗ which maximises some criterion J which quantifies the

performance of the policy: π∗ = argmaxπ:S→A Jπ. The cri-

terion is related to the quality of a dialogue and defined here as

follows:

J
π = E [20 · δfulfil −Nturns] , (1)

with δfulfil equal to 1 if the task has been completed at the end of

the dialogue, 0 otherwise and Nturns standing for the length of

the dialogue.

A parametric policy is defined, πθ(s), θ ∈ R
n being a vec-

tor of n ∈ N parameters. The optimisation solution thus re-

duces to find the optimal vector θ∗ associated with the optimal

strategy: θ∗ = argmaxθ J
πθ .

2.2. Particle Swarm Optimistion

PSO is a BBO algorithm inspired by methods aiming at mod-

elling the general behaviour of a bird flock or a fish school. It

is a biologically-inspired algorithm that searches for basic rules

defined for each agent of the flock which can explain the emer-

gence of a coherent group behaviour. The rules are related to

the position, the velocity and the neighbourhood of each of the

agents. Each move of the agent impacts on its neighbours ac-

cording to the rules and the whole flock is possibly disturbed.

During the modelling, an optimisation can be performed

provided that the position of each of the agent can be quan-

tified by means of a score. If the space where the flock can

possibly move is considered as the search space for the opti-

misation problem solutions and each agent is considered as a

candidate solution, finding the solution thus reduces to find the

agent which maximises the score. This is done by iteratively

selecting the best agent at each time step and by moving the

flock towards it and towards the best one ever encountered until

some criterion is reached. This approach has been first devel-

oped by [18, 19] for solving optimisation problems. Moreover,

this method has been proven efficient on solving problems con-

sidered as benchmark problems in RL in [23].

The flock of elements is called a swarm and each of the

agents is called a particle. Here, a standard implementation

is chosen [24]. The swarm used in this article contains NPART

particles with a von Neumann topology. The rules to update the

velocity vj and the position pj of a particle j at time step i are

the following:

v
j
i+1 = wv

j
i + c1r1 · (b

j − l
j) + c2r2 · (l

j
p
j)

p
j
i+1 = p

j
i + v

j
i+1

with some constant parameters w, c1 = c2, r1 and r2, bj the

best position ever found by the particle j and lj the best posi-

tion ever found by one particle in the neighbourhood of particle

j. The position of the particles are initialised randomly in the

search space and the velocities are initialised to zero.

2.3. Application of the PSO algorithm to the DM problem

Each particle of the swarm implements a candidate policy. Each

time the swarm moves, new candidates are considered and some

exploration of the search space is performed. Yet, the computa-

tion of the fitness function for each of the particles is not possi-

ble because of the expectation (Eq. 1). Only an approximation,

thanks to a Monte Carlo (MC) sampling can be computed. The

MC sampling is known to be an unbiased estimator of the true

function. A MC sampling consists in testing on a user the con-

troller implemented by a particle and to compute the score for

this test. Several tests can be done with one particle (so one



policy) but with different users so as to estimate the fitness. For

each particle j of the swarm, K tests leading to dialogues of

length T
j
k are made with the policy parameterised by θj . The

estimation is thus:

Ĵ(θj) =
1

K

K
∑

k=1

(20 · δk,jfulfil − T
j
k ).

New candidate policies proposed during the exploration of the

search space are directly presented to the users. This approach

is called on-policy (and online since the data used for the opti-

misation are not collected beforehand). The exploration phase

is necessary in order not to find sub-optimal solutions. In the

usual RL framework, the exploration is usually made at the

decision level: a random action is chosen from time to time.

This random decision may not be consistent with what previ-

ously happened and may disturb the dialogue. Safer exploration

schemes can be proposed like those presented in [21]. However,

when a policy search method is used, instead of having explo-

ration at the action level, the exploration is made on the param-

eters of the policy (which makes the whole policy to change).

