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Energy Efficient Design in MIMO Multicell
Systems with Time Average QoS Constraints

Subhash Lakshminarayarfatudent Member, IEEBVIiohamad Assaatflember, IEEEand Merouane
DebbahSenior Member, IEEE

Abstract—In this work, we address the issue of energy efficient
design in a MIMO multi-cell network consisting of N cells, V;
antennas per BS andK UTs per cell. Under this set up, we
address the following question: given certain time averag€oS
targets for the users, what is the minimum energy expenditug

to dynamically allocate resources over the fading channel
states as compared to instantaneous QoS constraintsria ter
of energy savings, time average QoS constraint can lead to
better performance, due to the fact that the transmissians c

with which they can be met? Time average QoS constraints can be delayed until favorable channel conditions are seers thu
lead to greater energy savings as compared to instantaneousminimizing the energy expenditure. The concept has also bee

QoS constraints since it provides the flexibility to dynamially
allocate resources over the fading channel states. We forrtate
the problem as a stochastic optimization problem whose salion
is the design of the downlink beamforming vectors during eadc
time slot. We first characterize the set of time average QoS tgets
which is achievable by some feasible control policy. We thease
the technique of virtual queue to model the time average QoS
constraints and convert the problem into a queue stabilizabn
problem while minimizing the time average energy expenditte.
We solve this problem using the approach of Lyapunov op-
timization and characterize its performance. Interestindy, our
solution leads to a decentralized design in which the BSs onl
have to exchange limited side information. Our simulation esults
show that solving the problem with time average QoS constraits
provide greater energy savings as compared to the instant@ous
QoS constraints.

I. INTRODUCTION

exploited in the context oénergy-delay trade offfil0], [11].

We formulate our problem as a stochastic optimization
problem and propose a solution based on the technique of Lya-
punov optimization[[12],([113], which provides simple ordin
solutions based only on the current knowledge of the system
state (as opposed to traditional approaches such as dynamic
programming which suffer from very high complexity and
require a-priori knowledge of the statistics of all the rand
processes in the system). Of particular relevance is thé wor
of [14] which deals with the problem of minimizing the
average power expenditure in wireless networks to suppert t
incoming traffic. However, the physical layer model conside
is a simple conflict graph based model in which if two
transmitters are within the interference range of eachrpthe
only one of them can transmit. Therefore, the rate achieved

Energy efficiency is becoming an important concern in tHéepends only on the power allocated to the link which is

design of future wireless networks both from environment&fheduled (and hence the signal to noise ratio (SNR) of the
and economical point of view. Energy efficient design ifink). However, advances in physical layer techniques like
cellular networks addresses the concerns of ICT relatdsbear Multiple antenna technologies allow multiple users to estex
emissions (1], [[2] and leads to a reduction in the costs 6Fer the same resource block. Therefore, in this work, we
running the network due to the reduction in the energy bifionsider the problem of energy efficient transmissions in a
B3] MIMO multi-cell scenario.

The main focus of this work is energy efficient transmis-
sion in MIMO multi-cell networks. Some of the past works Our contributions in this work are as follows.
focusing on energy efficiency in MIMO systems includée [4p We first formulate thefeasible QoS regiani.e. the set
(for single user MIMO system)[[5] 6] (which consider theof target QoS constraints that is achievable by some control
effect of circuit power in addition to the transmission powe Policy.
Recent works focusing on this topic include [7] [€]] [9].  We model the time average constraint asréual queueand

In this work, we consider the problem minimizing thdransform the problem into a queue stabilization problerilevh
time average energy expenditure subject to time average QB®imizing the average energy expenditure. We then use the
constraints, in a MIMO multi-cell system. The QoS metri¢echnique of Lyapunov optimization [12], [13] to formulzae
we refer to in this work is the difference between the timgynamic control strategy that satisfies the time average QoS
average useful signal power and the time average intederefargets. Our algorithm leads to a decentralized design istwh
signal power which is constrained to be greater than tiee BSs can formulate the beamforming vectors using only
target value. Our motivation to consider the time averags Qe local CSI. The BSs would only have to exchange virtual

constraint comes from the fact that it provides the flexipili queue-length information among themselves.
e We provide the performance bounds for our decentralized

algorithm and show that its performance in terms of the
energy expenditure can be made arbitrarily close to theggner
expenditure of the optimal policy.

