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Energy Efficient Design in MIMO Multicell
Systems with Time Average QoS Constraints

Subhash Lakshminarayana,Student Member, IEEE, Mohamad AssaadMember, IEEEand Merouane
DebbahSenior Member, IEEE

Abstract—In this work, we address the issue of energy efficient
design in a MIMO multi-cell network consisting of N cells, Nt

antennas per BS andK UTs per cell. Under this set up, we
address the following question: given certain time averageQoS
targets for the users, what is the minimum energy expenditure
with which they can be met? Time average QoS constraints can
lead to greater energy savings as compared to instantaneous
QoS constraints since it provides the flexibility to dynamically
allocate resources over the fading channel states. We formulate
the problem as a stochastic optimization problem whose solution
is the design of the downlink beamforming vectors during each
time slot. We first characterize the set of time average QoS targets
which is achievable by some feasible control policy. We thenuse
the technique of virtual queue to model the time average QoS
constraints and convert the problem into a queue stabilization
problem while minimizing the time average energy expenditure.
We solve this problem using the approach of Lyapunov op-
timization and characterize its performance. Interestingly, our
solution leads to a decentralized design in which the BSs only
have to exchange limited side information. Our simulation results
show that solving the problem with time average QoS constraints
provide greater energy savings as compared to the instantaneous
QoS constraints.

I. I NTRODUCTION

Energy efficiency is becoming an important concern in the
design of future wireless networks both from environmental
and economical point of view. Energy efficient design in
cellular networks addresses the concerns of ICT related carbon
emissions [1], [2] and leads to a reduction in the costs of
running the network due to the reduction in the energy bill
[3].

The main focus of this work is energy efficient transmis-
sion in MIMO multi-cell networks. Some of the past works
focusing on energy efficiency in MIMO systems include [4]
(for single user MIMO system), [5], [6] (which consider the
effect of circuit power in addition to the transmission power).
Recent works focusing on this topic include [7], [8], [9].

In this work, we consider the problem minimizing the
time average energy expenditure subject to time average QoS
constraints, in a MIMO multi-cell system. The QoS metric
we refer to in this work is the difference between the time
average useful signal power and the time average interference
signal power which is constrained to be greater than the
target value. Our motivation to consider the time average QoS
constraint comes from the fact that it provides the flexibility
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to dynamically allocate resources over the fading channel
states as compared to instantaneous QoS constraints. In terms
of energy savings, time average QoS constraint can lead to
better performance, due to the fact that the transmissions can
be delayed until favorable channel conditions are seen, thus
minimizing the energy expenditure. The concept has also been
exploited in the context ofenergy-delay trade offs[10], [11].

We formulate our problem as a stochastic optimization
problem and propose a solution based on the technique of Lya-
punov optimization [12], [13], which provides simple online
solutions based only on the current knowledge of the system
state (as opposed to traditional approaches such as dynamic
programming which suffer from very high complexity and
require a-priori knowledge of the statistics of all the random
processes in the system). Of particular relevance is the work
of [14] which deals with the problem of minimizing the
average power expenditure in wireless networks to support the
incoming traffic. However, the physical layer model considered
is a simple conflict graph based model in which if two
transmitters are within the interference range of each other,
only one of them can transmit. Therefore, the rate achieved
depends only on the power allocated to the link which is
scheduled (and hence the signal to noise ratio (SNR) of the
link). However, advances in physical layer techniques like
multiple antenna technologies allow multiple users to coexist
over the same resource block. Therefore, in this work, we
consider the problem of energy efficient transmissions in a
MIMO multi-cell scenario.