3. Experimental settings

The test of the algorithm has been led on the tourist infor-

mation task developed by the University of Cambridge. The

aim for the dialogue manager is to find a venue corresponding

to the user request. The request can contain up to twelve at-

tributes. This DM uses the Hidden Information State (HIS) [12]

paradigm to maintain a knowledge about the dialogue history

and to build the current state. Notice that, even though this

method is claimed to exhibit a Markovian state, no guaran-

tees are provided. Using standard RL may thus lead to sub-

optimal strategies. The DM interacts with simulated users in

order for the experiments to be reproducible. The user simu-

lation is agenda-based [25]. A goal ensures the simulator to

exhibit a consistent, goal-directed behaviour. The speech un-

derstanding error rate is set to 10% by using an error simulator.

This framework has been chosen so that an accurate com-

parison can be made with results obtained in previous works

with RL approches. Indeed, successful strategies got by us-

ing the HIS paradigm have already been obtained by means

of the Gaussian Process Temporal Differences (GPTD) al-

gorithm [26], the Least Square Policy Iteration (LSPI) algo-

rithm [22], and the Kalman Temporal Differences (KTD) frame-

work [22].

To determine the policy, a score function is defined accord-

ing to a linear parameterisation Sθ(s, a) = θTΦ(s, a), with

Φ a set of basis functions built from a Radial Basis Function

(RBF) network. The policy is parameterised so as to maximise

the score: πθ(s) = argmaxa∈A Sθ(s, a). The state space in

the HIS paradigm is a 4 dimensional space. The two first di-

mensions, s1 and s2 stand for the confidence score associated

with the most probable dialogue histories. The third dimension

s3 is the most probable estimated user action (number of pos-

sible actions is 22). The fourth dimension s4 is the estimation

of the user goal (6 possible goals). The vector of basis func-

tions Φ results from the concatenation of a vector of three equi-

spaced Gaussians used in each continuous dimensions to tile

the 2D space spanned by s1 and s2 with the two states s3 and

s4. The standard deviation of the Gaussian is set to σ =
√
0.2.

The vector Φ defined for all (s, a) ∈ S × A is ΦT (s, a) =
[

δa,a1
φT (s), ..., δa,a12

φT (s)
]

with δa,ai equal to 1 if a = ai,

0 otherwise, φT (s) = [1, ϕ1
1(s

1, s2), ..., ϕ3
3(s, s

2), s3, s4] and

ϕ
j
i = exp(

−||s1−si||
2
+||s2−sj ||

2

2σ2 ), (si, sj) being the RBF cen-

ters equi-spaced in [0, 1]× [0, 1]. The dimension of the feature

vector is thus (1 + 9 + 2) · 12 = 144. The PSO algorithm has

thus to optimise 144 parameters.

4. Results

The performance of the PSO algorithm is usually evaluated rela-

tively to the number of calls to the fitness function computation.

In Sec. 2, it is stated that at each step of the algorithm, the parti-

cles are evaluated thanks to a Monte Carlo sampling. The num-

ber of particules NPART and the number of sampling NMC have

to be chosen by the designer of the system. For a given num-

ber of parameters and a given search space, the larger NPART,

the larger the exploration. Consequently, for a given number of

iterations, more candidate solutions would been tested. Find-

ing the optimal solution may be quicker in terms of iterations

and thus in terms of time. Similarly, the NMC number has an

effect on the learning. The larger NMC, the more precise yet

the costlier the evaluation. Thus, several numbers of NPART and

NMC have been tested to find a good compromise between the

accuracy of the evaluation at each time step and its cost. Since

the dialogue problem is stochastic, it is expected that the higher

the number of samplings, the more accurate the evaluation.

The first experiments led with the DM show the behaviour

of the policy returned by the best particle. The PSO algorithm

is tested at different steps of the learning and for different num-

bers of Monte-Carlo samplings. Fig. 1 presents the test of the

policy learnt by the best particle after NS iterations. The num-

ber NPART is set to 25. Several values of NMC have been chosen

to see sensibility of the method with respect to this parameter.

To plot the curves, a mean over 100 PSOs is computed. For

each PSO, the best policy is tested 100 times on random user

goals. On the x-axis is represented the number of iterations Ns

needed to perform the optimisation.