S.Lakshminarayana, M.Assaad are with the Dept. of Teleconica-
tions, SUPELEC, France. S.Lakshminarayana and M. Debbalalao with
the Alcatel-Lucent Chair on Flexible Radio, SUPELEC, Fene-mail:
{firstname.lastnanje@supelec.fr.



Il. SYSTEM MODEL system performance as compared to the instantaneous (peak)

We consider a MIMO multi-cell scenario consistingcells ~constraints[[17],[[18].
and K UTs per cell. The UTs in each cell are served by their The transmission power by each BB[t] depends on
respective BSs which are equipped with antennas. The UTs the b_eamformlng vectorKdurlng the time slotwhich can
have a single antenna each. The notation pdenotes thg- D€ given asPift] = 3., willtlwi[t], i = 1,...,N.
th UT present in the-th cell. The BS of each cell serves onlyTh€ optimization problem to minimize the average energy
the UTs present in its cell. We consider a discrete-timekslocexpenditure subject to time average QoS constraint can be
fading channel model where the channel remains constant fgfmulated as
a given coherence interval and then changes independently 1= N
from one block to the other. We index the time slots ty min  lm - > E{ZPi[t]} )
We denote the channel vector from the ;B® the UT,; =0 =1

during the time slott by h; ;.[t] € C™ . We define the Co1 e o
channel matrixH[t] given H; ;[t] = [hi 1 [t], ..., h; x[t]; st lim = ; Elyiiltl = Xij,  Vi,j (4)
Hl[t] = [Hi71[t],...7Hi7N[t]] andH[t] = [Hi[t],...7HN[t]]. K N

The channel procesdH][t], ¢ = 0,1,2,...} is assumed to be Hidw. [t < P Vit 5
an independent and identically distributed (i.i.d) diseréme ;W”[ Jwislt] < Poea " ®)

stationary ergodic random process which takes values fnem t ) . )

finite state spacd?(,,...,H;}. We denote the distribution where Preak is the peak power at which the BSs can transmit.

PAH[] = H;) = m | =1 L whereY,m = 1 The optimization problem i {3) is a stochastic optimizatio
- - 9 - 7 l

UTproblem. The control action to be taken during each time
slot is the formulation of the downlink beamforming vectors
(w; ;[t] Vi, 7) during every time slot. In particular, we search
for the sequence of control actions which result in minimum

viilt] = hﬂj[t]wi,j[t]xi,.j[t] + Z hﬁi7j[t]wn,k[t]xn,k[t] time average energy expenditure while satisfying the time
(n,k) average QoS constraints.
#(4.9) We will henceforth denote the time average quantities by
+ziglt] (1) 7 =limroe & Y1 Elaft]. )
where z; ;[t] € C represents the information signal for thé‘et_ Fin t,)e .the mﬁmum time average powdr incurred .
UT,, during the time slott and z,; ~ CA/(0, No) is the while achieving the time average QoS targets over all ptessib

corresponding additive white Gaussian complex noise. Tﬁgcl]_uence of con_tro_l ac_t|0ﬂ5. In th_'z Work_, Wei useI'Fhe tecnlhn_|q
QoS metric which we denote by, ;[¢] is of Lyapunov optimization to provide a simple online solatio

to the stochastic optimization problem.
Yilt] = Wi s [P = D twil i [fhn s 117 (2)

Let us denote the beamforming vector corresponding tg |
during slott by w; ;[t] € CN*. The signal received by Ul
during timet is given by

(n,k) I11. A CHIEVABLE QOS REGION
) #(0d) Before we solve[(3), we will first characterize the set of
Comment on the QoS metric: all the time average QoS targets which can be satisfied by