Our contributions in this work are as follows.
• We first formulate thefeasible QoS region, i.e. the set
of target QoS constraints that is achievable by some control
policy.
• We model the time average constraint as avirtual queueand
transform the problem into a queue stabilization problem while
minimizing the average energy expenditure. We then use the
technique of Lyapunov optimization [12], [13] to formulatea
dynamic control strategy that satisfies the time average QoS
targets. Our algorithm leads to a decentralized design in which
the BSs can formulate the beamforming vectors using only
the local CSI. The BSs would only have to exchange virtual
queue-length information among themselves.
• We provide the performance bounds for our decentralized
algorithm and show that its performance in terms of the
energy expenditure can be made arbitrarily close to the energy
expenditure of the optimal policy.
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II. SYSTEM MODEL

We consider a MIMO multi-cell scenario consistingN cells
andK UTs per cell. The UTs in each cell are served by their
respective BSs which are equipped withNt antennas. The UTs
have a single antenna each. The notation UTi,j denotes thej-
th UT present in thei-th cell. The BS of each cell serves only
the UTs present in its cell. We consider a discrete-time block-
fading channel model where the channel remains constant for
a given coherence interval and then changes independently
from one block to the other. We index the time slots byt.

We denote the channel vector from the BSi to the UTj,k
during the time slott by hi,j,k[t] ∈ C

Nt . We define the
channel matrixH[t] given Hi,j[t] = [hi,j,1[t], . . . ,hi,j,K [t]] ;
Hi[t] = [Hi,1[t], . . . ,Hi,N [t]] andH[t] = [Hi[t], . . . ,HN [t]] .
The channel process{H[t], t = 0, 1, 2, . . .} is assumed to be
an independent and identically distributed (i.i.d) discrete time
stationary ergodic random process which takes values from the
finite state space{H1, . . . ,HL}. We denote the distribution
Pr(H[t] = Hl) = πl, l = 1, . . . , L where

∑

l πl = 1.
Let us denote the beamforming vector corresponding to UTi,j

during slott by wi,j [t] ∈ C
Nt . The signal received by UTi,j

during timet is given by

yi,j [t] = hH
i,i,j [t]wi,j [t]xi,j [t] +

∑

(n,k)
6=(i,j)

hH
n,i,j [t]wn,k[t]xn,k[t]

+ zi,j [t] (1)

wherexi,j [t] ∈ C represents the information signal for the
UTi,j during the time slott and zi,j ∼ CN (0, N0) is the
corresponding additive white Gaussian complex noise. The
QoS metric which we denote byγi,j [t] is

γi,j [t] = |wH
i,j [t]hi,i,j [t]|

2 −
∑

(n,k)
6=(i,j)

|wH
n,k[t]hn,i,j [t]|

2. (2)

Comment on the QoS metric:
The QoS metric chosen in this work represents the difference
between time average useful signal power and the time average
interference signal power. In addition to multi-cell networks,
the QoS metric in our work can be applied to cellular networks
with cognitive network underlay. In this context, one can
view the QoS metric in similar spirit with metrics such as
interference temperature control [15], [16], [17], [18] (in which
the interference, peak interference power (PIP) or average
interference power (AIP) is constrained to below a certain
threshold). Our QoS metric is more general in the sense that
we constraint the interference signal to be below the useful
signal power upto a threshold level. The target QoS values can
be adjusted to different values depending on the tier to which
the users belong, e.g. the primary users can have higher QoS
target (since the primary users are licensed users and hence
demand greater QoS guarantees) and the cognitive users can
have a lower QoS target. In this work, we consider the time
average QoS constraints as it can provide more flexibility as
compared to instantaneous constraints in terms of dynamically
allocating resources over fading channel states, thus leading to
better system performance. It has been shown in some works
in the past that time average QoS constraints lead to better

system performance as compared to the instantaneous (peak)
constraints [17], [18].

The transmission power by each BSPi[t] depends on
the beamforming vector during the time slott which can
be given asPi[t] =

∑K

j=1 w
H
i,j [t]wi,j [t], i = 1, . . . , N.

