
HAL Id: hal-00923168
https://centralesupelec.hal.science/hal-00923168

Submitted on 2 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Achieving Pareto Optimal Equilibria in Energy Efficient
Clustered Ad Hoc Networks

Luca Rose, Samir Medina Perlaza, Christophe J. Le Martret, Mérouane
Debbah

To cite this version:
Luca Rose, Samir Medina Perlaza, Christophe J. Le Martret, Mérouane Debbah. Achieving Pareto
Optimal Equilibria in Energy Efficient Clustered Ad Hoc Networks. ICC 2013, Jun 2013, Budapest,
Hungary. pp.1491 - 1495, �10.1109/ICC.2013.6654723�. �hal-00923168�

https://centralesupelec.hal.science/hal-00923168
https://hal.archives-ouvertes.fr


Achieving Pareto Optimal Equilibria in Energy
Efficient Clustered Ad Hoc Networks

Luca Rose1,3, Samir M. Perlaza2, Christophe J. Le Martret3, and Mérouane Debbah1
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Abstract—In this paper, a decentralized iterative algorithm,
namely the optimal dynamic learning (ODL) algorithm, is anal-
ysed. The ability of this algorithm of achieving a Pareto optimal
working point exploiting only a minimal amount of information is
shown. The algorithm performance is analysed in a clustered ad
hoc network, where radio devices are assumed to operate above
a minimal signal to interference plus noise ratio (SINR) thresh-
old while minimizing the global power consumption. Sufficient
analytical conditions for ODL to converge to the desired working
point are provided, moreover through numerical simulations the
ability of the algorithm to configure an interference limited
network is shown. The performances of ODL and of a Nash
equilibrium reaching algorithm are numerically compared, and
their performance as a function of available resources is studied.
The gain of ODL is shown to be larger when the amount of
available radio resources is scarce.
Keywords: Learning, power control, trial and error, Nash equi-
librium, Pareto optimality, ad hoc network, channel selection,
spectrum sharing.

I. INTRODUCTION

In this paper, we consider a clustered ad hoc network where
clusters share a given amount of logical channels, each cluster
being allocated one channel at a time. Here, the clusters
select their radio settings (which we assume to consist of a
communication channel and a transmission power level) in a
fully distributed manner without cooperation nor coordination.
In this way, there is no need for inter-cluster information
exchange which requires extra resources. Moreover, this allows
the clusters to accommodate unforeseen situations where the
spectrum may not be fully mastered. From a practical point of
view, we consider the communication to be locally centralized
through the election of a cluster head (CH) that, for the
nodes within the cluster, takes care of the resource allocation,
including transmit channel and power level. We assume the
absence of any infrastructure which coordinates the CHs,
thus interference may occur in between nodes belonging to
different clusters which eventually select the same channel.
As a consequence, the transmission becomes more unstable
and problematic when the amount of available radio resources
(e.g., frequency channels) is much smaller than the amount of
CHs and nodes.

We propose an algorithm, namely optimal dynamic learning
(ODL), which is able to select a Pareto optimal network work-
ing point. Along with the channel assignment problem, we also
want to minimize the total transmit power over the network,
to minimize both the interference level on the field and the
battery drain of the nodes. This transmit power minimization
is constrained by imposing a certain quality of service (QoS)
per link within all clusters. Each CH is thus assumed to

choose independently a resource configuration to meet link
qualities expressed in terms of signal to interference plus noise
ratio (SINR). The closest works to ours are [1]–[3]. In [1],
an algorithm, namely trial and error (TE), was introduced
and studied for achieving in a decentralized way an efficient
equilibrium point; in [2], algorithms for a centralized power
control based on variational inequality theory are developed;
in [3], iterative water-filling is used to guarantee a certain
achievable rate and the authors provide, in a low interference
regime, a sufficient condition for the convergence. It is worth
noting that in the works in [2] and [3] the power levels are taken
from a compact set. Conversely, in our work, we consider finite
power levels, since, in realistic networks, it must be expressed
in a finite amount of bits. In addition, all the previous works
present algorithms which aim at achieving a Nash equilibrium
(NE). The reason to do so is that it is considered an intrinsically
stable working point. The price to pay, however, is the eventual
inefficiency of the equilibrium, as shown in [4]–[6]. In our
approach, the network is not driven to reach a NE, but to reach
a Pareto optimal working point. Our contributions in this paper
are: (i) we describe a completely decentralized algorithm,
namely an optimal dynamic learning (ODL) algorithm, able
to keep the SINR level above a certain threshold a high
proportion of the time; (ii) we prove that through our utility
function, only one bit feedback per receiver and on local
information are needed to reach a Pareto optimal solution (iii)
we compare through numerical simulations the performance of
ODL with Trial and error (TE), an algorithm that implements
a Nash equilibrium solution with high probability. The paper
is organized as follows. In section II we present and detail the
two system models considered in this work; in section III, we
introduce a game theoretical formulation for the network; in IV
we briefly describe ODL and we state some theoretical results;
in V we present and comment the results of our experiments;
finally in VI we draw our conclusions.