The QoS metric chosen in this work represents the differengeme control policy. Problenf](3) is solvable only if the time
between time average useful signal power and the time a@eragerage QoS constraints lie within this region. Let us define
interference signal power. In addition to multi-cell netk® the matricesW,; = (Wi1,...,WiK] € CN*K and W =

the QoS metric in our work can be applied to cellular networksy, . W] € CV**V5 we denote the collection of all
with cognitive network underlay. In this context, one cafeasible beamforming vecto by the set which can be
view the QoS metric in similar spirit with metrics such agharacterized as follows,

interference temperature control [15], [16], [17].[18] ¢vhich

N. .o
the interference, peak interference power (PIP) or average W={W : w;; € C"" Vi,j
interference power (AIP) is constrained to below a certain s.t. wafjwij < Prax, Vi}. (6)
threshold). Our QoS metric is more general in the sense that i o

we constraint the interference signal to be below the usetHJ]e QoS associated with a particular beamforming povéy
signal power upto a threshold level. The target QoS values GRhen the channel is in stateis

be adjusted to different values depending on the tier to fwhic
the users belong, e.g. the primary users can have higher QoS v ;(I, W) = |hfﬂ-_’jwi7j|2 - Z |h£i7jwn,k|2- )
target (since the primary users are licensed users and hence (n,k)

demand greater QoS guarantees) and the cognitive users can #(5:7)
have a lower QoS target. In this work, we consider the time also define the vectorg; (1, W) = [y 1,. ... 7i.x] € RX
average QoS constraints as it can provide more flexibility gg,q ~1, W) = [n,...,n] € RVE. The achievable QoS

compared to instantaneous constraints in terms of dyndifnicaegion is then given by

allocating resources over fading channel states, thugnigéa

better system performance. It has been shown in some workE = {A eRM X< " mCH(v(1L, W)W € W)} (8)
in the past that time average QoS constraints lead to better l



whereCH(A) represents the convex hull of the skt where A; ;[t] = >~ (n.x) |wff_’k[t]hn_,i7j [t]|? + \;; denotes the
The basic idea here is that by time sharing between different #(i,3 o )

beamforming vectors in the sev, any QoS constraint inside &Tval process andu; ;[tf] = |wi;[t]h;;;[t]|> denotes the

the region defined by the convex hull should be achievabf€Parture process The notion of strong stability of theuwirt

The achievable QoS region of the form{11) is similar to th@Ueue is given as_, ; Q;;[f] < oo. Ensuring the strong

characterization of the stability region in the case of sefiag  Stability of the virtual queue implies that thiem of time

algorithms in wireless networks(e.g. see Theorem 3.6,)[12fvVerage of the arrival process is less than or equal to theser

The result state more formally is as follows: for any targdt’0Cc€SS [14], i.e.

QoS lying inside the stability regiom\(€ T'), there exists a A; [t — st <0 Vi, j. (13)
stationary randomized policy that can achieve the targed Qo ) , o
[19], Theorem 4.5. In other words, the constrainf](4) is satisfied. Thus, we

reformulate the original problem into a problem of staliilg

IV. ENERGY EFFICIENT DECENTRALIZED BEAMFORMING  the virtual queue while minimizing the time average energy
DESIGN expenditure.

Before we solve[(3), we will first characterize the set of In order to solve this, we use the technique of Lyapunov op-

T, i . L
all the time average QoS targets which can be satisfied Imization [12] which allows us to consider the joint proie

; . ; : oystabilizing the queue and performance optimization.
some control policy. Probleni](3) is solvable only if the time To this end, we define the quadratic Lyapunov funcfion

average QoS constraints lie within this region. Let us defirﬁ@v S RasV(QH]) = 1Y (Qi,l])2. The Lyapunov
. T 2 L g\ :

: o ) ) N¢x K _
the matricesW; = [wiy....,wix] € C and W function is a scalar measure of the aggregate queue-lemgths

[W1,...,Wy] € CV*NE We denote the collection of all th t We define th st ditional L v drif
feasible beamforming vecto/ by the setl’y which can be € system. WVe define the one-step conditional Lyapunov dr

characterized as follows, as
AQt]) =E t+ 1)) - v(Ql)|Qlt 14
W (W : ws € O vij @) =E [Vt +1) - vQi|Qr|] @4
st Hoo < Poo. Vil g) Where the expectation is with respect to the random channel
zj:www = Vil © states and the (possibly random) control actions made in

reaction to these channel states.
We will now examine the Lyapunov drift corresponding to
the evolution of the virtual queu@; ;.