The optimization problem to minimize the average energy
expenditure subject to time average QoS constraint can be
formulated as

min lim
T→∞

1

T

T−1∑

t=0

E

[ N∑

i=1

Pi[t]
]

(3)

s.t. lim
T→∞

1

T

T−1∑

t=0

E [γi,j [t]] ≥ λi,j , ∀i, j (4)

K∑

j=1

wH
i,j [t]wi,j [t] ≤ Ppeak ∀i, t (5)

wherePpeak is the peak power at which the BSs can transmit.
The optimization problem in (3) is a stochastic optimization

problem. The control action to be taken during each time
slot is the formulation of the downlink beamforming vectors
(wi,j [t] ∀i, j) during every time slott. In particular, we search
for the sequence of control actions which result in minimum
time average energy expenditure while satisfying the time
average QoS constraints.

We will henceforth denote the time average quantities by
x̄ = limT→∞

1
T

∑T−1
t=0 E [x[t]] .

Let Pinf be the infimum time average power̄P incurred
while achieving the time average QoS targets over all possible
sequence of control actions. In this work, we use the technique
of Lyapunov optimization to provide a simple online solution
to the stochastic optimization problem.

III. A CHIEVABLE QOS REGION

Before we solve (3), we will first characterize the set of
all the time average QoS targets which can be satisfied by
some control policy. Problem (3) is solvable only if the time
average QoS constraints lie within this region. Let us define
the matricesWi = [wi,1, . . . ,wi,K ] ∈ C

Nt×K and W =

[W1, . . . ,WN ] ∈ C
Nt×NK

. We denote the collection of all
feasible beamforming vectorsW by the setW which can be
characterized as follows,

W = {W : wi,j ∈ C
Nt ∀i, j

s.t.
∑

j

wH
i,jwi,j ≤ Pmax, ∀i}. (6)

The QoS associated with a particular beamforming policyW

when the channel is in statel is

γi,j(l,W) = |hH
i,i,jwi,j |

2 −
∑

(n,k)
6=(i,j)

|hH
n,i,jwn,k|

2. (7)

We also define the vectorsγi(l,W) = [γi,1, . . . , γi,K ] ∈ R
K

and γ(l,W) = [γ1, . . . , γN ] ∈ R
NK

. The achievable QoS
region is then given by

Γ =
{

λ ∈ R
NK

: λ ≤
∑

l

πlCH
(
γ(l,W)

∣
∣W ∈ W

)}

(8)
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whereCH(A) represents the convex hull of the setA.

The basic idea here is that by time sharing between different
beamforming vectors in the setW , any QoS constraint inside
the region defined by the convex hull should be achievable.
The achievable QoS region of the form (11) is similar to the
characterization of the stability region in the case of scheduling
algorithms in wireless networks(e.g. see Theorem 3.6, [12]).
The result state more formally is as follows: for any target
QoS lying inside the stability region (λ ∈ Γ), there exists a
stationary randomized policy that can achieve the target QoS
[19], Theorem 4.5.

IV. ENERGY EFFICIENT DECENTRALIZED BEAMFORMING

DESIGN

Before we solve (3), we will first characterize the set of
all the time average QoS targets which can be satisfied by
some control policy. Problem (3) is solvable only if the time
average QoS constraints lie within this region. Let us define
the matricesWi = [wi,1, . . . ,wi,K ] ∈ C

Nt×K and W =

[W1, . . . ,WN ] ∈ C
Nt×NK

. We denote the collection of all
feasible beamforming vectorsW by the setW which can be
characterized as follows,

W = {W : wi,j ∈ C
Nt ∀i, j

s.t.
∑

j

wH
i,jwi,j ≤ Pmax, ∀i}. (9)

The QoS associated with a particular beamforming policyW

when the channel is in statel is

γi,j(l,W) = |hH
i,i,jwi,j |

2 −
∑

(n,k)
6=(i,j)

|hH
n,i,jwn,k|

2. (10)

We also define the vectorsγi(l,W) = [γi,1, . . . , γi,K ] ∈ R
K

and γ(l,W) = [γ1, . . . , γN ] ∈ R
NK

. The achievable QoS
region is then given by

Γ =
{

λ ∈ R
NK

: λ ≤
∑

l

πlCH
(
γ(l,W)

∣
∣W ∈ W

)}

(11)

whereCH(A) represents the convex hull of the setA.