II. SYSTEM MODEL

In this work, we consider two system models. The first is a
simple mathematical abstraction often employed in the litera-
ture and known as interference channel (IC), used to illustrate
some properties of our algorithm. The second scenario is a
more realistic model of a dense network, which serves us to
show the ability of the proposed algorithm to organize the
transmission.

Let us define as K 4
= {1, . . . ,K} the set of clusters,

I = {1, 2, . . . , I} the set of transmitter-receiver pairs and
Nk = {1, 2, . . . Nk} the set of pairs belonging to cluster k ∈ K



such that ∪k∈KNk = I. Let us denote by C 4= {1, 2, . . . , C}
the set of channels that can be chosen by the CHs, let
be ck ∈ C the channel chosen by CH k. Each of these
channels is then partitioned into B sub-channels assigned by
the CH to the transmitters to communicate, we indicate by
B = {1, 2, . . . , BK} the sub-channels set and by bi ∈ B
the sub-channel used by the pair i ∈ I to communicate.
Moreover, each transmitter i belonging to cluster k uses a
transmission power pk which is set by the CH. We denote
by P 4= {0, ..., PMAX} the set of available power levels such
that ∀k ∈ K pk ∈ P and |P| = Q, i.e., Q is the number of
quantization levels.

In the following, we denote by p = (p1, p2, . . . , pK) the
network power allocation vector, by c = (c1, c2, . . . , cK)
the spectrum occupation vector, by a = (a1, a2, ..., aK) the
network configuration vector, or action profile, where ak =
(pk, ck) and ak ∈ Ak = P × C. At every time instant, each
transmitter attempts to communicate with its corresponding
receiver which in turn evaluates the received signal’s SINR.
If it is greater than the minimum SINR threshold Γ, then
the transmission was successful and the receiver transmits a
positive ACK to the CH, otherwise, it transmits a NACK. Note
that this notification mechanism requires only 1 bit feedback
per receiver.

Here, the CHs have no information on the behaviour of
the other clusters, thus they completely ignore other clusters’
codebook or transmission scheme, and receivers treat interfer-
ence as Gaussian noise. The multiple access interference (MAI)
suffered from the receiver of the i-th pair belonging to cluster
k is then:

MAIi(a) =
∑
`∈K\k

N∑̀
m=1

p`G
(bi)
(m,i)1{bi=bm}, (1)

where G
(bi)
(`,i) represents the channel power gain between the

transmitter of the l-th pair and the receiver of the i-th pair,
over sub-band bi and 1{} represents the indicator function.
We assume the channel to be block-fading, i.e., it remains
invariant during the whole transmission time. Given (1), the
SINR achieved from the pair i belonging to cluster k is

SINRi (a) =
pkG

(bi)
(i,i)

σ2 +MAIi
, (2)

where G
(bi)
i,i represents the channel power gain between the

transmitter and the receiver of the pair i, employing the sub-
band bi and σ2 is the power of the thermal noise, assumed to
be constant over the whole spectrum.

Our objective is the satisfaction of the SINR constraints
for the largest possible set of pairs by using the lowest
global energy consumption. Formally, we want the network
configuration vector a∗ to be a solution of the following
optimization problem min

p∈PK

K∑
k=1

pk

s.t. SINRi (a) > Γ ∀k ∈ K∗
, (3)

where we denote by K∗ ⊆ K the largest subset of links able to
simultaneously achieve a sufficient SINR level. Generally, to
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Fig. 1. System model for the interference channel. Here the two clusters
share C = 2 available channels.
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Fig. 2. Scenario of a dense system. Here, a square field with a 5 Km side,
is populated with K = 16 square clusters each equipped with Nk = 4
transmitter-receiver pairs. Clusters share C = 4 channels choosing between
Q = 8 power levels. The channel power attenuation is evaluated following a
2-ray model.

achieve this goal a central controller knowing all the network’s
parameters is required.