_ H 2 H 2
i3 (L, W) = [hg jwi 5|7 — Z By W,k (10) Proposition 1. For the virtual queue which evolves according

The QoS associated with a particular beamforming poW¢y
when the channel is in states

;(é?ékj)) to (I2), the Lyapunov drift follows the following condition.
H
We also define the vectors, (I, W) = [v,1,...,7vix] € R® A(Q[t]) + VIE[ZWM [tw:;[1]|Q[H]] < €1
andv(I, W) = [y1,...,7n] € RV¥. The achievable QoS J
regionis then given by + Z Qi it — ZIE [Qm [t] (|wﬁj [t]h.; ;[t]|?
T ={AcRY A< meH(v(L, W)W ew)} (11) " !
{ 2 } = 3 w1
whereCH(A) represents the convex hull of the skt ;S(l;-f?)
The basic idea here is that by time sharing between different "
beamforming vectors in the s&V, any QoS constraint inside = Vwiltlwi;t] ’Q[t]} v (15)

the region defined by the convex hull should be achievable, 1 a2 a2

The achievable QoS region of the form{11) is similar to thNereCr =332, ; ]E{(Aiyj [£])* + (5[t } < oo and
characterization of the stability region in the case of dciiag _ 12 o
algorithms in wireless networks(e.g. see Theorem 3.6))[12] Amaxlt] = N Fpearmax [Bn.i,g 7+ Aig (16)
The result state more formally is as follows: for any target fimax[t] = Poeakhi i j[t]% 17)
QoS lying inside the stability regiom\(€ T'), there exists a
stationary randomized policy that can achieve the targed Qg\
[19], Theorem 4.5.

The proof follows from the steps in Appendix, part I.

ccording to the theory of Laypunov optimization, a good
method to choose the beamforming vector is to minimize the
bound obtained in[{15). This implies that the beamforming

V. ENERGY EFFICIENT DECENTRALIZED BEAMFORMING . .
vector should be chosen in the following manner:

DESIGN

In this work, in order to model the time average Qo$vi;|t] € argmaxyecyy Y, En [Qi,j[tnwfjhi,i,j[t”Q (18)
constraint, we use the concept wirtual queue[19]. The H ) "

virtual queue associated with the time average constraint _Qm’[t]z(mk_) (Wi ki [E]] = VWi wi Q(t)}

i > \i; evolves in the following manner, #(69)

1in general mean rate stability is sufficient to ensure thisdition. Here
Qi jlt + 1] =max (Qi;[t] — pi;[t], 0) + Ai;[t] (12) peusea stronger notion of stability.




where Eg indicates that the expectation is with respect tdherefore, our formulation naturally leads to a decerzedli
the random channel realization. We will assume that the BSalution.
have the perfect knowledge of CSI of all its downlink chasnel We will hereby address the algorithm corresponding to solv-
(h; » 1 Vn, k)and propose a method to sol{e](18). Interestingling (21) as the decentralized beamforming (DBF) algorithm.
our problem approach also leads to a decentralized solittioniWe will also denote the solution corresponding fol(21) by
the multi-cell scenario. Further, we will theoreticallyawine the superscript "opt”. We will now provide some theoretical
some properties of this algorithm and analyze its perforgaan analysis into the performance of the DBF algorithm.