The basic idea here is that by time sharing between different
beamforming vectors in the setW , any QoS constraint inside
the region defined by the convex hull should be achievable.
The achievable QoS region of the form (11) is similar to the
characterization of the stability region in the case of scheduling
algorithms in wireless networks(e.g. see Theorem 3.6, [12]).
The result state more formally is as follows: for any target
QoS lying inside the stability region (λ ∈ Γ), there exists a
stationary randomized policy that can achieve the target QoS
[19], Theorem 4.5.

V. ENERGY EFFICIENT DECENTRALIZED BEAMFORMING

DESIGN

In this work, in order to model the time average QoS
constraint, we use the concept ofvirtual queue [19]. The
virtual queue associated with the time average constraint
γ̄i,j ≥ λi,j evolves in the following manner,

Qi,j [t+ 1] =max (Qi,j [t]− µi,j [t], 0) +Ai,j [t] (12)

whereAi,j [t] =
∑

(n,k)
6=(i,j)

|wH
n,k[t]hn,i,j [t]|2 + λi,j denotes the

arrival process andµi,j [t] = |wH
i,j [t]hi,i,j [t]|2 denotes the

departure process The notion of strong stability of the virtual
queue is given as

∑

i,j Q̄i,j [t] < ∞. Ensuring the strong
stability of the virtual queue implies that thelim of time
average of the arrival process is less than or equal to the service
process [19]1, i.e.

Āi,j [t]− µ̄i,j [t]] ≤ 0 ∀i, j. (13)

In other words, the constraint (4) is satisfied. Thus, we
reformulate the original problem into a problem of stabilizing
the virtual queue while minimizing the time average energy
expenditure.

In order to solve this, we use the technique of Lyapunov op-
timization [12] which allows us to consider the joint problem
of stabilizing the queue and performance optimization.

To this end, we define the quadratic Lyapunov functionV :
R

N
→ R as: V (Q[t]) = 1

2

∑

i,j(Qi,j [t])
2. The Lyapunov

function is a scalar measure of the aggregate queue-lengthsin
the system. We define the one-step conditional Lyapunov drift
as

∆(Q[t]) = E

[

V (Q[t+ 1]))− V (Q[t])
∣
∣
∣Q[t]

]

(14)

where the expectation is with respect to the random channel
states and the (possibly random) control actions made in
reaction to these channel states.

We will now examine the Lyapunov drift corresponding to
the evolution of the virtual queueQi,j .

Proposition 1. For the virtual queue which evolves according
to (12), the Lyapunov drift follows the following condition.

∆(Q[t]) + V E
[∑

i,j

wH
i,j [t]wi,j [t]

∣
∣Q[t]

]
≤ C1

+
∑

i,j

Qi,j[t]λi,j −
∑

i,j

E

[

Qi,j [t]
(

|wH
i,j [t]hi,i,j [t]|

2

−
∑

(n,k)
6=(i,j)

|wH
n,k[t]hn,i,j [t]|

2
)

− VwH
i,j [t]wi,j [t]

∣
∣
∣Q[t]

]

∀t (15)

whereC1 = 1
2

∑

i,j E

[

(Amax
i,j [t])2 + (µmax

i,j [t])2
]

< ∞ and

Amax[t] = NPpeakmax
n

|hn,i,j [t]|
2 + λi,j (16)

µmax[t] = Ppeak|hi,i,j [t]|
2. (17)

The proof follows from the steps in Appendix, part I.
According to the theory of Laypunov optimization, a good
method to choose the beamforming vector is to minimize the
bound obtained in (15). This implies that the beamforming
vector should be chosen in the following manner:

wi,j [t] ∈ argmaxw∈W

∑

i,j EH

[

Qi,j [t]|wH
i,jhi,i,j [t]|2 (18)

−Qi,j[t]
∑

(n,k)
6=(i,j)

|wH
n,khn,i,j [t]|

2 − VwH
i,jwi,j

∣
∣
∣Q(t)

]

1In general mean rate stability is sufficient to ensure this condition. Here
we use a stronger notion of stability.
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where EH indicates that the expectation is with respect to
the random channel realization. We will assume that the BSs
have the perfect knowledge of CSI of all its downlink channels
(hi,n,k ∀n, k)and propose a method to solve (18). Interestingly,
our problem approach also leads to a decentralized solutionin
the multi-cell scenario. Further, we will theoretically examine
some properties of this algorithm and analyze its performance.