A. Small Networks

Here, we describe the system represented in Fig. 1. It is
composed of K = 2 clusters, each populated with Nk = 1
transmitter-receiver pair, sharing the same spectrum divided
into C = 2 orthogonal channels. Each transmitting device
has a maximum output power of PMAX = 20 W, linearly
quantized into Q = 3 levels and tries to achieve a SINR level
of Γ = 10 dB. Here, we consider a particular channel gain
matrix G defined as:

G(1) =

[
1 1
0.1 1

]
, G(2) =

[
0.4 0.1
0.1 0.2

]
. (4)

We consider a normalized noise power, i.e., σ2 = 1 W.

B. Large Networks

We describe the scenario represented in Fig. 2. The system is
composed of K = 16 square clusters, divided on a square field
of 5 Km side. Each cluster is populated by Nk transmitter-
receiver pairs randomly positioned inside the clusters. For the
sake of simplicity, we take Nk to be independent from k, i.e.,
Nk = N . Each transmitting device can transmit a maximum of
PMAX = 50 W logarithmically quantized into Q = 8 levels.



Here, each CH must choose between C = 4 available channels,
each of which is assumed to have a passing bandwidth of B =
1.25 MHz, around a central frequency f0 = 400 MHz. Channel
power gain is evaluated through the well known 2-ray model
[7]:

Gbi(t,r) =
h2
th

2
rgtgr

d(t, r)4
, ∀i, t, r ∈ I (5)

where ht = 1.5 m and hr = 1.5 m are, respectively, the
transmitter and receiver antennas heights, gt = 1.5 dB and
gr = 1.5 dB are, respectively, the transmitter and receiver
antennas gain, and d(t, r) is the distance between node t and
node r.

III. GAME FORMULATION

In this section, we briefly model the scenarios presented
in Sec II under a normal-form formulation. Thank to this
formulation, we are able to design a utility function that permits
us to predict the most probable state of the network.

A game in normal-form is described by the triplet:

G =
(
K,A, {uk}k∈K

)
, (6)

where K represents the set of players, i.e. the CHs, A is the
joint set of actions, that is, A = A1 ×A2 × ...×AK and we
introduce the utility function uk : A → R defined by:

uk(a) =
1

1 + βNk

(
1− pk

PMAX
+ β

∑
i∈Nk

1{SINRi(a)>Γ}

)
,

(7)
where β is a design parameter discussed in Sec IV. This
function is an extension of the utility function introduced
in [1] to a case with multiple pairs per cluster. To measure
the global performance of an action profile we use the so-
cial welfare, defined by the sum of all individual utilities:
W (a) =

∑K
k=1 uk(a). Notice that, every action profile a∗

such that a∗ ∈ arg maxa∈AW (a) is also Pareto optimal.
In order to evaluate (7), each player, i.e. each CH, only

requires intra-cluster information. In detail, the power level pk
is set by the CH and, each receiver i feeds back 1{SINRi(a)>Γ}
to the CH. We underline that this feedback mechanism only
requires one bit per transmission.

In the following, we show that by using the utility function
defined above, the action profile which maximize the social
welfare of the game G solves the problem stated in (3),
regardless of the underlying network topology.

The algorithm which we propose, is based on the concept
of interdependent game, i.e. a game where the utility of any
group of players depends on the action selected by at least one
other player. More formally we can define an interdependent
game as follows.

Definition 1: (Interdependent game). Let G be such that
for every non-empty subset K+ ⊂ K and every action profile
a = (aK+ ,a−K+)1 such that aK+ is the action profile of all
players in K+, it holds that:

∃i /∈ K+,∃a′K+ 6= aK+ : ui(a
′
K+ ,a−K+) 6= ui(aK+ ,a−K+),

(8)
1Here, a−K+ refers to the action profile of all the players that are not in
K+

then, it is interdependent.
In the following, we assume the game G to be interdependent.
From a physical stand point, this means that in the network
there is no cluster, or group of clusters, able to create interfer-
ence without suffering any. This is a reasonable assumption in
a wireless context if channel reciprocity holds. Moreover, in
the system model introduced in section II-B this is guaranteed
from the assumption of dealing with a dense network.

IV. ALGORITHM DESCRIPTION

In this section, we briefly describe the distributed learning
algorithm introduced in [8] and we analyse its general proper-
ties.

A. Algortihm Description

In ODL, every player k implements a state machine, where
a state Zk(n) = (mk(n), ak(n), uk(n)) is defined by a triplet
composed by a mood mk(n), a benchmark utility ūk(n) and a
benchmark action āk(n). Transitions between the states happen
when a change occurs in the utility as a consequence of a
variation in the network (e.g., fading, a player switches its
channel). There are two possible moods: content (C) and
discontent (D).
• Content
If at time n player k is content, it chooses action ak(n)

following the probability distribution

πk,ak =

{
εK+1

|Ak|−1 if āk 6= ak
1− εK+1 if āk = ak.