With the perfect knowledge of CSI, the optimization prob- . . .
lem (I8) reduces to greedily minimizing the term inside thlglropoglt!on 2'. Under the DBF strategy, during every time
expectation E[f(Y)[Y] = f(Y)). Therefore, we remove the Slot ¢, it is optimal for BS to serve at most one UT per cell.

expectation and solve the following optimization problese ( i:hurth_?rz durlpg al ?'Ven t'm.? Slt(ﬁt’ i thekBS Is serving a UT,
drop the time index), en it is optimal to serve it at its peak power.

Proof: Proposition[2 can be argued as follows. Recall
max Y. [Q- AwHh, 2 (19) v ;
O XA Y the optimization problem in[{20). Let us decompose the
v J beamforming vector into power allocation and directionteec
—Qij Y w7 - wajwiyj} as follows. ||w; ;|| = P, ; andd, ; = -4, Optimization
’ ! ’ . . 2,7
(n,k) problem in [[20) can now be written as
#(1,9)
st S whiwi; < Prea Vi g max D PigdiAcd (23)
j J
The objective function of the optimization problem[ni1@)nc s.. Z Pij < Poeak
be rearranged and written as, J
max ZW%Ai,jWi,j (20 Notlng that max||d;, ;||=1 dﬁin,jdi,j = )\max(AiJ_)
w A ' (Rayleigh-Ritz theorem), wher&™®*(A; ;) is the maximum
H < , eigen value of the matriA; ;, it can be verified that the
s.t. Zwia.iwivj < Peak Vi optimization problem in[{23) can be solved as
J
where the matribA,; ; = Q; ;Hii ;= (n.k) QnsHingx—V1 pE D PiAn(Ay) (24)
#(i.) PSR

andH,; ,, , = hi,nykhffn - Note that the optimization problem

in 20) is in separabfe form, each B®an solve the optimiza-
tion problem given by

Let us defing* = arg max; A™**(A,; ;). Therefore from[(2}),
it is straightforward to see that,

H s gk max L
max nginJWi,j (21) Pl.ogt: Preak 1F j = j"and A" (A -) > 0 (25)
3 ’ 0 else
J Proposition[ 2 implies that at most one UT can be active
Denoting W, ; = w” w;;, @I) can now be rewritten in PEr cell during each time slot. During a given time sipin
matrix form as o every cell, there can be either one active UT in the cell which
case the BS transmits at its peak pow&fX[t] = Ppeay or
max D (A ;W) (22)  there are no active UTs in the cell and hence the BS does not

transmit °"

K2

D (A [TWR[E]) = Poeatld™ ™ (A j+ ) Lymex(a, . )>0-
3

J [t] = 0). Also, we can conclude that
s.t. Ztr(Wi,j) < Ppeak
J

rankw, ;) =1 V3.
Propositior 2 also provides us an easier method to solve the
%ptimization problem[(19). It can be seen that the optimal

eamforming vector during each time slot is the eigen vector
corresponding to the maximum eigen valug"(A; ;-).)
herefore,

Relaxing the rank constraint on tW&; ; matrices in[(2R) leads

to a semi-definite programming (SDP) problem which ¢

be solved optimally using the optimization package SEDU

[20]. Also, from the result of[[21], it is easy to see that th

solution obtained form the relaxed problem is always ran

1. SDP problems can be efficiently solved using interior poin %t _ ( MAX(A LV ) (A

methods, at a complexity cost of at m@tN + N7?)3-5. Later e Foeatd ™ (A g James(a,jo)>0 ) X (s ()26)

on in this section, we will provide an algorithm to solve the

optimization problem[{21) with a lower complexity. wherexmax(a, ,.) IS the eigen vector corresponding to the
Observe that in order to formulate the matd; ;, the maximum eigen value of matriA; ;- and

BSs only require the local CSh(,, , Vn, k). The BSs would opt .

only have to exchange the queue-lengths among themselves. wi; =0 #]