With the perfect knowledge of CSI, the optimization prob-
lem (18) reduces to greedily minimizing the term inside the
expectation (E[f(Y )|Y ] = f(Y )). Therefore, we remove the
expectation and solve the following optimization problem (we
drop the time indext),

max
w∈C

Nt

∑

i,j

[

Qi,j |w
H
i,jhi,i,j |

2 (19)

−Qi,j

∑

(n,k)
6=(i,j)

|wH
n,khn,i,j |

2 − VwH
i,jwi,j

]

s.t.
∑

j

wH
i,jwi,j ≤ Ppeak ∀i.

The objective function of the optimization problem in (19) can
be rearranged and written as,

max
w

∑

i,j

wH
i,jAi,jwi,j (20)

s.t.
∑

j

wH
i,jwi,j ≤ Ppeak ∀i

where the matrixAi,j = Qi,jHi,i,j−
∑

(n,k)
6=(i,j)

Qn,kHi,n,k−V I

andHi,n,k = hi,n,kh
H
i,n,k. Note that the optimization problem

in (20) is in separable form, each BSi can solve the optimiza-
tion problem given by

max
w

∑

j

wH
i,jAi,jwi,j (21)

s.t.
∑

j

wH
i,jwi,j ≤ Ppeak.

Denoting Wi,j = wH
i,jwi,j , (21) can now be rewritten in

matrix form as

max
W

∑

j

tr (Ai,jWi,j) (22)

s.t.
∑

j

tr(Wi,j) ≤ Ppeak

rank(Wi,j) = 1 ∀j.

Relaxing the rank constraint on theWi,j matrices in (22) leads
to a semi-definite programming (SDP) problem which can
be solved optimally using the optimization package SEDUMI
[20]. Also, from the result of [21], it is easy to see that the
solution obtained form the relaxed problem is always rank
1. SDP problems can be efficiently solved using interior point
methods, at a complexity cost of at mostO(N+N2

t )
3.5. Later

on in this section, we will provide an algorithm to solve the
optimization problem (21) with a lower complexity.

Observe that in order to formulate the matrixAi,j , the
BSs only require the local CSI (hi,n,k ∀n, k). The BSs would
only have to exchange the queue-lengths among themselves.

Therefore, our formulation naturally leads to a decentralized
solution.

We will hereby address the algorithm corresponding to solv-
ing (21) as the decentralized beamforming (DBF) algorithm.
We will also denote the solution corresponding to (21) by
the superscript ”opt”. We will now provide some theoretical
analysis into the performance of the DBF algorithm.

Proposition 2. Under the DBF strategy, during every time
slot t, it is optimal for BS to serve at most one UT per cell.
Further, during a given time slott, if the BS is serving a UT,
then it is optimal to serve it at its peak power.

Proof: Proposition 2 can be argued as follows. Recall
the optimization problem in (20). Let us decompose the
beamforming vector into power allocation and direction vector
as follows.||wi,j ||2 = Pi,j anddi,j =

wi,j

||wi,j ||
. Optimization

problem in (20) can now be written as

max
Pi,j ,||di,j||=1

∑

j

Pi,jd
H
i,jAi,jdi,j (23)

s.t.
∑

j

Pi,j ≤ Ppeak

Noting that max||di,j ||=1 d
H
i,jAi,jdi,j = λmax(Ai,j)

(Rayleigh-Ritz theorem), whereλmax(Ai,j) is the maximum
eigen value of the matrixAi,j , it can be verified that the
optimization problem in (23) can be solved as

max
Pi,j≤Ppeak

∑

j

Pi,jλ
max(Ai,j) (24)