, (9)

where πk,ak = Pr (ak(n) = āk(n)). In the case in which
āk(n) = ak(n) and ūk(n + 1) = uk(n + 1) (i.e., it did not
experiment and the utility has not changed), then mk(n+1) =
C, āk(n + 1) = āk(n) ūk(n + 1) = ūk(n). Otherwise, if
āk(n) 6= ak(n) or ūk(n+ 1) 6= uk(n+ 1), the player updates
the benchmark utility and action with the new values, then
it remains content with probability ε(1−uk(n)) or it becomes
discontent with probability 1− ε(1−uk(n)).
• Discontent

If at time n player k is discontent, it chooses action ak(n)
with uniform probability among all its possible choices. Then,
with probability ε(1−uk(n+1)) the mood changes to content,
and ak(n) and uk(n + 1) become the new benchmark action
and utility, while, with probability 1− ε(1−uk(n+1)), the mood
remains discontent.

B. Algorithm properties

The algorithm previously described shows some useful prop-
erties shown in [8]; for the sake of simplicity, we rewrite the
main result within with our notation.

Theorem 1: Let G be an interdependent K-person game
on a finite joint action space A. Under the dynamics defined
by ODL, a state Z is stochastically stable if and only if the
following conditions are satisfied:
(i) The action profile a maximizes W (a) =

∑
k∈K uk(a)

(ii) The mood of each agent is content, i.e., mk = C ∀k ∈ K.
The concept of stochastic stability, introduced in [9], is at
the base of the algorithm. Basically, a stochastically stable
action profile is an action profile that, once it is reached by the



TABLE I
TABLE SUMMARIZING THE PERFORMANCE COMPARISON BETWEEN ODL

AND TE ON A SMALL NETWORK.

Average Welfare Average Satisfaction
ODL 0.39 0.37
TE 0.21 0.11

algorithm, there is a small probability of leaving it. Note that,
compared with other results in the literature, for instance [10],
[5], this algorithm does not focus on reaching a NE. Thus the
action profiles most implemented by ODL have, generally, a
higher social welfare than those implemented by NE-focussed
algorithms. On the other hand, social welfare maximizing
action profiles, generally, are not individually optimum, thus
they are intrinsically less stable than NE.

We aim at linking the welfare maximizing action with the
solution of the problem in (3). The next theorem proves that
the action selected with highest probability by ODL is the one
which solves the global optimization problem.

Theorem 2: Let G be a K-person game, where each player
implements ODL with utility function (7), and let it be β > K.
Then, the action profile with the highest social welfare is a
solution of (3).
This theorem states that if the parameter β is greater than
the number of clusters K then, the action mostly selected by
the algorithm, say a∗, satisfies the constraints of the largest
possible set of pairs while minimizing the power consumption.
The proof of this theorem is given in appendix A.

V. SIMULATION RESULTS

In this section we present the results of the numerical
simulations run for showing the performance of ODL in the
scenarios introduced in section II.

A. Small Network

Given the model in section II-A, it can be proven
that the game G has one NE composed of the pair
aNE1 = (cNE1 , pNE1 ) and aNE2 = (cNE2 , pNE2 ) with
cNE1 = 1, cNE2 = 2,pNE1 = 10 W and pNE2 = 0 W.
We denote by a∗1 = (c∗1, p

∗
1) and a∗2 = (c∗2, p

∗
2) the social

welfare maximizing action profile with c∗1 = 2, c∗2 = 1,
p∗1 = 20 W and p∗2 = 10 W. We run 105 tests of ODL and
trial and error (TE) [1], a NE reaching algorithm. The results
are summarized in Table I.
As we can see from the simulation results, ODL achieves a

higher social welfare thanks to the higher level of satisfaction
in the network.

B. Large network

Here, the network underlying the numerical simulation is
the one in II-B. First, we run 10 experiments each of which
composed by 6000 iterations of ODL, on a scenario where
each cluster is composed by N = 4 pairs. The results are
summarized in Fig. 3. The upper curve represents the average
level of satisfaction, i.e., the average fraction of pairs which
are able to satisfy their SINR constraints. The lower curve rep-
resents the average amount of power spent in network. Around
the 60% of the pairs is able to achieve a SINR > 10 dB,
while employing an average power of 20 W. In Fig. 4, we
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Fig. 3. Performance of the algorithm in a dense network. The upper curve
represent the average level of satisfaction in the network, the lower curve the
average level of power spent. The standard deviation is plot along with the
average.Here, K = 16 clusters with 4 pairs share C = 4 channels.
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Fig. 4. Performance of the algorithm in a dense network. The upper curve
represent the average level of satisfaction in the network, the lower curve the
average level of power spent. The standard deviation is plot along with the
average.Here, K = 16 clusters with 4 pairs share C = 3 channels.