The results tend to stabilise beyond a certain Monte Carlo

number of samplings (NMC = 5). The standard deviation de-

creases when the number of Monte Carlo samplings increases:

in this case, the approximation is more accurate and the chance

of having either very good dialogues or conversely very poor

dialogues is smoothered and reduced. The standard deviation

also decreases when the number of steps increases with a rea-

sonable number of NMC (5 or 10): the trained policies become

more efficient.

We can compare the results to those returned on the same

problem by the KTD, LSPI and GPTD algorithms [22] which

have been proven efficient on such task. Indeed, from the num-

ber of steps NS , the number of samplings NMC and the number

of particules NPART, the number of training dialogues can be de-

duced ND = NPART ·NMC ·NS . The performance are quite sim-

ilar since the average number of turns in the dialogue after the

learning is the same, around 20−15 = 5. But the number of di-

alogues to reach the asymptote is larger in the PSO case (but still

reasonable for a dialogue problem, around 40·10·7 = 2800 ver-

sus 400 for KTD). This constraint is overtaken by the fact that

the architecture is parallel. Later experiment will show that this

number can be reduced. In the KTD and GPTD cases (which are

on-policy algorithms) the current policy is necessarily presented

to each new user calling the system at a given time. Therefore,

while a dialogue is running for learning, all the users are facing

the previously learnt strategy. However, in the PSO case, most

of people calling at the same time see updated policies.

Moreover, one has to remind that the fitness evaluation is

less informative in the PSO case than in the RL framework. In-
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deed, contrary to the RL approach where an update of the algo-

rithm is performed at each dialogue turn thanks to an immediate

reward, in the PSO approach, the evaluation is made at the dia-

logue level. Only the quality of a whole dialogue is used.

The number of particles also influences the learning. In the

previous experiments, the influence of the number of Monte-

Carlo samplings has been studied. Now, the number NMC is

set to 10, since in Fig. 1 this NMC value returned the best re-

sults, and the number of particles NPART changes. Results are

presented in Fig. 2. It appears that with a size of swarm of 25
the results are still of good quality. The number of training dia-

logues is decreased by 1.6 in this case. Results with size of the

swarm of 25 is presented in Fig. 3. After 7 iterations, the best

policy seems acceptable. The number of dialogue used for the

training is thus around 25 · 10 · 7 = 1750.

A compromise can be found between the number of dia-
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the learning.

logues needed for the training and the quality of the policy. If

the size of the swarm is set to 25 and the number of Monte-Carlo

samplings is set to 10, this compromise is reached.

Fig. 4 presents the average results of the policies presented

to each of the users during the learning. Each points on the

graph is the result of means over all the 40 particles of each of

the 100 BBOs for a different steps of the PSO. More precisely,

these results correspond to the score got during all the Monte-

Carlo samplings for a given iteration. Indeed, it is important

to have a look at the policies presented during the learning to

be ensured that too poor policies are not experimented. On av-

erage, after 20 iterations, even if the worst particles are taken

into account, the policies used for training lead to successful

dialogues in less than 10 steps.

5. Conclusions

This contribution proposes to use a Black Box Optimisation

framework to solve a Dialogue Management problem. This ap-

proach allows some assumptions about the environment to be

weakened. Indeed, usual frameworks require the Markov prop-

erty to be met. Here, optimisation can be performed even if the

state is not Markovian. The optimisation process is ensured to

return the best reactive policy, that is the policy based on obser-

vations. In a future work, we plan to use another state for the

learning than the one returned by the HIS paradigm. The poten-

tial method should just exhibit a memory to deal with the past

observations and the error of the speech and semantic analysers

(like a sliding window instead of a complex Bayesian frame-

work). The BBO has also the advantage of exhibiting a parallel

architecture.

The results obtained with a standard implementation of a

Particle Swarm Optimisation have been compared to state of the

art algorithms. The difference relies on the convergence rate.

Yet, the number of data needed to find an efficient policy seems

still reasonable. However, the BBO field is widely represented

in the optimisation litterature. This is a prooof-of-concept pa-

per using a standard BBO algorithm. In the future, we plan to

study more efficient BBO algorithms and maybe improve the

BBO litterature to fit the dialogue policy search application re-

quirements.
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