Let us definej∗ = argmaxj λ
max(Ai,j). Therefore from (24),

it is straightforward to see that,

P
opt
i,j =

{

Ppeak if j = j∗andλmax(Ai,j∗) > 0

0 else.
(25)

Proposition 2 implies that at most one UT can be active
per cell during each time slot. During a given time slott, in
every cell, there can be either one active UT in the cell which
case the BS transmits at its peak power (P

opt
i [t] = Ppeak) or

there are no active UTs in the cell and hence the BS does not
transmit (P opt

i [t] = 0). Also, we can conclude that
∑

j

tr(Ai,j [t]W
opt
i,j [t]) = Ppeakλ

max(Ai,j∗)1λmax(Ai,j∗ )>0.

Proposition 2 also provides us an easier method to solve the
optimization problem (19). It can be seen that the optimal
beamforming vector during each time slot is the eigen vector
corresponding to the maximum eigen value (λmax(Ai,j∗).)
Therefore,

w
opt
i,j∗ =

(

Ppeakλ
max(Ai,j∗)1λmax(Ai,j∗ )>0

)

xλmax(Ai,j∗ )

(26)

wherexλmax(Ai,j∗ ) is the eigen vector corresponding to the
maximum eigen value of matrixAi,j∗ and

w
opt
i,j = 0 j∗ 6= j.
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At this stage, we would like to point out that the complexity of
eigenvalue decomposition function isO(N3

t ) which is lower
than the complexity of the SDP based solution. Therefore, (26)
offers an easier method to calculate the optimal beamforming
vectors with lesser computational complexity.

Intuition:
Taking a closer look at the optimization problem (22), it can
be seen that each UTi,j has a metric associated with it given
by,

tr(Ai,jWi,j) = tr
(
Qi,j Hi,i,jWi,j

︸ ︷︷ ︸

Useful signal

−
∑

(n,k)
6=(i,j)

Qn,k Hi,n,kWi,j
︸ ︷︷ ︸

Interference signal to other users

−VWi,j

)
.

The metric corresponds to the difference between weighted
sum of the useful signal (to the UTi,j) and the weighted
sum of interference caused to the other users in the system
(UT(n,k) 6=(i,j)). The weights are the corresponding queue-
length values which indicate how urgently the UT needs to
be served. Therefore, intuitively, each BS schedules the UTin
its cell which has the highest value of this metricλmax(Ai,j∗ ).
Additionally, the transmission direction corresponds to the
eigen vector corresponding to the(λmax(Ai,j∗)). The parame-
ter V represents how aggressively the BS decides to transmit.
Higher value ofV implies less aggressive transmission and
greater energy savings.

We will now proceed to provide performance bounds of the
DBF algorithm in terms of average power consumption and
average backlog.

Proposition 3. For any target SINR lying strictly inside the
feasible QoS region, the DBF algorithm yields the following
performance bounds. The virtual queue is strongly stable
and for anyV ≥ 0, the time average queue-length satisfies
∑

i,j Q̄
opt
i,j [t] ≤

C1+V NKPpeak

ǫ
and the time average energy

expenditure yields,
∑N

i=1 P̄
opt
i [t] ≤ Pinf +

C1

V
.

The proof follows from the steps in Appendix, part II. The
bound of Proposition 3 implies that the time average energy
expended by the DBF algorithm can be made arbitrarily close
to the minimum average power (over all possible sequence
on control actions) by increasing the value ofV to arbitrarily
an high value. This comes at the expense of increasing the
average queue-length of the virtual queue. Intuitively, a high
value of the average queue-length implies that the number of
time slots required to satisfy the time average constraintsis
higher (analogous to the concept of delay in real queues).

VI. N UMERICAL RESULTS

In this section, we present some numerical results to demon-
strate the performance of the DBF algorithm. We consider
a system consisting of 2 cells with each cell having 2 UTs
each. Each BS has5 antennas andPpeak = 10dB per BS.
We consider a distance dependent path loss model, the path
loss factor from from BSi to UTj,k is given asσi,j,k = d

−β
i,j,k

wheredi,j,k is the distance between BSi to UTj,k, normalized
to the maximum distance within a cell, andβ is the path loss

exponent (in the range from2 to 5 dependent on the radio
environment).