reduce the number of available channels to C = 3. This reduces
the system performance in terms of average satisfaction, due
to the fact that the scarcity of spectral resources implies a
higher level of mutual interference. The reduction of the level
of power employed is a consequence of the utility function
chosen. By simple inspection of (7), we can see that if a player
cannot be satisfied, for instance because in all the channels the
interference level is too high, the power level which maximizes
its utility is pk = 0.

C. ODL and TE comparison

In this section, we compare the performance of the TE algo-
rithm (a NE reaching algorithm) introduced in [1], and ODL.
Both algorithms share a state machine structure, a stochastic
nature and they require the same amount of information. The
main difference lies on the converging point. Implementing
a social welfare maximizer may come at the cost of stability
and of converging time. This can be consider an instance of the
exploitation versus exploration trade-off. In the next simulation,
we run extensive experiments over the network described in
section II-B, where we vary the number of available channels,
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from C = 2 to C = 7. The results are represented in Fig. 5.
The comparison is performed in terms of social welfare overall
the simulation time. The red dashed line represents the social
welfare reached in the network when employing ODL, while
the black continuous line represents the social welfare reached
by employing TE. This plot shows that for such a network,
ODL improves the performance only if C ≤ 6. The reason
behind is that, when the resources are scarce, the difference in
performance between a Pareto optimal working point and a NE
increases. As a consequence, under these conditions, the loss
due to the instability of ODL is well counterbalanced by the
gain due to the selection of a well-performing working point.

VI. CONCLUSIONS

In this work, we have studied the performance of an al-
gorithm, namely optimal dynamic learning (ODL), suitable
for self configuring wireless networks. This algorithm is able
to jointly set channel and power level in order to guarantee
with high probability that the largest set of devices is able to
communicate, while employing the minimal necessary power.
ODL requires neither prior information on the network nor any
channel state information, and it relies only on local available
information. ODL does not focus in implementing a Nash
equilibrium (NE), rather it aims at finding a globally optimal
solution. Simulation results show that, when the resources of
the network are scarce compared to the amount of potential
users, this approach brings advantages over NE reaching algo-
rithms.
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APPENDIX

Proof: We aim at proving that:
• (i) Let a∗ be an action profile which satisfies L∗ links

and let ax an action profile which satisfies Lx links, and
let L∗ > Lx, then W (a∗) > W (ax) ;

• (ii) Let a∗ = (p∗, c∗) be such that a∗ = arg max
a∈A

W (a),
let L∗ be the number of links satisfied with a∗ and let A∗
be the set of action profiles which satisfy L∗ players, then
the power vector p∗ is such that p∗ = arg min

p∈PK

∑
k

pk.

To prove (i), let us write the social welfare as:

W (a) =
∑

k∈K
1

1 + βNk

1−
pk

PMAX
+ β

∑
i∈Nk

1{SINRi(a)>Γ}


=

∑
k∈K

(
1− pk

PMAX

)
+ β

∑
k∈K

∑
i∈Nk

1{SINRi(a)>Γ}

1 + βN
.

Note that we used the assumption Nk = N . Since
0 ≤ pk ≤ PMAX by definition, we have that:

0 ≤
∑
k∈K

(
1− pk

PMAX

)
≤ K. (10)

By using the left side of inequality (10), and the assumption
that a∗ is an action profile which satisfies L∗ links, we can
write W (a∗) ≥ βL∗

1+βN . Similarly, using the right side of
inequality (10), and the assumption that ax is an action profile
which satisfies Lx links, we can write W (ax) ≤ K+βLx

1+βN .
Since Lx, L∗ ∈ N, we can write the assumption Lx < L∗

as Lx ≤ L∗ − 1, which implies W (ax) ≤ K+βL∗−β
1+βN . For the

assumption that β > K, we can then write K+βL∗−β
1+βN < βL∗

1+βN .
Now, following the chain of inequalities, we can state that
W (ax) < βL∗

1+βN ≤W (a∗), which proves (i).
To prove (ii), it suffices to note that W (a) is monotonic de-

scendent with
∑
k∈K pk, thus, any welfare maximizing action

profile must minimize the sum of the power, while keeping
constant the number of links satisfied. Which proves (ii) and,
thus, our thesis.