At this stage, we would like to point out that the complexity oexponent (in the range fror to 5 dependent on the radio
eigenvalue decomposition function (V) which is lower environment).
than the complexity of the SDP based solution. Therefd®), (2 e plot the time average energy expenditure per BS
offers an easier method to calculate the optimal beamf@mipersys the target QoS for two cases. In the first case
vectors with lesser computational complexity. we solve the problem of minimizing the instantaneous en-
. 'kthu't'on-l ook at th S bleGEl(22), i ergy expenditure subject to instantaneous QoS constréints
. N K
Taking a closer look at the optimization problefm22). t Cain,, 5., 5 ¢, witflwi, 1] St yuslf] > s ). We
e seen that each U] has a metric associated with it giveryepeat this fod 000 time slots. In the second scenario, we solve

by, the problem of minimizing the time average energy expendi-
tr(A; W, ;) = tr(Q;; Hi i ;Wi ture subject to time average QoS constraints G Aij). We _
- plot the result in FigurEl1. It can be seen that for the caske wit
Useful signal time average constraints, the energy expenditure is lowver.
- Z Qu.k H;, W, ~VW,;). particular, for a target QoS dbdB, energy minimization with
(n,k) nte ﬁermther Users time average QoS constraints under the Lyapunov optinoizati
#(1.9) based approach provides uptdB reduction in the energy

The metric corresponds to the difference between weightexpenditure as compared to the case with instantaneous QoS
sum of the useful signal (to the YJ) and the weighted constraints (forV = 800.) This is in accordance with our
sum of interference caused to the other users in the systiétwition that the time average QoS constraint providesigre
(UT(nk)2(:.5))- The weights are the corresponding queudlexibility in allocating resources over channel fadingteta
length values which indicate how urgently the UT needs to
be served. Therefore, intuitively, each BS schedules thenUT
its cell which has the highest value of this metig**(A; ;).
Additionally, the transmission direction corresponds ke t i
eigen vector corresponding to the™**(A; ;-)). The parame-
ter V represents how aggressively the BS decides to transmitg
Higher value of V' implies less aggressive transmission and%
greater energy savings. a
We will now proceed to provide performance bounds of theﬁ
DBF algorithm in terms of average power consumption andg
average backlog.

o Instant. Constraint

o Avg. constraint, V = 200

¢ Avg. constraint, V = 400
Avg. constraint, V = 600

x Avg. constraint, V = 800

o
a)
Proposition 3. For any target SINR lying strictly inside the

feasible QoS region, the DBF algorithm yields the following =5
performance bounds. The virtual queue is strongly stable
and for anyV > 0, the time average queue-length satisfies \

> Q?ﬂ'}t[t] < w and the time average energy 2 4 6 8 10

expenditure yieldsy" ¥ | PPt] < P + St Target SINR (dB)

The proof fOIIO\_N_S from the_ steps in ApPe”diX’ part I1. Thel':ig. 1. Average energy expenditure Vs target QoS for a twbsoenario,
bound of Propositiofl]3 implies that the time average energych cell consisting of two UTsY; = 5, Pyeak= 10dB.

expended by the DBF algorithm can be made arbitrarily close
to the minimum average power (over all possible sequence
on control actions) by increasing the valuelofto arbitrarily

an high value. This comes at the expense of increasing the
average queue-length of the virtual queue. Intuitivelyjghh
value of the average queue-length implies that the number of
time slots required to satisfy the time average constramts
higher (analogous to the concept of delay in real queues).

VII. CONCLUSION

In this work, we handled the problem of minimizing the
VI. NUMERICAL RESULTS time average energy expenditure subject to satisfying time
In this section, we present some numerical results to demawverage QoS constraints in a MIMO multi-cell scenario.
strate the performance of the DBF algorithm. We considélsing the technique of Lyapunov optimization, we proposed
a system consisting of 2 cells with each cell having 2 UTa decentralized online beamforming design algorithm whose
each. Each BS ha§ antennas and%eak = 10dB per BS. performance in terms of the time average expenditure can
We consider a distance dependent path loss model, the ga¢hmade arbitrarily close to the optimal. Our results show
loss factor from from BSto UT; ;; is given aso; j, = d;fk that time average QoS constraints can lead to better savings
whered; ; 1 is the distance between B® UT; ;, normalized in terms of energy expenditure as compared to solving the
to the maximum distance within a cell, apdis the path loss problem with instantaneous constraints.