We plot the time average energy expenditure per BS
versus the target QoS for two cases. In the first case,
we solve the problem of minimizing the instantaneous en-
ergy expenditure subject to instantaneous QoS constraints(
minw

∑N

i=1

∑K

j=1 w
H
i,j [t]wi,j [t] s.t. γi,j [t] ≥ λi,j ∀t). We

repeat this for1000 time slots. In the second scenario, we solve
the problem of minimizing the time average energy expendi-
ture subject to time average QoS constraints (γ̄i,j ≥ λi,j ). We
plot the result in Figure 1. It can be seen that for the case with
time average constraints, the energy expenditure is lower.In
particular, for a target QoS of10dB, energy minimization with
time average QoS constraints under the Lyapunov optimization
based approach provides upto4dB reduction in the energy
expenditure as compared to the case with instantaneous QoS
constraints (forV = 800.) This is in accordance with our
intuition that the time average QoS constraint provides greater
flexibility in allocating resources over channel fading states.

2 4 6 8 10

−5

0

5

Target SINR (dB)

D
ow

n
lin

k
P

ow
er

Instant. Constraint
Avg. constraint, V = 200
Avg. constraint, V = 400
Avg. constraint, V = 600
Avg. constraint, V = 800

Fig. 1. Average energy expenditure Vs target QoS for a two cell scenario,
each cell consisting of two UTs,Nt = 5, Ppeak= 10dB.

VII. C ONCLUSION

In this work, we handled the problem of minimizing the
time average energy expenditure subject to satisfying time
average QoS constraints in a MIMO multi-cell scenario.
Using the technique of Lyapunov optimization, we proposed
a decentralized online beamforming design algorithm whose
performance in terms of the time average expenditure can
be made arbitrarily close to the optimal. Our results show
that time average QoS constraints can lead to better savings
in terms of energy expenditure as compared to solving the
problem with instantaneous constraints.
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APPENDIX : PERFORMANCEBOUNDS

Part 1: Proof of Proposition 1

From (12), we can write the following.

Q2
i,j [t+ 1] ≤ (Qi,j [t]− µi,j [t])

2 +A2
i,j [t]

+ 2Ai,j [t] max (0, Qi,j [t]− µi,j [t])

≤ Q2
i,j [t] + µ2

i,j [t] +A2
i,j [t]

− 2Qi,j[t] (µi,j [t]−Ai,j [t]) . (27)

Summing with respect toi, j and taking the conditional
expectationE[.|Q[t]], we have,

∆(Q[t]) ≤
∑

i,j

E
[
µ2
i,j [t] +A2

i,j [t]|Q[t]
]

−
∑

i,j

Qi,j [t]E [µi,j [t]−Ai,j [t]|Q[t]] (28)

Now, we can provide the following bounds,

Ai,j [t] =
∑

(n,k)
6=(i,j)

|wH
n,k[t]hn,i,j [t]|

2 + λi,j

≤ Ppeak

∑

n

|hn,i,j [t]|
2 + λi,j

≤ NPpeakmax
n

|hn,i,j [t]|
2 + λi,j

△

= Amax
i,j [t] (29)

and

µi,j [t] = |wH
i,j [t]hi,i,j [t]|

2

≤ Ppeak|hi,i,j [t]|
2 △

= µmax
i,j [t] (30)

where the upper bound is derived using
∑

j w
H
i,j [t]wi,j [t] ≤

Ppeak∀i and the fact that for two vectorsx andy, the quantity
|xy|2 is maximized whenx = yH . Using the bounds of (29)
and noting that all the quantities are bounded, we have,

A2
i,j [t] + µ2

i,j [t] ≤ (Amax
i,j [t])2 + (µmax

i,j [t])2. (31)

From (28),(31) and substituting the expressions forAi,j [t] and
µi,j [t], we obtain,

∆(Q[t]) ≤
∑

i,j

E

[

(Amax
i,j [t])2 + (µmax

i,j [t])2
]

+
∑

i,j

Qi,j [t]λi,j −
∑

i,j

E

[

Qi,j [t]
(

|wH
i,j [t]hi,i,j [t]|

2

−
∑

(n,k)
6=(i,j)

|wH
n,k[t]hn,i,j [t]|

2
)∣
∣
∣Q(t)

]

. (32)

Adding the termV E
[∑

i,j w
H
i,j [t]wi,j [t]

∣
∣Q[t]

]
to both the

sides of the we obtain,

∆(Q[t]) + V E
[∑

i,j

wH
i,j [t]wi,j [t]

∣
∣Q[t]

]
≤ C1

+
∑

i,j

Qi,j [t]λi,j −
∑

i,j

E

[

Qi,j [t]
(

|wH
i,j [t]hi,i,j [t]|

2

−
∑

(n,k)
6=(i,j)

|wH
n,k[t]hn,i,j [t]|

2
)

− VwH
i,j [t]wi,j [t]

∣
∣
∣Q[t]

]

. (33)

A. Part II : Proof of Proposition 3

From (33), for the DBF policy we have,

∆(Q[t]) + V E
[∑

i,j

(wopt
i,j)

H [t]wopt
i,j [t]

∣
∣Q[t]

]
≤ C1

+
∑

i,j

Qi,j [t]λi,j −
∑

i,j

E

[

Qi,j [t]
(

(|wopt
i,j [t])

Hhi,i,j [t]|
2

−
∑

(n,k)
6=(i,j)

|(wopt
n,k[t])

Hhn,i,j [t]|
2
)

− V (w
opt
i,j [t])

Hw
opt
i,j [t]

∣
∣
∣Q[t]

]

(34)

(a)

≤ C1

+
∑

i,j

Qi,j [t]λi,j −
∑

i,j

E

[

Qi,j [t]
(

|wTS
i,j [t])

Hhi,i,j [t]|
2

−
∑

(n,k)
6=(i,j)

|(wTS
n,k[t])

Hhn,i,j [t]|
2
)

− V (wTS
i,j [t])

HwTS
i,j [t]

∣
∣
∣Q[t]

]

(35)

where the beamforming vectorwTS
i,j is the one implemented

with any stationary randomized policy. Inequality(a) follows
due to the following reason. Recall that the DBF algorithm
is implemented to maximize the RHS of the bound in (34).
Therefore, replacing with any other policy should yield the
inequality of(a).

In particular we will replace by a stationary randomized
policy which satisfies the following conditions.

E

[

|(wTS
i,j [t])

Hhi,i,j [t]|
2−

∑

(n,k)
6=(i,j)

|(wTS
n,k[t])

Hhn,i,j [t]|
2
∣
∣Q(t)

]

≥ λi,j + ǫ, ∀i, j

(36)

E

[∑

i,j

(wTS
i,j [t])

Hwi,j [t]
∣
∣Q(t)

]

= Pinf(ǫ) (37)

for some ǫ > 0. The existance of such a policy is proved
in [14] for any λi,j lying strictly inside the achievable QoS
region. Using (36) and (37) in (35) yields,

∆(Q(t)) + V E
[∑

i,j

(wopt
i,j [t])

Hw
opt
i,j [t]

∣
∣Q[t]

]
≤ C1

+
∑

i,j

Qi,j(t)λi,j −
∑

i,j

Qi,j(t)(λi,j + ǫ)− V Pinf(ǫ)

= NKB1 − ǫ
∑

i,j

Qi,j(t)− V Pinf(ǫ) (38)

From (38) and from the result of Theorem 2, [14] (Lyapunov
Optimization), we can conclude that,

lim
T→∞

1

T

T−1∑

t=0

∑

i,j

E
[
Q

opt
i,j [t]

]
≤

C1 + V NKPpeak

ǫ

and

lim
T→∞

1

T

T−1∑

t=0

∑

i

E
[
P

opt
i [t]

]
≤ Pinf +

C1

V
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