APPENDIX: PERFORMANCEBOUNDS
Part 1: Proof of Propositio 11
From [12), we can write the following.
QF 5t +1] < (Qig[t] — pi 1) + A7 [1]
+ 24; ;[t] max (0, Qi ;[t] — pi5[t])
< Q%][ ]+ Mi,j [t] + Azz.,j [t]
= 2Qi 5 [t] (paj[t] — As 5[T]) - (27)

Summing with respect ta,j and taking the conditional
expectatioriE[.|Q[t]] we have,

<Z1E w8 + A7 [H1QH]

- Z Qig[E s [t] — Aig[1QHT] (28)
Now, we can prowde the following bounds,
lenk nsii ]|2+)‘17
(n,k)
#(4, J)
< Ppeakz |hn,i,j [t]|2 + /\i,j
< N Beaanax [y i j[1]| + Xy = AP (29)
and
i jlt] = [wi [ty 5[]
< Pyearlhy i j[t]]> = i <[] (30)
where the upper bound is derived usihg;, w Lltlwi ] <

Pyeak Vi and the fact that for two vectousandy, the quantity
|xy|? is maximized whenx = y¥. Using the bounds of{29)
and noting that all the quantities are bounded, we have,

ATt + pd sl < (AT + (e[ (3D)

From [28)[(31L) and substituting the expressions4gy [¢t] and
L, j[t] we obtain,

)= Tefuaz
+ZQ1J _ZE[Qi,jt]O
- Z Wit b1 ) | QQ1)|.

(n,k)
[t}wi;[t]|Q[t] to both the

( max

:uz]

))?]
wil [t 5[]

(32)

#(4,5)

Adding the termVE|
sides of the we obtain,

WH
t]) + VE[waj[t]wi,j[t]]Q[t]] <C

+ 30 Quglhe - _Z E [Qm‘ 4
- Z Wit 102)

(n,k)
#(1,7)

— waj [tIw; ;[t] ‘Q [t]} .

win [t 5[]

(33)

A. Part Il : Proof of Propositiori B
From (33), for the DBF policy we have,
A(QIH]) + VE[D o) EwiSlQr] < &

+ 2 Qislhi ZE[Q” ( win () " i 5[]

-2 Iy °"‘ )01
(n,k)
#(1,4)
— VW) Pl (34)
(a)
< C
+ 3 Quilthiy ~3E [Qm‘ 1] (1w ISED B 1)1
= D WIS i 1)
(n,k)
#(4,5)
— VWIS wiSH| Q] (35)

where the beamformlng vect(wa is the one implemented
with any stationary randomized policy. Inequality) follows
due to the following reason. Recall that the DBF algorithm
is implemented to maximize the RHS of the bound[in] (34).
Therefore, replacing with any other policy should yield the
inequality of (a).

In particular we will replace by a stationary randomized
policy which satisfies the following conditions.

E[I(WTSi,j[t])th-ij[t]IQ—
> l(w n,i,j[tHﬂQ(f)} > Nij+e Vi,j

(n,k)
#(1,7)

(36)
E[Z( TS5 ‘[t WZ] |Q } Pt (e) (37)

for somee > 0. The existance of such a policy is proved
in [14] for any \; ; lying strictly inside the achievable QoS
region. Using [(3B) and (37) in_(B5) yields,

A(@U) + VB[ "wiTtelal] < ¢
+ Z Qi,j (t) Z Qz J )‘z J + 6) V Pt (5)
=NKB; — EZQi’j - VPinf(E) (38)
4,

From [38) and from the result of Theorem 2,][14] (Lyapunov
Optimization), we can conclude that,

C +VNKP
- opt 1 peak
i 1 3 Sl s S
t=0 14,5
and
hm—§ §E Pt <Pf+ﬁ
T—oo T - m Vv
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